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ABSTRACT

Scientific method is a process of guided learning in which accelerated
acquisition of knowledge relevant to some question under investigation is achieved
by a hierarchy of iterations in which induction and deduction are used in
alternation.

This process employs a developing model (or series of models implicit or
explicit) against which data can be viewed. Ideally at any given stage of an
investigation, such a model approximates relevant aspects of the studied system
and motivates the acquisition of further data as well as its analysis. By the
use of a prior distribution it is possible to represent some aspects of such a
model as completely known and others as more or less unknown.

lNow parsimony requires that, at any given stage, the model is no more complex
than is necessary to achieve a desirable degree of approximation and since each
investigation is unique we cannot be sure in advance that any model we postulate
will meet this goal. Therefore, at the various points in our investigation where
data analysis is required, two types of inference are involved: model criticism
and parameter estimation. To effect the latter, conditional on the plausibility
of the model, and given the data, we can, using Bayes' Theorem, deduce posterior
distributions for unknown parameters and so make inferences about them. But,
before we can rely on such conditional deduction, we ought logically to check
whether the model postulated accords with the data at all and, if not, consider
how it should be modified. In practice, this question is usually investigated by
inspecting residuals, by other informal techniques, and sometimes by making formal
tests of goodness of fit. In any case model criticism, the inferential procedure
whereby the need for model modification is induced, is ultimately dependent on
sampling theory argument. These principles are formalized by an appropriate
analysis of Bayes' formula, and implications for robust estimation are considered.
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SIGNIFICANCE AND EXPLANATION

Sampling theory inference (e.g. inference based on sampling dis-
tributions of statistics and in particular on significance tests) and
Bayesian inference are usually thought of as rivals and much effort has
been spent in propounding their relative merits. In this paper it is
argued that both kinds of inference are needed in the scientific itera-
tion whereby knowledge is acquired.

This iteration employs a directed alternation between induction and
deduction which uses model criticism on the one hand and parameter esti-
mation on the other. An analysis of Bayes' formula reveals model criti-
cism as a sampling theory concept and parameter estimation as a Bayesian
concept. The implications of these ideas for robust estimation are

discussed.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.



SAMPLING AND BAYES' INF

RENCE

IN THE ADVANCEMENT OF LEARNING
George E. P. Box

Today Statistics appears to be in a somewhat confused state®. The controversy

about Bayesian inference and Sampling Theory inference which seme believe involves a
critical choice is not resolved to most people's satisfaction. Furthermore concepts
such as Data Analysis and Robust Estimation are receiving such new emphasis that some

advocates of the "new Statistics" are even claiming that all else is useless and old

hat.

To some extent the new and admirable emphasis on "looking at the data"™ is a
reaction to previous extremes. On the one hand overemphasis on theory for its own
sake (mathematistry)

1

{(cookbookery) '- HNeither of these aberrations was healthy and some adjustment was long

and on the other a knee-jerk approach to statistical analysis
overdue. However T think the mistake continues to be made of assuming that different
approaches to mwmnwmnmnm.mnm necessarily in an adversary position. I will develop the
contrary view and try to show how I believe the pieces fit together.

I start from the idea that Statistics is or should be the art and science of
Consider then how

building scientific models which (necessarily) involve probability.

such stochastic model building should be done.

*What is happening is related to the revolutionary change in computational speed. We
need to be deterred less and less by the number of steps required in a calculation
2lthough we must correspondingly increase our concern that the human mind is also
adequately involved in directing the tactics and strategy of investigation.

*mmn discussion of -"mathematistry" and "cookbookery"™ in Science and Statistics,
(Box 1976).

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and DAAGZ9-78-G-0166.

1. The advanece Lol lea

wing as an dteration between Lheory

dopractic

Mthough the matter was over the centuries debated it scems long ago to have bern agrecd
that scientific knowledge is efficiently advanced, not by mere theoretical speculation on the
one hand, nor by the mere accumulation of empirical facts on the other, but by a motivated
iteration between these two activities. Inthis practice~theory interation a tentative theory
or model suggests a particular examination and analysis of data already existing or to be
wnﬂzwwmmn. The results of this examination will then frequently suggest a modified model
requiring further practical illumination and so on.

The advancement of knowledge thus occurs

as the result of an interplay between dual processes of induction and deduction which carry

forward an iteration in which the model is not fixed but is continually changing. The stat-

istician's role is to assist this process. In doing so he uses two inferential devices that

+

I will call Criticism' and Estimation. The first can induce model modification, the second

leads to estimation of unknown parameters assuming the truth of the model. For illustration,

in Figure 1 at same stage of an investigation, model zM is currently being entertained.

Criticism involves a confrontation of M, with available data y and asks whether M

i < i

is consonant with vy

and, if not, how not. It is a process of diagnostic checking. It

may be done informally using plotting techniques of various kinds often involving residual

quantities and more formally, with tests of goodness of fit. It may suggest that model

modification to is needed. 1In some instances it will be judged appropriate to now

Mie1

confront M

41 with the same data, in others the nature of the modified model or necessity
1

for independent verification may indicate the need for new data generated by a new design
Uu+p This will be chosen to explore shadowy regions whese illumination is currently
believed to be important to progress.

Estimation.

If the process outlined above leads to a verifiable model, that is one

which when put to the test appears to provide an adequate approximation to reality, it may

logically be used to estimate parameters conditional on its truth. However in practice this

*I shall suppose that data is acquired from a designed experiment but the same argument would
apply if data acquisition was Erom a sample survey or even from a visit to the library.

trhe apt naming of model criticism is due to Cuthbert Daniel.

o
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estimation process will be used not only at the termination of the model building sequence

but at every stage throughout it. This is because in order to conduct criticism of the model
it is often necessary to provisionally estimate parameters at intermediate stages, tentatively
entertaining the model as if it were believed true.

I shall argque in this paper that while criticism must ultimately appeal to sampling

theory for its justification estimation requires the use of Bayes theorem (or, for the faint-

hearted, likelihood). Acceptance of this position provides justification for a specific

kind of sampling theory significance tests but none for sampling theory confidence intervals.

-



2. pival theories nference

The distinction between inferential criticism and parameter estimation has often not
been made and proponents both OW sampling inference and Bayesian inference* have long sought,
mistakenly inmy view, for a single comprchensive theory. By sampling theory w:mnﬂm:no I mean
inference made by referring some relevant function of the data to a reference sampling dis-
tribution which would be appropriate if some specific hypothetical model ZO were true.

By Bayesian inference T mean inference made by calculation of a posterior distribution
obtained by the combination of a prier distribution with the likelihood.

Now it is not surprising that a scientific discipline should have rival theories. This
is a cammon phenomenon and the resolution of such rivalries is the stuff of scientific pro-

gress. But in other subjects controversies are resolved within a decent interval of time.

-
w

What surely odd, is that, rival theories in Statistics which have been available for more

than 200 years should still be in contention.

Wwhat T believe is that both sampling and Bayes theory have important roles in the

scientific iteration, but these roles are different. Sampling theory is neceded for criticism

of an entertained model in the light of current data while Bayes theory is needed for making

inferences about parameters conditional on the adequacy of the entertained model. On this

view (see also Box andTiao; 1973) both processes would bave essential roles in the continuing

scientific iteration just as the two sexes are required for human reproduction. It is easy

to see that any attempt to choose between two entities which are not alternative but comple-
mentary could certainly be expected to lead to contention, paradox, and confusion of the kind

we have been experiencing. The view that more than one mode of statistical reasoning can be

useful is not, of course, new and in particular was advanced (however with a different

emphasis and conclusions) by R. A. Fisher.

*Thevre are other minor contenders but taking a broad view these can be regarded as schisms
frem the two major philesophies. Thus Savage's description of fiducial theory as "a
valiant attempt at making the Bayesian omelette without breaking the Bayesian eggs" seenms
justified. Certainly fiducial inference and likelihood inference are concerned with the
Bayesian objective of making scme direct statement as to the plausibility of different
values of a parameter. Also many supporters of sampling theory would not necessarily go

along, for example, with all of Neyman-Pearson theory.

=5

3. Some remarks on Sampling and Bayes inference

The essence of what I mean by "sampling theory inference” is exemplified by the Showhart

quality control chart. The set of limit lines for the sample mean for example indicates

for this function of the data, a reference distribution appropriate for the model M (for

0

the process in control). A single outlying point is surprising because it is associated with

unusyally low probability density. It thus raises the possibility that M_ is inappropriate and

0

that an alternative model M In the words of

1 might be needed to explain the inadequacy.

shewhart, the process is out of control in a manner which we may be able to attribute to

an assignable cause. A number of different functions of the data may be considered in

checking the appropriateness of M_ andtheir nature depends on the type of departures fram

0

M that are in mind.

5 Thus quality control charts are often kept of both the sample mcan

and the sample range to indicate departures from M in both level and spread and other

0

functions such as run length of positive deviations might also be considered. Finally
patterns which were not foreseen may possibly turn up, invite consideration, and induce
possible explanations to be subsequently tested.

Prior probabilities in Bayesian and Sampling inference

In the past the need for prior probabilities has often not been thought of as a
necessity for all scientific inference but rather as a feature peculiar to Bayesian inference.
Indeed wm is often regarded by non-Bayesians as the major point of weakness of Bayes thecry
and has, therefore, been a focus for attack and sometinmes for derision. By contrast a

Bayesian proponent might argue (a) that any theory of estimation worthy of the name should

make it possible, given a model, to say after data had come to hand what was believed

about the values of its parameters and (b} that what was believed after the data was
available must surely depend on what was believed before it was available (c) that this
would include the possibility of sometimes using non-informative prior distributions either
gmgﬁgm;mggﬁmQSOHSFgﬁMg3220m§mg§g5ﬂgoﬂgnggggng
He might argue further

impact of the data on a hypothetical unbiased observer (or juror).

that the difficulties and paradoxes that have embarrassed advocates of sampling theory as it

-6- .



has been practlced and thelr inability to fix up the theory nD:<_:nM:Q~<‘:D<D ncam from
its past inadequate capability to include prior information.

sampling theory is of course not free from assumptions of prior knowledge. Instead it
is as if only two states of mind have been allowed--complete certainty or complete uncer-
tainty. Whereas in the sampling theory context a parameter had to be treated either as
exactly known or as completely unknown, in the Bayesian context a prior could be chosen to
approach either of these extremes or any intermediate state.

In this connection it is important to remember that every simple model can be thought
of as embedded in a more complex one. For example an outright assumption of normality can
be modelled by a suitable parametric family of distributions indexed by a parameter B,
which has a w:ww@,wwwow at the normal value. Independence of errors, so freguently assumed,
can similarly be represented by a sharp prior operating on a broader model allowing appro-
priate dependence. Seen in this way, it appears that, when assumptions of normality and

independence are made in sampling theory, it is not that no prior knowledge is used, but

rather that implausibly precise prior knowledge is implied.

=J=

4. The wodel is the prior

Such considerations lead me to believe that it is impossible to logically distinguish
between the model and the prior distribution. In a real sense the model is the prior. &
model is a probability statement of all the assumptions currently to be tentatively cnter-
tained a priori. These probability statements can express certainty or various degrees of
uncertainty.

fm course models are approximations (good ones are artfully chosen approximations which
work well in practice). But there is good reason to believe that the "all or none" prior
assumptions implied in the traditional use of a sampling theory are frequently too crude
even as an approximation. Indeed many of the difficulties of sampling theory which have
come to light in recent years may be traced to the primitive means it has available for
incorporating prior knowledge and the crippling effect of allewing m:~< probability state-
ment of a certain kind to be included in the model.

One illustration of how implied prior

knowledge which is implausibly imprecise can lead to trouble in sampling theory in the

famous discovery by Stein (1956) of the inadmissibility of normal multivariate mean, and
the improved nponlinear shrinkage extimators which give smaller mean square error.
It is however easy to miss the lesson which is to be learned from such examples. To

be specific, consider the usual one-way analysis of variance set-up. Here a locally uniform

prior distribution for the set of group means ¢ = =+ = ¢ U.e = - = » u )} which

"=
u ncn. Wy 3 =

would exactly justify the sample averages as estimators makes little sense (see, for example,
Box and Tiao (1968), Lindley and Smith (1972)). By contrast the prior essumption which

justifies the shrinkage estimator is that the :u

This corresponds to the usual “"model II"

are random samples from seme normal super
population having unknown mean and variance.
sampling theory mmw=9ﬁnwo: and in appropriate circumstances could be eminently reasonable.
It is-crucial to notice, however, that there are many circumstances in which this latter

assumption would not be sensible either, because, although prior knowledge.about By dge

existed, it was of quite a different character. For example, if the y's were

a-._.“_.__._

daily batch yields from some production process, it would usually be much more sensible to

-8-



postulate that the llowed some time series model such as a stationary autoregressive

process (Tiao and Ali (1971)). The estimators then derived from Bayesian means are not

Stein's shrinkage estimators, which would appropriately introduce sample information about

2

n:. but alternative estimators allowing incorporation of relevant sample information about

Some sampling theorists concede that Bayes theorem may be used as a kind of conjuring
trick to produce efficient estimators which are then used in a sampling theory context. 1In
this excercise they regard the prior distribution as a convenient prop which is never taken
seriously and is quickly discarded. I think the example quoted above is one of many which
shows that this idea has no rational status. For it illustrates that there is not one set
of "shrinkage estimators', but an infinity of such sets depending (very naturally) on the
model (that is the prior) which is appropriate to describe the particular scientific situa-
tion under study.

The strength of the explicit statement of prior assumptions is that in the iterative
nodel building process, they make manifest at every stage exactly what assumptions are
tentatively entertained and so allow them to be criticized. Some of the nervousness
experienced by non-Bayesians confronted with the idea of a prior distribution has perhaps
arisen because the iterative nature of scientific process and consequent tentative tran-
sitory character of models and all their assumptions, has not been generally understood.

Many of us were taught to think unrealistically in terms of "one shot™ procedures.
The sequence: frame hypothesis - collect data - test hypothesis/make decision; of
course, fails to describe the usual context in which Statisties is applied.

Critics have therefore feared gross mistakes arising from adamantine prior ﬁnmwf&wnm
which ignored "what the data were trying to say."” In the iterative context of real scienti-

fic enquiry however gross mistakes about the prior or any other aspect of the model will

usually be corrected at the criticism phase of the next iteration.

-9-

5. Two complementary factors from Bayes formula

If we accept the prior probability distribution of parameters 6

as an essential part
of a model then all aspects of the model, hypothesized at some particular stage of an investi-
gation, are contained in the joint density obtained by combining the likelihood and the pricr

ply,0]m = pry|e,m - pialm

where |M is understood to indicate conditionality on some aspect of the model and y is a

data vector.

This joint distribution which is a comprehensive statement of the model can also be

factored as

ply.0|m = poly.mpiyim

(5.2)

and can be computed before any data become available. In particular the second factor on

the right pty|m = [ piy|e,mp(e{mae , (5.3

which is the predictive distribution, may be so calculated.

It is the distribution of the

totality of all possible samples that could occur if the model. M were true.

When an actual data vector Yy becomes available

Py 0|m = ptoly mpty,[m. (5.4)
The first factor on the right is then Bayes' posterior distribution of 6 given Mm
plely, ) = xpty,le.mpelm (5.5)
and the second factor
-1
ply,Im = [ pty,le.mptelman = k (5.6)
Ya
is the predictive density associated with the data set y actually obtained. Figure 2

fa

illustrates for a single parameter 0 and a sample Yy of n = 2 observations.

~d
If the model is to be believed, then the posterior distribution Uﬂm_mn.zu allows all

relevant estimation inferences to be made about g.

However even if the model were totally
incorrect, this could not be shown by any abnormality in this factor which is conditional on
both data and model specification.

However plausibility or otherwise of obtaining such a

sample if the model were appropriate may be assessed by reference of the density ﬁnﬂaﬁzu to

~10-
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Figure 2. Showing for a single parameter 8 and sample ¥q of
two observations; the prior distribution, likelihood contours, the

posterior distribution and contours of the predictive distribution.
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the predictive reference distribution UAM_Z_. An unusually small value of vﬁwl_zu as
moapu ed by 1t (pty[M) - _;mm?: cante duubt on the appropelaleness 6€ Lho moalel M. Now
wﬁw_zu is an n-dimensional distribution and it will usually be true that if the model is
inadequate it is most likely to be deficient in certain directions associated with unusual
values of certain specific functions mwnM~ of the data. Examples of such functions are
sample averages, variances, moment coefficients, coefficientsof serial correlation, and other
measures of standardized deviations from a norm. In every case the appropriate reference
mwmwﬂwrcnwo: to which the realized statistic awawmu should be referred is the distribution
vmmmﬂM_zvu. when the model M is true, derived by appropriate integration of ﬂﬁM_Ku.

In practice, criticism or diagnostic checking of the model is often conducted by wvisual
inspection of residual displays and other more sophisticated plots. But such a process,
although it is informal, still, it seems to me, falls within the logical framework described
above., The statistician is looking for "features" in the data which would be surprising or
"unusnal”™ if the model M were true. Such a feature can be described by a function nnwng
and its unusualness, if formalized, would have to be measured by reference to n*oaMu_S_.

In addition to possible discrepancies to which we have been alerted by experience,
other features may appear pointing to inadequacies of a kind not previously suspected. This
possibility has sometimes proved perplexing for statisticians, for while on the one hand the
truly n:mxmnnnmm could point the way to precious new knowledge, on the other, associated
probabilities will be indeterminate because of the uncountable character of other features
that might also 7w<m been regarded as surprising. I think the calculation which ignores
this difficulty of indeterminate selection should still be made, for while it might lead to
the too frequent pursuit of nonexistent assignable causes, the iterative process will
quickly terminate this chase and carrying out the exercise will at least eliminate phenomena,
which at first sight look surprising but really are not. For example, Feller (1968) shows )
that for a random group of 30 people, the probability that at least two have coincident
birthdays is over 70%, this tells us we need lock no further for an explanation when we are

surprised to find two such people at a party.

-12-
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varliance @

o assumed known.

Example:  Unknown mear 0,

Consider ple of n observations drawn randomly from a normal -distribution
2

with unknown mean 8 and known variance ao. We express uncertainty about the mean
2

by supposing that a priori @ is distributed normally about mc with variance %

Thus
2
=g e T i
_ = I S 5.7)
EM_?E (2m) “o "expi-3 =
0
uw 1 @ - aovw
p(8|M) = (2m) Oy eXPI~ 33 (5.8)
%

may be estimated conditional on the adequacy

The posterior distribution from which 8

of the model is then

1
. £ =2
ptaly.m = n 2+ 2) uei-le + P_ ® -9 v (5.9)

—
@ N}H
”
|2

where g =

-1, 1 n -
av ~a|~¢o+du
o

onNn

The predictive distribution which can act as reference distribution for the observed

data vector Mu. thus allowing criticism of the model, is

n 21 2 1 2 v -9
—_—, T2 -in-1) 72 ,,alou g _Jafwm=mie by - % .J Y B
gl =« fomd e e ey e Tem T e 2l
0 9 0
And the probability o ,
P = priply|m) < u@g_z: = prix >}
where
- 2
2 -
n-1)s ty mo,
€= 2 NI
no 9 + ac\z
supplies an overall portmanteau check on model fit.
- 2

tbvious sample functions for checking individual features of the model are Y¥,s

.
and suitably chosen functions of standardized residuals r = HHH-.-..an with

r, = H<w - y)/s i=1,...,n. The choice of these residual functions ow.m-....ar.

i
will depend on the context.

They will include the standardized residuals r

=13~

i
'
i

L elves, bul might also address ¢ need Lo apply checks for "bal vatues", t
kurtosls and serial correlation, for example. The standavdized residu. n the form
defined above are constrainedby the identities Hnm =0, mnm =n -1 and can be more

conveniently parameterized in terms of n - 2 independently distributed functions

obtained as follows:

Make an orthogonal transformation from

and then transform to m_mu and u where y

g

u .. u.\ﬁ.
to Y ﬁﬁw.<~.. .<=u with n: :w

is a vector of n - 2 residual

quantities us= ....*:ﬂrmu such that
. L
2
Gy = <u+~\r.mu. g»\u@u .
The Jacobian of the transformation from Yy to m\mm.m is proportional to
(s7) umw {1 +=u\uw - After transformation therefore the predictive distri-

bution contains n elements all of which are distributed independently and becomes

- M -
p(y.s ol m = pElmp(s[mpo] {5.11)
where
21 "
- 2. 2 2 2 - 2
pElm) = @m Ptog + oo/m EﬁTwQ - 8, /] + QM?: (5.12)
1 X 1 n-1
=(n-1) - = (n-1) A
2 1 2 -1
pis“|M) = ﬁm.?..:w r #W?lﬂvﬁawv 2 {s%} 2 muﬁﬁnwn:l:mM\omv
(5.13)
1 e
plulM) = T “(n-1)(m il?tH; n TT& (5.14)
< 2 uuH 5

The standardized residual quantities of interest 9yr9,r---09, can then be expressed
equally as functions mpﬁmv.muﬂa“.....mﬁnmu of the wu's. So that, in particular,

- 2
nh:mcmwmnmn:ﬂmmOmw.m.

and ou...,.ar given the model could be assessed by
computing
(i) exlpty[m < ply,|m}
¥is 2 2
(ii) pripts®|m < unam_zuv

wlvau_ﬁ < Eau.m_z: $=1,2,....k .

-14-



These are the (Lwo tall area) probabllitlies assoclated with relerence ot

1

. & 2 2 2
(i) ﬂi& oov\nom + QO\:V to the Normal table

(ii) (n - vamxau to the xm table

(iii) @u.m to the reference distribution obtained by appropriate integration
of the distribution vﬁm_xu.
. - 2
They yield checks on the adequacy of the model which we denote by c(y),c(s),clg.).
J

For example suppose the yield of a batch process was under study and that a

sample y was available of n observations all from a single batch having unknown

mean 8. Suppose at this stage of the w:<mmnwmwnwo:.w5mn the tentative model assumed

that, because of process variation, batch means varied Normally and independently about

4 2 2 i i i ;
some value mo with variance am and, because of testing variation, the ith observation
. . . . 2
A varied about © normally and independently with variance oo. Then the model would
be that discussed above and, if this model could be believed, the batch mean © would be

-1 - -2
} where I- = no u~ I =90 .

estimated by the posterior distribution z~m.ﬂmm + 1) 0 8

¥ : X, 0
And, if we write w = Hm\nwm + Hmu for the proportion of the information coming from
the sample, then B = iw + (1 - _..&mc.
Before drawing such a conclusion however a prudent statistician would question the
g 2 = 2
model. 1In particular applying the checks cly),c(s u~nhuuu.
(i) an unusually small value of UAm“zd could call into gquestion the
5 2 23
choice of some or all of 8 _,0 and o
a’e 0
2
(1i) an unusuvally small value of pf(s _zu could call into question the
z 2
choice of o_.
0
(iii) an unusvally small value of ﬂaauﬁzu could suggest departures from
the assumed distributional form wnw_m,zu produced by serial
correlation, bad data values, non-normality, etc.
O.ly after the investigator had found that the evidence offered by the data did not

invalidate the model should he proceed to make the conditional deductive inference

supplied by Bayes theorem.

=15-

e dmpl Leallonn

Consider the problem of making inferences about 0 in the previous

example. If we assume the model true then we can estimate 8 from a normal posterior

distribution with mean 8 = wy + (1 - tuao and variance ﬁum + Hmu1u where

.z = Hm\num - 1-) 1is the fraction of the information coming from the sample. First

Yy

however we require to check the model using the predictive distribution. In particular
1

- - 2
the check c¢ly) requires a reference of A<m - mou\naw + QO\:VM to the normal table.

et 2 i : 2
Significance test. Suppose um is assumed small compared with uo\s. then w, the

wm-mnacm amount of information, supplied by the data is small and 1 - w is close to

unity. Then, if this model can be relied upon, the posterior distribution is essentially

the same as the prior and is sharply centered at mo. (A practical context is one where

the statistician is told that process variation is negligible compared with testing

variation and the process mean is known to be mo.v If this model is assumed, then

information from available data y can add very little to what is known already.

However, it can deny the relevance of this model. 1In particular namu involves the

reference of (y - mou\*aoxxﬂu to normal tables; the failure of this check means

that the model is discredited and therefore the operation that leads to a sharp

posterior distribution centered at 8 may not logically be undertaken.

0
The above most satisfactorily explains to me the rationale of a significance test.
(i) The tentative model (null hypothesis) implies that @& = wo.
(ii) A check on this aspect of the model is provided by reference of
(y - mou\ﬂoo\\ﬂu to the Normal Table.
(iii) If the tail area probability is not small we do not question the

model. The application of Bayes theorem then produces a posterior

distribution which is a delta function at mo. We have "no reason
to question the null hypothesis™.
{iv) If the tail area probability is small we conclude that the model

which postulates that 6 = 8 is discredited by the data and that

0

some other model s appropriate. The "null hypothesis is rejected.”

-16-



ghe thes fallme of i hile W owon el ome

(v) Cins thinl @

immes oly pro 5o the use of Bayes theorem, the failure of

2 i
other checks (and of c(s') in particular) would alse indicate

the necessity of model modification before proceeding further.
A difficulty that this removes for me is that, as usually formulated, significance

tests seem to provide no basis for belief. On the above argument, if we accept the

model, we believe a priori that 0 is close to oo. we must therefore believe that

9 = oo very nearly a posteriori. The availability of data provides however an oppor-
tunity to assess the concordance of data and model.
The significance test itself provides a means only of discrediting the model.
our belief in the proposition & = mo comes from an application of Bayes theorem for
a model which there is no reason to question (as a reasonable approximation to truth).
In particular this underscores the illogicality of testing a null hypothesis

which is not credible to begin with. Thus the Durbin-Watson test for serial correla-

tion, for which the null hypothesis is that errors are distributed independently, is

fregquently misapplied to test serial data which a priori can be expected to be

autocorrelated.

Precise measurement and improper priors

2 P
Suppose now that Qw was very large compared with QO\:. The predictive check

namu now approaches Hma - moy\om implying that for sets of data having widely
different sample averages the model would not be called into guestion. The situation
where such a non-informative prior distribution was relevant was referred to by L. J.

Savage as that where the theory of precise measurement applied. The invocation of

this principle might, at first, seema license to use Bayes theorem without any restrain-

ing checks of the model. But this idea makes no sense either from an applicd or a

theoretical point of view.

The practical situation is that the sample information coming from y must be

evaluated in a context where there is relatively very little prior information about

the value of 6.
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Here computational convendencoand Togle

e vearefnl ly J

: » ; : "
Replacing "relatively very little" by zecro can be justified computatior
circumstances i i

ances where to do so Wno<w&nm a good numerical approximation but not otherwise

MSiiaveE . - i T
owever in either case zero remains infinitely smaller than any small quantity In

thi i i i
s example, substitution of an improper uniform prior will praduce a normal posterior

istribution having an y nd varian a also obtained as he mit when 1n our
d h me and bt d tl t wh
d ce /n, 1 1i N,

- i . .
odel, the fraction of information w supplied by the data tends to unity. But not only

that, the specification of th ri s i viously erly
P e prior for 0 as N(8 _,o} s obvious overl specific,
and the impro rior could provide (o] imit fo e riors which were
proper p c P e an appropriate 1 r disperse p : 4 1

widely different in structure and/or much less specific.

All isti i
7 statistical results, in so far as they relate to reality, are approximations.

Thos S : .
ose obtained from improper priors do in many important examples provide excellent

approximations. I hasten to add of course that limiting processes can be tricky and

theoretical statisticians are right to worry about them

Hotice however that the situation is different for the predictive check. To sa

2
5 will dominate the denominator in

that w is close to unity is only to say that o
1
2 2
a

2 [1]
{y mcu\ﬁam *o ) . But to say that it is equal to unity implies that o is

L]
infinite and the check cannot be made, which implies that there are absolutely no

values

of y "which could discredit the model - a situation which T cannot imagine as

practically possible.

Consider for example, a physical chemist who runs experiments to determine the
activation energy 8 for a vWanncwmﬂ chemical reaction abonut which little is known.
It would usually be true that his initial uncertainty about 6 would he large

compared with th ici iati
P i e anticipated standard deviation c_\«\_-..n of the experimental procedure,

the theory of precise measurement would apply therefore and the limiting result

obtained from the usual improper prior would supply a good approximation. Nevertheless
the chemist may know that activation energies for compounds of the kind being tested are
usually measured in tens of kilo calories per gram mole. If the statistician,

who has perhaps misplaced a decimal point, presents him with an estimate of

-18-



0.1 kilo calori nole he will rightly reject it.  In doing so he will be

informally conducting a check formalized by e(y). 1In practice then, checks such as
nﬂmu can necver really be dispensed with. The non-informative prior used in practice
must to make practical sense always be proper, but necvertheless the appropriate
posterior distribution can, in suitable circumstances, be numerically approximated by
the device of substituting an improper prior. I labour this point because

although it has been made earlier (see for example Box and Tiao 1973, p. 28) critics
seem to have misunderstood earlier discussions. Explicit consideration of predictive

checks makes the situation even clearer.

Choosing the diagnostic checks

Frequently the checking functions g{y) which are to be used formally or inform-
ally for checking various features of a model M are chosen on an ad hoc basis.
One formal basis for selection of such functions follows essentially the route

explored by Neyman and Pearson. Suppose a basic model 30

model M represcents some discrepancy from M which is of interest. Then a function

1 0

+

of the data suitable for detecting such discrepancies may be obtained from the ratio
M M
ply,lng)/pty [n))

Parsimony: Diagnostic checks versus Robustification

: 7 * e b 2 7 . :
A question which confronts the statistician at every stage of an investigation is

"How complex a model should T use?" The possibilities for model elaboration are of

course limitless. For instance a commonly used model assumes errors to be Independently,

Identically and Normally distributed (IIN). It is easy to imagine a sequence of fall-

back models which might begin like this

M. M M. +M < .
o] 1 2 3

IIN IIA XIN ZJR

Trodel eriticism cannot logically be conducted by the study of the magnitude of such

ratios however, for even if this ratio were very high the predictive check could
still show the favored model to be highly implausible.

*An apparently different question is "Should I use a robust procedure?”, but I will
argue that this is subsumed by the broader guestion.

-19-

is given and an alternative

AL cach slaye of elaboration there are many forms the modlficd model could take and
most require additional parameter values either to be given from prior knowledue or to
be estimated from the data. Obviously compromise is necessary; for, on the one hang

simpler models can allow better scientific understanding and better estimation, while,

‘on the other hand, more complex ones can, but need not, be closer to the truth. A con-

solation is that, realistically, model building is iterative, so that mistakes can be
rectified.

This fact of necessary compromise raises the dilemma of where should the compromise

be made, that is to say, of what should be left out and what be included. In particular

suppose some deviation from an "ideal" model zc can be parametrized by a discrepancy

parameter B or a vector of such parameters.

For illustration 20 might be the usual normal riodel and B could measure

(i) possible serial correlation of errors (e pean}y For

e ,e
-1t e+l

instance, the serial correlation might be generated by a first order

autoregressive process e = mmn 1t where "a, was a source of

discrete white noise.

(ii) . possible deviation from error normality; for mxmamwmsmGQOHmw:a to

uww\ﬁw+wv

- 2
ple|o,B) = const o mem_|<wﬁm /o 1

(iii) need for parametric transformation; for example the normal linear

model would be valid not for y but for Mm.

(iv) need to allow for bad values; for example with probability B8

{close to unity) the error variance was qu- with probability

1-B itwas wuou.
In each case there are two ways to handle the possible model discrepancy, depending on

whether the parameter B is omitted from, or included in, the model. We call these

diagnostic checking and robustification.

Diagnostic checking. If the discrepancy parameter is omitted from the model then an

appropriate diagnostic check can be made. Formally this would be done by referring

*Here and elsewhere other functional forms might be found more appropriate. These
examples are intended only to illustrate essential principles; not, of course, to be
comprehensive.
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some suitable function QHKU of the data to a reference distribution derived for the

predictive dig ation vnﬁ_ZQU.

Robustification. If the discrepancy parameter is included then robust estimation® of

0 is provided by the posterior distribution

p8ly) = [ pte|g.y)p(8|y)as 6.1

If we write
. unar.; = p(B]y)/p(B) (6.2)
pely) = [ p(e]e,y)p (B]y)pi@)ras . (6.3)

In this last expression
(i) plB) can be chosen to represent approximately the probability
of occurrence of different values of B in the real world
(ii) the function Uﬁﬁm_<u is a pseudo-likelihond which reflects
information about B supplied by the data
(iii) econsidered as a function of £, Uﬁo_w.Mu reflects the sensitivity
of estimation to the choice of the discrepancy parameter.
The omission of the parameter B8 1is equivalent to setting it equal to the value

mo which it takes in the ideal model ZO. Table 1 shows some examples of diagnostic

checks and corresponding robust estimation methods. A fuller discussion is given

elsewhere (Box 1979).

Discussion. There may be Bayesians who would deny the need for diagnostic checks based

on sampling theory. They may feel that "they can do it all with Bayes". I do not
believe this position can be sustained because it implies either
(i) that they know what the model is in advance or
{(ii) that they are prepared to make the model so comprehensive that nothing

could possibly be overlooked.

"Numerous authors (Huber, Tukey, Andrews, Hampel, etc.) have preposed ad hoc methods
of robust estimation relying on the empirical modification of classical estimation
procedures. It seems more logical to me to modify the model which is presumably at
fault rather than the method of estimation which is not. Furthermore this has the
advantage of clearly revealing the assumptions which are being made.
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TABLE 1

SOME EXAMPLES OF DIAGNOSTIC CHECKS AND ROBUSTIFICATICN

is usually considered and

lon

this one problem that robust estimat

It is of course only in relation to

that usually from the empirical non-Bayesian approach of Huber, Tukey, Andrews, etc.

fThe robust model would, of course, also be subjected to checks.



APPENDLX .

Both positions are grandlose and unrealistic and the sec snd A attempted could lead —
Lo WBrerRnaArh Ty Pompl FeAlan menale wEeh i@ Sepens arielirIrle prepens. - Another Fxamples, 0 known, 0° unknown

In this connection it must be realized that looking at residuals is essentially a W svppose: now We haye 2 J:otn mean. 8 butamknown wvarisnce ou. alsoisubpose We
sampling theory procedure E..m. is an acknowledgement of the often happy fact that an expressiluncertainty: AboUEithe ivarlance by aSsuning, xpriozd fthat am isydistribypted
experiment might reveal more than was bargained for. To put it another way, every about: mM inia.isceded x? sistribntion having qo Heszegsiaf! fregdon:, This 4s
Bayesian statement is conditional and somewhere there has to be an anchor. SHhisE JoRE SoLERRaTn) DN mapiarn Y SSISURak aeEtEats mw of qu having <c

. - 2 . i . degrees of freedom is available f t dat d sed a -
. An acceptance of my theme implies of course that what is tentatively included in 9 =2 & from pastidata and has heen assessed agatnst a non

a model is a matter of judgement.® However we can still look for guidelines for model informative reference prior (i.e. prior to the first sample the distribution of log o
g . ‘was f in th ighb ood) . i am
building on what to tentatively include (robustify for) and what to tentatively omit Aat; e neighborhood of the likelihood) Then for a prospective sample of

=v +
(and later check for). n 1 observations

Obviously the need for special features in the model depends on the context, e.g.: . 5 = r.w- i:WLtmu + u_.w = QVJ
: plylaimeac®) exp 5 (A.1)
(a) serial data (in particular most economic and business data) cannot reasonably be - a \_
Yo v 12
expected to be represented by a model with uncorrelated errors, auteccorrelation is o . l—q * u_ 3 m.-b. |chmc
pla”|Mala) (s4) "exp o (A.2)
virtually certain (temporary changes in mean and variance are also very likely in o
scrial data), (b) data for which v.:._m.x\w:___..ﬂ is large is likely to need transformation The complete prospective statement about the model is thus
: v +
before any simple model could apply, (c) most experimental data are liable to occa- 5D —: Yo g M_ IW? " :umu
2 2., 2 2 2 0
sional bad values. Elaborations which are primary candidates for robustification P(y.o T,:anmcu (e) exp 2 (h.3)
i i i i i »1ud i ti hecks 2 =
(inclusion in the model) reflect features which might easily elude diagnostic ¢ s, 0 = Rl wuu = ¢m~ i comwu\ﬂn g ¢cu.

and could then invalidate subsequent analysis.

When actual data Y4 becomes available then conditional on the acceptance of this

Although the ad hoc robustifiers seem to have given all their attention to 5
model inferences about @ must be made from the posterior distribution

n+v n+v
I|O + 1 0 Im.'nd + H.f.u,u
2 w2 2 20 d
nqmu exp 5 (A.4)

prossible non-normality of (assumed independent) observations, an even greater source

of serious trouble is autocorrelation in serial data. See for example Coen, Gomme and

£ Enu_ma,:viqf

¥Kendall (1968), Box and Newbold (1971), Pallesen (1977), Box and Jenkins (1970).
However rational acceptance of the relevance of this model for the situation in which

u.m is generated requires that relevant aspects of u_.m. are not surprising when assessed
against a reference distribution derived from the predictive distribution.
v
i)
*This idea that a statistician has to use scientific judgement is not a universally ; nmwv 2
popular one. The objectivity of statistics like that of science does not of course H.S._zvﬁ oy (A.5)
mean that all statisticians (or scientists) even though capable of using the same set = L
of tools will do equally well when using them. Just as there are good lawyers and bad gmM. 2]
lawyers, there are good statisticians and poor ones.
—-24-
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= el 2 - 2 -
Pertinent features of the sample are y4 = Yy/n, g & iy = y) /v and functions of (i) ny - ov\uﬁ to a t* table.
(n - 2) resid; uantities Vel defined as before. These must be considered ) (iii) am to the reference distribution obtaincd by appropriate e aEioH
against their relevant reference distributions derived from Ua%_zu. The Jacobian of of plu).
. - 2 . 5 '
the namsmmOﬁGmnwon from y to v,s (0 is proportional to Inferences about the variance
b (a} Suppose v_ =+ 0
v =3 W | B T
g~ Le _
(s) n This limit corresponds to usual noninformative Jeffereys' prior. Again the values
§=1
i of cc that could represent real situvations could approach zero but not reach it.
Thus . Since in practice there could always be values of mm which would be surprising even
2 .
| - 2 though plo ﬂzv was disperse, this would correspond to the situation where a very small
v@ﬁ.c?quQTﬁEv?_EnE?f (n.6)
| value of p(F ) was found even though v_ was very small
and ! <¢o 0
-[v +1 (b) Suppose v is very large
“p 0
=12 1 ﬁgm - 8) ? 2 2 2 _ ) (A.7) Then mu and aw = Hcmw + v nuu\nc + v ) are very precisely known and if we
ply|s” ma kLR S where s = (s + Vs )[{v + v, A. 0 °p 0°0 0 a 3 =
s
P PP and v = (v + v ) believe the model the posterior distribution ﬁnow_w.zg. is sharply concentrated about
P 0 E
2
. BN and our belief a posteriori is the same as that a priori. However for @A%_zu we
3 4
20 2 btai
2 F s obtain
pls”|m)a LW.Et!r}Piilﬂl where F = = =0 e -
s P s ; (A== |m) = p(z = L= (r.10)
0 o L P s
1+ 22 p//n p//n
v
0
where =z is a unit normal deviate and
1
-5 (3+1)
n-2 mau mu xw s
plujma 1 |1 + =L uﬁlw Iu) = uﬁ|¢ - IL 1)
) i=1 2% So sy
. ok 2
Hhususi Eealuzes kf mm m prd iy i , would thus be assessed by computing So that it is only after applying the checks cly) and c(s ) as well as nu_m that
' 1 n-

we could logically use Bayes theorem.
2 2
() pripls™|m < plsylm}

- 2 - 2
i) pripyls”.m <pty,lsy.m)
(iii) E:uau._é < uau.n_z:

These are two tailed probabilities associated with reference of

(i) mm\mw to an F distribution with v and v_ degrees of freedom

0

-25- .



131

[4]

[51]

(6]

(7]

18]

[9]

[19]

1

(12]

[13]

[14]

Anscombe, F. J. and Tukey, J. W. (1963), The examination and analysis of residuals.
Technometrics, 5, p.141. _
Box, G.E.P. (1976), Science and Statistics, JARSA, 71, p.791-799. 1
Box, G.E.P. and Cox, D. R. (1964), An analysis of transformations. JRSS, Series B,
26, p.211.

Box, G.E.P. and Jenkins (1976), Time Series Analysis: Forecast and Control.

Holden-Day.

Box, G.E.P. and Tiao, G. C. (1962), A further look at robustness via Bayes' theorem.

Biometrika, 49, p.419.

Box, G.E.P. and Tiao, G. C. (1968), A Bayesian approach to some outlier problems,

Biometrika, 55, p.119.

Box, G.E.P. and Tiao, G. C. (1973), Bayesian Inference in Statistical Analysis.

Addison-Wasley.

Coen, P. J., Gomme, E. D. and Kendall, M. G. (1969), Lagged Relationships in

Economic Forecasting. JRSS5, Series A, 132, p.133.

pavid, H. A., Hartley, H. 0. and Pearson, E. S. (1954), The distribution of the

ratio, in a single normal sample, of range to standard deviation. Biometrika,

41, p.482,

Dixcn, W. J. {1950), Analysis of extreme values. Ann. Math. Statist., 21, p.27.

purbin, J. and Watson, G. S. (1950), Testing for serial correlation in least

square regression I. Biometrika, 37, p.409.

Durbin, J. and Watson, G. S. (1951), Testing for serial correlation in least

square regression II. Biometrika, 38, p.159.

Ferguson, T. S. (1961), On the rejection of outliers. Proceedings of the Fourth

Berkeley Symposium, I, p.253.

Feller, W. (1968), An Introduction to Probability Theory and its Applications.

Vol. 1, Wiley.
Grubns, F. E. (1950), Sample criteria for testing outlying observations.
Ann. Math. Statist., 21, p.27.

S

[16] Lindley, D. V. and Smith, A.F.N. (1972), Bayes' Estimates for the Lincar Model,
(w/ discussion). JRSS, B, 34, p.1-41.

[17] Pallesen, L. C. (1977), Studies in the analysis of serially dependent data. Ph.D.
thesis, University of Wisconsin.

mHmH Stein, C. (1956), Inadmissibility of the usual estimator for the mean of a multi-
variate normal distribution. Proceedings of the Third Berkeley Symposium, 1, p.157.

[19] Tiao, G. €. and Ali, M. M. (1971), Analysis of correlated random effects: linear
model with two random components, Biometrika, 58, p.37.

Hmo_ Tukey, J. W. (1949), One degree cf freedom for non-additivity, Biometrics, 5, p.232.

[21] Zellner, A. and Tiao, G. C. (1964), Bayesian analysis of the regression model with
autocorrelated errors. JASA, 59, p.763.

[22] Pox, G.E.P. and Tiao, G. C. (1968), Bayesian analysis of means for the random
effect model, J. Amer. Statist. Assoc., 63, p.179.

[23] Box, G.E.P. and Newbold, Paul (1971), Some comments on a paper of Coen, Gomme, and

. Kendall, JRSS, A, 134, p.229.

[24] Box, G.E.P. (1979), Robustness in the strategy of scientific model building,
Proceedings of A.R.0. workshop at Durham, N.C., April 1978, on Rcbustness in
Statistics, Academic Press (to appear).

GEPB/ck/ed

-2B-



Tt Dt £ raraif

REPY  DOCUMENTATION PAGE

TORT KUMBIL R 2. GOVY ACCESSION KO | 3.

REP e by g A

1969

4. TITLE [and Sub

- 5 TYPFE OF ACPORT & PERIOD COVERED

Summary Report - no specific
reporting period

6. PERFORMING OHG, REFORT ZC!!N.X

SAMPLING AND BAYES' INFERENCE IN THE
ADVANCEMENT OF LEARNING

T, AUTHOFR(e) B. CONTRACT OR GHANT HUMAER()

DANG29-75-C-0024
DAAG29-78-G-0166

PROGRAM ELEMENT. PROJECT, TASK
AREA 8 WORK UNIT NUMBERS

Work Unit Number 4 -
Wisconsin | probability, Statistics,
and Combinatorics

Georye E. P. Box

9. PENFOAMING ORGAMITATION HAME AMD ADDRESS
Mathematics Research Center, University of
610 Walnut Street
Madison, Wisconsin 53706

1h, CONTHOLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
U. §. Army Research Office June 1979
P.O. Box 1221l 73. NUMBER OF PAGES
Research Triangle Park, North Carolina 27709 28
Ta MOMITORING SGEMLY HAME & ADDRESS(I dlfferent from Coniralling Oflice) 15. SECURITY CLASS. (of this reporf)
UNCLASSIFIED
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

6, DISTH BUTION STATEMENT (of this Reporl)

Kpproved for public release; distribution unlimited.

V7. DISTRIDUTION STATEMENT (of the shatract anitered in Block 20, Il diffsrsnt from Report)

18, SUPPLEMENTARY NOTES

19. KEv WORDS (Confinus on ravarss sida If necessary and ldantify by block mmbar)

Payesian inference, Sampling theory inference, Estimation, Models,
Predictive distribution

10, ABSTIRACT (Continue on raverse nide If naceseary and ldentily by Block number)

Scientific method is a process of guided learning in which accelerated
acquisition of knowledge relevant to some question under investigation is
achieved by a hierarchy of iterations in which induction and deduction are
used in alternation.

This ‘process employs a developing model (or series of models implicit
or explicit) against which data can be viewed. Ideally at any given stage
(continued)

DD _umwdu 1473 EDITION OF | NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Daita Entered)

of an investigation, such a model approximates relevant aspects of t) vdied

tem and motivates the acquisition of further data as well as its . sin.
By the use of a prior distribution it is possible to represent some aspects of
such a model as completely known and others as more or less unknown.

Now parsimony requires that, at any given stage, the model is no more complex
than is necessary to achieve a desirable degree of approximation and since each
investigation is unique we cannot be sure in advance that any model we postulate
will meet this goal. Therefore, at the various points in our investigation where
data analysis is required, two types of inference are involved: model criticism
and parameter estimation. To effect the latter, conditional on the plausibility

' of the model, and given the data, we can, using Bayes' Theorem, deduce posterior
distributions for unknown parameters and so make inferences about them. But,
before we can rely on such conditional deduction, we ought logically to check
whether the model postulated accords with the data at all and, if not, consider
how it should be modified. In practice, this question is usually investigated
by inspecting residuals, by other informal techniques, and sometimes by making
formal tests of goodness of fit. In any case model criticism, the inferertial
procedure whereby the need for model modification is induced, is ultimately
dependent on sampling theory argument. These principles are formalized by an
appropriate analysis of Bayes' formula, and implications for robust estimation
are considered.



