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0. Introduction

Cochran and Cox (1957) recommend that for a single performance
of a complete factorial design, a missing value be estimated by
"minimizing the sum of squares for the interactions that are used
as error''. In this paper, more specific recommendations are made
for estimating one or more missing values when the design is a

two level factorial or fractional factorial.

1. The purpose of missing value estimation.

The purpose of estimating missing values is to provide num-
bers which, when used in the place of the missing data, make
analysis easy and provide the same estimates (0of selected parameters)
that would have been obtained, had the incomplete data been analysed
directly. When an experiment has been designed, the analysis of
incomplete data is often difficult, whereas the "psuedo-complete"
data (with estimated missing values inserted) is easily handled
either because of the symmetries of the design, or because any

complications in the analysis have been previously resolved. The

k

first of these comments applies for example, to the 2~ factorial
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designs and also to the important 2k'p fractional factorial designs
which were described by Box and Hunter (1961 a,b). In many of the
situations in which these designs are used, the analysis of vari-
ance technique which can be applied to factorial and fractional
factorial designs, may not be appropriate. It may be difficult
for the experimenter to decide a priori which interactions, if
any, be wishes to use as error, especially when a highly fraction-
ated portion of a full factorial has been used and the alias re-
lationships are such that a main effect is involved in many or
perhaps all of the linear combinations of effects which can be
estimated from the design. If observations from the design were
complete, a likely method of analysis in many industrial situations
would be to estimate all main effects and interactions and follow
this with a half-normal plot of the effects (Daniel, 1959, des-
cribes this). Thus if some observations were missing, the advice
of Cochran and Cox (1957) to estimate the missing values by
minimizing '"the sum of squares for the interactions that are used
as error" might be difficult to implement because of the experi-
menter's idea of the appropriate analysis to make and because the
alias structure of the design might make prior choice of "'the
interactions that are used as error' a practical impossibility.

It may also lead to insoluble equations. We now suggest a treatment
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of this situation which has the virtue that it is very simple to
employ. This is an important consideration because, often, the
estimation of several missing values leads to such computational
difficulty that it might have been better not to estimate the
values at all but to carry out a (messy) least squares estimation
instead - especially if a computer is available. However even if
the experimenter does have a digital computer available, his task
is not easy. Since in factorial type designs one can estimate
only up to as many effects as there are observations, the experi-
menter must choose which combinations of effects to estimate and
which to sacrifice and a wrong choice will lead to biased estimates,
just as would be obtained by an erroneous choice of the effects

to be used for error.

2. Procedure.

Suppose we perform a two-level factorial or fractional factor-
ial design in n experiments., Then, if the results are complete,
we can estimate the "mean" F = (y1+ya+...+yn)/n , where yi,yz,
s y, are the n observations and (n=-1) other "effects". All
of the n estimates will be either of pure effects or, in the
case of a fractional factorial, linear combinations of effects.
Wiklite 3! = @aeessacanesp yﬁ) for the vector of observations
and let £, i=1,2,...,(n=1), be the (n-1) vectors for which

the &iz provide the correct linear combinations of yi's for
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estimating the (n-1) effects (or sets of aliased effects) other
than the effect involving the mean. For example in a full 2°
factorial written in standard order we could write gj = %(-1,1,-1,
1,-1,1,-1,1), when it is clear that gly would give the "1 effect",
the estimate of the effect of the first variable under consider-
ation. These £, vectors are all orthogonal to each other, and
all are orthogonal to a vector e where ne' = (1,1,...,1), so that
e'y =y is the mean of the observations. It follows that the
sum of squares due to the n estimates e'y, 21y, 42Y¥, ...,E{;_l)z
are independent, each with a single degree of freedom, and that
together they provide the total sum of squares y'y. Since
S.S.(e'y) = ny® and s.s.(&iz) = (g_;:g)a/ (_g_;__g_i) and, also
2'4. = 4/n, it follows that

=i=i
1

n- |
y'y - ny® = (n/4) = (;¥)° (2.1)
i=1
Suppose now that m observations are missing. We can now

estimate only (n-m) effects from our (n-m) remaining observations,
and we can choose which (n-m) of the original (n-1) effects, apart
from the mean, are to be estimated and which m are to be sacri-
ficed. Furthermore once the m sacrificed effects have been

selected, we can regard, as the residual sum of squares to be

minimized with respect to the m missing observations, that
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portion of the right hand side of (2.1) which arises from
sacrificed effects. Minimization of this residual sum of squares
will lead to m equations in the m missing values.
However, in some cases the equations will be dependent and no
solution will be possible. This difficulty is overcome by a
careful choice of which effects are to be sacrificed. Once this
choice is correctly made, the m equations which involve the
missing values may be written down without any differentiation at
all since every equation is obtained by setting equal to zero
one of the sacrificed effects. This may be seen as follows.

Suppose we decide to sacrifice the (m-m)-th to (n-1)-st effects

and treat
n-1
S=(o/¥) Z (43)° (2.2)
i=n-m

as the residual sum of squares. If we differentiate with respect
to each of the m missing observations, put the result equal to
zero, and drop out constant factors we shall obtain a series of
m equations of the form

n-1

i Z aij &;.1 = 0 (j=1,2,.‘.,m) (203)
=n-m

where ay is *1 according as the coefficient of the jth
missing observation in ‘&iz is positive or mnegative. Thus if

the m by m matrix 4 = [aij} is non~singular (or, equivalently,
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the 8, are such that equations (2.3) are independent) then
equations (2.3) reduce to
&iz =0, i= (n-m),...,(n~1). (2.4)

Correct choice of effects to be sacrificed therefore amounts to
finding effects for which A 1is non-singular. This done, we
shall have the m equations (2.4) in m unknowns. These could
be solved for the missing value estimates but, in fact, solution
of the equations is quite unnecessary, as the examples to be
presented later will show.

So far our suggested procedure has involved setting equal
to zero selected sacrificed effects. Hopefully the true value
of these effects, if actually estimated, would be zero or close
to zero. What if, in fact, we have set to zero one or more
linear combinations of effects whose true value is far from zero?
In such a case our procedure will usually cause the estimates
of missing values to induce serious biases in the estimates
which have been retained and consequently the missing value
estimates would be unsatisfactory. Serious biases caused in this
way can usually be detected by examining a half-normal plot of
all the retained effects, after their estimation. As Daniel (1959)
remarks, the small effects in a half-normal plot should,

approximately, point towards the origin. If they do not, bias
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has been introduced, either by the missing value estimates or by
another observation.

Strictly speaking, the estimated effects in a half-normal plot
should be independent and this will no longer be true. The size
of the correlations introduced by using estimates of missing
values in a two level factorial or fractional factorial will
depend principally on the number of observations missing and
the number of runs in the whole design. These correlations will
be small if the ratio (number of observations missing)/(number
of runs) is small.

1f we consider the estimation of factorial effects from a
least squares viewpoint we know that when the design is complete,
the variance-covariance matrix of the factorial effects is
proportional to (_}g'gg)"l F using a standard notation. This
will be a “. - diagonal matrix for a complete two level
factorial and many fractional factorial designs. Let X, be
obtained from X by deleting all rows which correspond to missing
observations and all columns which correspond to combinations of
effects to be sacrificed. Then (X:'L}(l)"1 ¢ will be the new
variance-covariance natrix of the estimated combinations of

effects., Consider a two level factorial or fractional factorial

design for which X'X 1s diagonal with elements n. If one
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observation is missing §i§1 consists of diagonal elements (n-1)
and off-diagonal elements *1, If two observations are missing

X)X, consists of diagonal elements (n=2) and off-diagonal
elements some of which are zero and some *2, and so on. By this
heuristic approach we can see that if the number of missing values
is only a small fraction of the number of runs in the design any
correlations between effects which arise due to the use of missing

value estimates are likely to be small and so will not greatly
affect the use of the half-normal plot technique. Where the
correlations are large the situation would be one in which we
should not want to use a missing value technique in any case.

The estimation of missing values in the way described above
and the subsequent analysis are both simple to carry out in

practice. It is hoped that the examples which follow will

demonstrate this.

3. One missing observation
(a) One missing value; full oK factorial design.
Choose an effect (main effect or interaction) which might
be thought, a priori, to be equal to zero. This will normally be
the highest order interaction between k factors though if

experimental reasons dictated otherwise, another interaction
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might be set equal to zero. Alternative decisions might be
suggested by the fact, for example, that two of the factors were
blocks and no interaction between blocks could be expected.

Use of the highest order interaction in complete factorials
is also suggested by Wright (1958), who discusses estimation of
one missing value in a general factorial experiment and compares
the results of using various sets of interactions as erxror for
missing value purposes. Goulden (1952) gives this method for a
22 factional also. Treatment of the fractional factorial
situation is not, however, mentioned.

Numerical example: A full 23 factorial design was performed
on factors 1, 2 and 3 and the results, in standaed order, were

as in Table 1.

Table 1: Results from a 23'factorial design

1 2 3 12 13 23 123 y
= - = + + + - 10
+ - - - - + + 16
- + - - + - + 2
+ * - + - - - 22
- - + + - - + 8
+ - + - + - - 20
- + + - - + - 2
+ + + + + + + Ly
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The eighth result was observed but was completely out of
line with the other results. An investigation showed that the test
material changed its form at the extreme set of experimental
conditions and so it was decided to substitute a missing value
estimate m instead, The highest order interaction 123 was set
equal to zero, i.e. =10 +16 +2 =22 +8 =20, =2 +m = O
giving, upon solution, an estimate m = 28. The estimates of
the other six effects, excluding the mean, were then computed using
the missing value estimate m = 28 in place of the eighth

observation and provided the values

1 effect = 16 12 effect = T
2 effect = O 13 effect = 3
3 effect = 2 23 effect = 1

A result heavily biased in this way is detected either by sight,
experience, or by examining a half-normal plot of the effects
calculated from the original data. As mentioned above a biased
result will cause the smaller effects plotted to point, not at
the origin but somewhere along the horizontal axis instead;
Half-normal plots of estimates of effects before and after the
missing value estimation are shown in Figure 1. It is clear
that the original effects were biased and removal of the eighth

observation, and its estimation, have removed this bias, since the
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smaller effects point satisfactorily towards the origin.
(b) One missing value; fractional factorial design

In this situation the n independent linear combinatioms of
the y's measure combinations of effects, not individual effects.
Thus, if any combination of high order effects only is available
it is an excellent candidate for setting equal to zero. For
example a half fraction of a 2° generated by I = 123456 has
123 aliased with 456 so the combination of y's which estimates
123 + 456 is probably estimating a small effect and can be set
equal to zero. Other 4'y's involve two factor interactions or
main effects and so would not be used unless a priori reason
dictated it.

In some experiments however the fractionation is so great
that many or perhaps every linear combination of the y's
estimates a main effect aliased with other effects. The pro-
cedure that should be used in such a case is as follows. Choose
a "likely" estimate and set it to zero. Work out the other
effects using the missing value estimated in the calculation and
construct a half normal plot of them; If it does not point
towards the origin, setting that particular combination of effects
equal to zero has caused a bias in the results. Another combin-

ation should be chosen and the procedure repeated.
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Example: Box and Hunter (1961) gave an example of the use of a

agii design. The design and data are shown in Table 2.
T~ i
Table 2: Results from a 2111 design
1 2 3 ) 5 6 7 Filtration Time

Exper-
iment 1 - - - - + + - 68.4
Number > . _ _ & _ - i 77T

3 - + - + - + - (66.4)m

4 - + - - + - - 81.0

5 - - + - + - - 78.6

6 + - + - - - - 41.2

7 - + + - - - + 68.7

8 + + + + + + - 38.7

The generators are 125, 136, 237, and 1234,

Denoting the astimates of effects by e'y, £;¥, £¥,-+» &%z

and assuming that interactions between three or more variables

can be ignored, then

e'y = Mean

L3y

14+ 25+ 36 + 47

&éz 2+ 15+ 37 + 46

Ly

3+ 16 + 27 + 45

&ix =4 4+ 35+ 26+ 17

{1

i

254

5+ 12 + 3% + 67
fey = 6+ 13 + 24 + 57
T+ 23 + 14 + 56
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In many situations where designs such as these are used it
is expected that only a few of the effects will be real ones.
Thus although main effects are involved in all combinations of
effects, not all will be appreciable., Thus some of the combin-
ations of effects may very well be small.

Assume, now, that the third observation is missing. Denote
it by m. Then the value of the seven combinations of effects

are in terms of known results and m,

1+ 25+ 36+ 47 = 5.7~ w/4; when zero, m = 22.8
2+ 15+ 37 + 46 ==19.4+ m/4; " " = TT.6
3416+ 27T+ 45 = 0 -mfl; = ¢ = 0

4 + 35 + 26 + 17 =-16.1+ wmfl; " " = 64,4
54 12 4+ 34 4 67 = 19.8- m/4; " " = 79.2
6 + 13 + 24 + 57 ==39.4+ w/l; " " =157.6
T+ 23+ 14 + 56 = 13.2- m/%; " " = 52.8

Setting any of these to zero provides an estimate of m
but these vary from zero to 157.6. Which do we use? We can,
for the purposes of this example, try all, one by one, and
calculate the other six effects that can be estimated in each

case., The results are shown in Table 3.
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Table 3: Estimates of effects using the missing
value estimate

Missing ' | Effect combination#**

value

estimate m 1 2 3 4 5 6 7
22.8 *  =13.7 =~ 5.7 =10.4 14,1 =-33.7 7.5
T7.6 -13.7 * =19.4 3.3 0.4 =-20.0 =~ 6.2

0 5.7 -19.% *  -16.1 19.8 -39.% 13.2

64 . 1 -10.4 - 3.3 ~16.1  * 3.7 =23.3 = 2.9
79.2 -14.1 0.4 -19.8 3.7 * -19.6 - 6,6
157.6 -33.7 20.0 =39.4 23.3 ~19.6 * «26.2
52.8 - T.5 = 6.2 =13.2 = 2.9 6.6 =-26.2 #

* Used for estimation
*%* Effect shown plus aliased effects

1f now we plot the six effects which arise in each case, we
obtain the seven half-normal plots in Figure 2. Some of the
resulting plots exhibit very clearly considerable bias from an
observation and the poor missing value estimate is the cause of
the trouble in theéé cases. We see that estimates m = 77;6, 64.4,
79.2 and 52.8 are all in the range of reasonable estimates and that
m = 22.8, 0, and 157.6 are not;

Note that any of the four ''realistic" missing value
estimates provide, as largest effects, those associated with main

effects 1, 3 and 6, a tentative conclusion that was confirmed
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when the actual experiment was continued in Box and Hunter (1961).
In practice it should not be necessary to examine all possible
missing value estimates. All that should be needed is to examine
selected estimates until a satisfactory one is found. In the
example above, the first of the values m = 77.6, 64;@, 79;2, and
52;8 which the experimenter tried could have been used even though
Figure 2 shows that some choices are slightly better than others.
Although the numerical magnitude of the effects would have been
different in the four cases, the importance of the effects
(L4 25+ 36 + 47),(3 + 16 + 27 + 145) and (6 + 13 + 24 + 57)
would have been recognized in every case.

If one observation is missing and another observation is
badly biased as well it may happen that no missing value estimate
seems satisfactory. In such a case one should attempt to find
which other observation is causing the trouble and, if it can
be found, remove it and treat that observation as "missing" too.
It is usually fairly easy to spot such observciions; see the
discussion by Daniel (1959).

4, Two observations missing.

The data of Tables 1 and 2, previously used as examples, will

be iradequate for a satisfactory illustration of the two missing

values situation. From the practical point of view two
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observations missing out of eight in such a highly fractionated
experiment would be a very unsatisfactory state of affairs, and
missing value estimation in such circumstances would probably be
used only if further experiments were impossible.

Consider now the following example. Although constructed,
it is an adaption of an example given by Cochran and Cox (1957)
on the texture of cake icing. A 2?;2 fractional factorial
design with defining relation I = 1234 = 3456 = 1256 is
performed. The design, with observations, the second and seventh
of which, Ys and Yo, are missing is given 1in Table 4 as the
first six columns. Other columns provide the combinations of plus
and minus signs which are needed to obtain the combination of
effects shown at the head of each column. For example, using the
seventh column, an estimate of the effect combinations 12 + 34 +
56 would be provided by (233 - Yo = 221 + 317 +...+ 349)/8 if
Y, and y7 were known. We have assumed, in sayincs ".i3, that we
shall ignore all effects (such as 1235) which i .lve wciz than
three factors. Such an assumption (or a stronger one) is fre-
quently made in circumstances where fractional factorial designs
are useful. For this example we use the first column of observa-
tions shown in Table 4.

It is useful as a first step in the estimation procedure to
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evaluate eight times the estimated effects with the missing
observations included. Using the column reference numbers of
Table 4, we find for eight times the effects:

L: 133+ (v, - Y7) =1,

2

.e

h15-(y2-yrr)#

L2
3: 865 ~ (Y2 = YT) = L3
i 69+ (v, = y7) = Ly
5: 393 - (y2 + y7) - L5
6 : ~64T + (y2 + y7) = Lg
T: 927 - (y,+y,) = Ly
8 : 207 - (y2 + yT) = Lg
g ¢ Y & (g, + yT) =L,

10: 115~ (y, - y7) =

L1o
11 : - 1+ (y2 - yT) = Ly
12 : 695 + (y2 - y7) = Ly,
13 : - 69 = (y, = ¥7) = Lyg
W ¢ <879 + (y, + y7) = Lyy
15 : 609 - (y2 + y7) = L15 45,7)

It will be noted that, in (4.1), effects with reference
numbers 1, 2, 7, 12, 13, 14, 15 (call this "Gz~ui 277 211 involve
i(Yz + yT), while the remaining effects, with vaicreres tuobars

3, 4, 5, 6, 8, 9, 10, 11 (call this "Group B") all involve
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In order to estimate the missing values Yo and y7, we shall

set two estimates of effects equal to zero as earlier described.
This is the same as putting L, = Lj = 0(1i # j). However in
order that the two estimates chosen shall provide two independent
equations, we must choose two columns of Figure 4 so that the
second and seventh rows of these columns provide a pattern like,

+ - + + - -+

+ +, + -, -4, OF = =,
(or with columns interchanged), and not like, for example,

+ - - - + - + +

+ -, + +, -4, 0 = =,
(or with columns interchanged). If we attach unities to the signs
we get the A matrices previously described. The first set are
all non-singular, the second set all singular. These patterns
may easily be found by looking at the signs attached to Yo and Y7
in pairs L, and Lj chosen from (4.1) and it is then clear that in
order to provide the right patterns we must choose Li so that
i belongs to Group A and 15 so that j belongs to Group B.

For suppose we do not; for example an. immediate choice might

seem to be to use the effect combinations (135 + 245 + 236 + 146)

and (145 + 235 + 136 + 246) and set them to zero. This is
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equivalent to choosing the residual sum of squares proportional

to

2
S(l"", 15) = ("yl + Ye"'y3 Foe ok Y16)2 + (“‘yl"’yz -+ y3‘+oo-+ y16)

2 2
= Ly + Lygs

say, where we are using the fourteenth and fifteenth column of
Table 3. The estimation equations for the missing Yo and Yo

would then be

3s _ _
E;; 52 (L14 + L15) =0
38 _ N
5;; Ew2 (Llu + L15) =0

which, clearly, provide only one equation. However, if we abandon
estimates of the effect combinations (35 + 46) and (135 + 245 +

236 + 146) we shall obtain a residual proportional to

2

2
S(12, 14) = L12 + Lyy » whence

as — -
ayg = 2(L12 + Llu) = 0, and

oS

provide two independent equations which reduce to L12 = qu = O,

It will be noticed that there are altogether 105 possible pairs
of effect combinations. Only 56 of these pairs will give rise
to two independent equations, and some of these latter 56 will

induce biases in the remaining effects unless all effects are
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actually small. The 56 pairs which will provide two independent

equations involve Li and Lﬁ where i is chosen from Group A and

j from Group B.

Many of these pairs would not come into consideration,
however. For example, it would usually be unwise to select
initially a pair with a number between 1 and 6 inclusive since
these numbers involve main effects. Normally one would choose a
pair involving interactions of as high order as possible. Suppose
we decided to choose the pair (12, 14). For estimation equations
we find that

L, = 0 implies R 695,
Ly, = 0 implies y+y, = 479, (4.2)

It is not necessary to solve these two equations in order
to evaluate all the other 13 effect estimates since, as noted
above, effects with reference numbers 1, 2, 7, 12, 13, 14, 15
("Group A") all involve ;i_-_(y2 + YT) while the remaining effects,
with reference numbers 3, %, 5, 6, 8, 9, 10, 11 ("Group B"), all
involve + (ye - yT). Thus the values in the right hand side of
equations (4.2) can be immediately applied without solving the
equations. Using this fact we obtain for the other 13 effects
values which are one-eighth of the numbers given next to the

effect combinations below.
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1 + 234 + 256 : - 562
2 + 134 + 156 : 680
3+ 124 + 456 : 1560
4 4+ 123 + 356 : - 626
5 4 126 + 346 : - 86
6 + 125 + 345 : - 168
12 + 3% + 56 : 448
13 + 24 : - 272
14+ 23 : = 266
15 + 26 : 810
16 + 25 : - 696
35 + 46 : used for estimation
36 + 45 » - BE6
135 + 245 + 236 + 146 : used for estimation
145 + 235 + 136 + 246 : 130

A half-normal plot of these numerical values is shown in
Figure 3. Since the smaller estimates plotted do not point at

the origin, it appears that the estimates used here introduced
considerable bias and thus the effects used for estimating Yo
and 7 which were set equal to zero could not in fact have been
small. Thus another choice must be made and the effects re-
estimated. Let us try another pair, for example (13,15); The
estimates are given by the two equafions

LIS = 0 which implies Ve, * Wiy =~ 69

15
Using these values, we find for eight times the remaining

L,_ =0 which implies Y Ty = 609
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13 estimates of combination of effects in the same order as

before:
1 4+ 234 + 256 : 64
2 + 134 + 156 : 54
3+ 124 + 456 ¢ 934
b 4+ 123 + 356 : 0
5+ 126 + 346 : -216
6 + 125 + 345 3 = 36
12+ 3% 4 56 : 318
13+ 24 : =402
14 + 23 : =136
15 + 26 ¢ 184
16 + 25 : - 70
35 + 46 : 626
36 + 45 : used for estimation

135 + 245 + 236 + 146: 130
145 + 235 + 136 + 246: used for estimation

A half-normal plot of these numerical values is shown in
Figure 3. Here the smaller estimates plotted do point at the
origin, and thus it appears ﬁhat the estimates used for the
missing values are performing their role satisfactorily. The
analysis may now be continued in conventional ways;

5. Three observations missing

For purposes of illustration we shall again use the design
of Table 4, Assume for an example that the second, eleventh

and fourteenth observations are missing now, as shown in the
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second column of observations. Using the column reference

numbers of Table 4 we find, for eight times the estimated effects:

1: =332+ (y, - y97 +ypy) = 1y
2: 450 - (y, = yyp +y) =1L,
3¢ 874 = (Ye + Y11 © Ylu_) = L3
4 60 + (y2 + Y99 - Ylu) = Ly
5: = 342 - (y2 - yll o Ym) = L5
v DO @ e By - T) =Yg
7: 1188 = (y2 + ¥qyq * Vi) = Lo
B = BER = e Sy ~ Yi) = Tg
9t « 10+ (5, = Yy = Tyg) = Ly
10: 124 - (y2 * Pyq = Y14) = Ly,
11: - 10 + (y2 +¥qq - Vo) = Lpg
12: 230 + (y2 - ¥qq * ylu) =1L,
13: 396 - (y, = yy7 + yp) = Ly3
14: - 74O + (y2 +yqq + ylu) = Ly
gl TR R T

In order to estimate the missing wvalues Yoo Yy10 Yyy» Ve
gset three estimates of effect combinations equal to zero. In
order to obtain three independent equations we must choose
three Li which are such that their coefficients of Yor Y11 and Y1y
provide a non-singular 3 by 3 matrix. This can be achieved, in
fact, in 44 ways using only L; for which i = . .
before we might decide not to use Li for which i = 1,...,6 since

these involve main effects.) This may be seen as follows. The
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15 Li above divide into four groups:
Group A: i = 1, 2, 12, 13, involving (y, = y;; + ¥y))
Group B: i = 3, 4, 10, 11, involving (y, + y;; = ¥y
GrOU-P C: i = 5, 6, 8, 9; inVO].Ving (YQ - Y'll - Ylu)
Group D: i = 7, 14, 15, dnvolving (y, + y5; + ¥yu)

It is clear that the choice of 3 Li which give rise to a non-
singular A matrix implies choosing an L from 3 distinct groups
above., 1f we decide not to use an Li involving a main effect
(1 =1,...,6) we are reduced to 2 choices from A, 2 from B,
2 from C and 3 from D. Since we can choose three groups in the
four ways ABC., 'ABD), ACD!or !BCD:, total choices involving
i=7T,.0.,15 reduce to 23 + 2°.3 + 2°.3 + 2°.3 = 44, As in
previous examples we must make a choice, evaluate the remaining
effects and plot them in a half-normal plot.

Suppose we choose 8, 10, and 15 from Groups C, B, and D
respectively. The three estimation equations are then

Lg = O which implies y, - yy; = ¥y = -528

L10= O which implies ¥ * Yy = Yy = 124

L15= O which implies y, + y;q + ¥qy = 870
Again, solution of equations such as these is unnecessary. For
example since Lg = 0O implies y, = ¥yq = Yqy = -528 we can
immediately obtain all effects of Group C. Similarly we can

obtain the effects of Groups B and D by use of L10 = 0 and
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L,. = O. For Group A we can use the fact that (y, - y;; + Yy

15
which we need, can be obtained as 218 using the identity

(v = ¥yy *+ yy) + o + vy = ¥y = 5 = 71 = vy)
+ {y, + ¥y + yp) (5.1)

so that it is not necessary to know the individual estimates of
the missing values at all. We find by this method, for eight
times the estimates of the remaining 12 effect combinations, the
following numerical values:

Reference No., 1l: =114

2: 232

3 789

4h: 184

5: 186

6: -440

7: =318

8: used for estimation
9: =-538
10: wused for estimation
i: 1A
12: 448
e 7 178
14 130
15: used for estimation

A half-normal plot of the effects is shown in Figure 4. We can

see that the results exhibit some bias. Because of this we



shall choose another set of 3 estimates of effect combinations

and repeat.,
Suppose we choose instead 11, 13, and 14 from Groups B, A

and D respectively. The three estimation equations are then

L11 = 0 which implies Yo+ ¥y " Yy = 10
L13 = 0 which implies Vo = V11 + Y1y = 396
Ly, = O which implies y, + yj; + ¥y, = T40

These equations immediately give the estimates of effects in
Groups B, A and D. For Group C, we find (y2 = P yln) = =334,
using the identity (5.1). Thus for eight times the estimates of

the remaining 12 effect combinations, we find as follows.

Reference No. 1: 64
2: 54
3: 864
4. 70
5: - 8
6: =246
T: 448
8: 194
9: =344

10: 114
11: wused for estimation
l2: 626

13: wused for estimation
14: wused for estimation
15: 130
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A half-normal plot of the effects is shown in Figure k.
We see that the missing values have been satisfactorily
estimated and the analysis may now be continued in conventional

ways.



REFERENCES

Box, G, E. P. and Hunter, J. S. [196la]. The ek-p fractional
factorial designs. Techmometrics 3, 311-351

Box, G. E. P, and Hunter, J. S. {1961b]. The ak"p fractional
factorial designs. Technometrics 3, 449-458

Cochran, W. G. and Cox, G. M. [1957]. Exzperimental Designs.
John Wiley and Sons, New York.

Daniel, C. [1950]. Use of half-normal plots in interpreting
factorial two level experiments. Technometrics 1, 311~-341.

Goulden, C. H. [1952]. Methods of Statistical Analysis, John
Wiley and Sons, New York.

Wright, G. M. [1958]. The estimation of missing values in
factorial experiments. New Zealand Journal of Science 1, 1-8



