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1. Introduction.

The last numbered pages of the four principal volumes of Laplace's

Mécanique céleste1 are, in increasing order, 303, 347, 368 and 382.

What is the median number of pages in the volumes of the Mécanique celeste?

Simple questions of definition such as thig arise in the most elementary statis-
tics courses, and seasoned instructors have developed many ways of handling
them, from averaging to get (347 + 368)/2 = 357.5 as a "median", to

li.sting both 347 and 268 as '"comedians". In elementary courses this def-
initional problem is usually of secondary importance (questions such as "what
is the population being sampled?" being emphasized), but in more advanced
courses and in statistical research, this same simple problem--caused by

an inadequate supply of order statistics -- can lead to nagging difficulties.

For example, in studies of robust estimators, intuitively reasonable
definitions (such as of "the 10th percentile") that make perfectly good
sense in infinite populations may require redefinition for small samples. -How
does one compute the average of the quartiles of a sample of size 9? What
is the 10% trimmed mean of a sample of size 137 In many cases statisticians
have invented useful algorithms for bridging the gaps between order statistics:
Tukey's hinges can be taken as quartiles for any sample size, and the programs
contained in the P;‘inceton Study can be taken as defining all manner of trimmed
means [1]. For data analysis, one could scarcely hope for much implrovement on
such algorithms (although this is a largely neglected research topic), but for

theoretical investigations they leave much to be desired.



In the first place, the exact distribution theory of the estimators
calculated from these algorithms is usually so complicated as to preclude
any but Monte Carlo studies. Even where an exact analytical treatment is
feasible, as with the median, strange anomalies may arise that reflect the
discreteness of the sample size more than properties of the estimator. For
example, Hodges and Lehmann [7] might suggest that when computing the
median of an odd sample size one may as well discard an observation at random!

As a second case in point, the large sample theory of (say) a linear
function of order statistics can{ become an annoyingly difficult problem with
even the simplest definitional algorithm, due to analytic int'ractability and
the consequent need to employ a variety of techniques of approximation. We
shall enlarge upon this point in section 3.

The aim of this paper is to introduce a solution to this dilemma, and
discuss a number of applications. The solution we propose could be called
"fractional" or "imaginary" order statistics, or even an "order statistics
process". From another point of view, this paper may be viewed as suggesting
some novel, non-Bayesian applications for a family of probability measures
introduced by Ferguson [5, 6] as "Dirichlet Processes" for Bayesian analyses
of non-parametric problems. The idea, briefly put, is to consider not just a
finite collectibn, but a continuum of order statistics, notwithstanding a finite
: "sample size". By this technical device, many of the problems discusséd above
disappear, and some remarkably simple proofs of known propositions become
possible.

It should be emphasized that the "order stafistic process" we discuss
is a purely technical creation, for use in theoretical investigations and not in

data analysis. If one wishes to describe the median number of pages in the




Mécanique celeste , then one had best seek out the fifth, largely supplementary

volume (419 pages). But for theoretical studies we shall introduce the 2. Sth
order statistic from a sample of size 4, not to mention the eth an-d the mth,
by specifying their joint probability distribution.

In the following section we shall review a few needed properties
of Ferguson's Dirichlet process, and define the order statistic process. In
section 2, the use of this process in large sample theory will be illustrated,

in section 4 a possible "small-sample" asymptotic approach is proposed, and

in section 5 an application to Yule processes is discussed.



2. TFractional Order Statistics - the Order Statistic Process .

The Dirichlet Process was introduced by Ferguson [5] as a prior
distribution for the Bayesian analysis of nonparametric problems. We propose
a different use. Basically, a Dirichlet Process is a probability measure on t‘he
set of probability'measures on a measurable space (£ |, '.ﬂ) which enjoys the
property that the joint distribution of (P(BI)’ bris P(Bk)) is an ordinary Dirichlet
distribution on the k dimensional unit square (see Wilks [17, p. 177]), for any
k and any By, B, ..., B, Brn which form a measurable partition of ¥ .

We shall not require the full generality of Ferguson's definition, but
will specialize immediately to the case where )E = [0, 1] is the unit interval,
with @& = the Borel sets. Also, we shall only consider the random distribu-
tion function F(t) = P([O, t]) corresponding to P. For this special case the
full definition of the Dirichlet process is given by: |

Definition I: We say a random distribution funtion F(t) on [0, 1] is a Dirichlet

process indexed by a measure v on the Borel sets of [0,1], if, for every
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where v(t) = v([0,t]) forany te [0,1].

Ferguson's work [5] proves the existance of such a probability distri-
bution on the distribution functions on [0, 1], for any non-null finite measure
v. In what follows it will be convenient to let \ = v(l) = v([0,1]), and
o(t) = v(t)/N . We shall always suppose 0 < X < . Then the following

properties of TF(t) are well-known and easily derived:




(1) For any t, F(t) has a Beta distribution, Pl vlE), d=vlt) ).
(2) E(F(H)) = o(t), V(F(D)) = alt) (I=e(t) )X + 7.

(3) Forany 0 < s<t < L cov(E(s), F(t)) = als)I-a(t)+D) T .
Our present interest in the Dirichlet process is motivated by the fact

that if v is proportional to Lebesgue measure, that is, if o(t) =t all te [0, 1],

and if X =n+1(n a positive integer), then the vector

n

¥y P(er'l—) )

n+l 7’

has exactly the same joint distribution as the order statistics U(l) < MW U(n)

of a random sample of size n from a uniform [0, 1] distribution. This fact

follows immediately from Definition 1 and Wilks [17, pp. 182,236]. Further, if

G is any (fixed) distribution function on (-*°,*), and G_l(u) = sup {x:Gx) L u}

is the right-continuous inverse function, theﬁ under the above conditions

{ie. oft) = t, A = ntl), the vector
ot o LR <

has exactly the same joint distribution as do the order statistics X(l)_<_ by X(n)

of a sample of size n from the distribution G. However, unlike the order
statistics, F(t) and G_I(P( t)) have well-defined joint distributions for all t.
This motivates

Definition 2: If F(t) is a Dirichlet process on [0, 1] indexed by v(t) =)\t, we

shall call F(t) a uniform order statistic process . Similarly, we shall call
=]

G *(F(t)) the order statistic process for the distribution G.

Note that N need not be an integer, although it was motivated by the
case N\ = n+l. Regardless of the value of X > 0, we can heuristically refer to

GYF(t)) as the t X th order statistic of a sample of size \ = 1 from G.



While it will not really concern us here, we may recall that Ferguson [5]
has shown that with probability one F(t) corresponds to a discrete distribution,

thus realizations of F(t) and G-l(F(t)) will be step functions. However, as

defined here they will be right-continuous and monotone, and their distributions

will vary continuously with t.




3. Applications to large sample theory.

One of several fruitful approaches to the asymptotic behavior of
linear functions of order statistics has been what might be called the
stochastic process approach. This approach was pioneered by Bickel [2]
(who also refers to unpublished work of Hajek) and later developed by
Shorack [11, 12, 13] to yield very strong results. Essentially, what is done
{in the simplest formulation) is to define a function Yn(t) = X(i} for t = i/(n+l),
and by linear interpolation for other te [1/(n+l), n/(n+l) ]. Then if Hn(t) is
a function of bounded variation corresponding to a measure which puts mass
Cin at t =i/(nt+l), a linear function of order statistics Sn = 3 CiI‘lX(l) can
be represented as an integral Srl :Olen(t) d Hn(t). One might then show that
Hn(t) — some limit H(t) in a suitable sense, and that n% (Yn{t) - G-l(t) )
converges in distribution to a Gaussian process W(t) on [0, 1], and conclude
that n%(sn - flG_l(t} d H(t))converges in distribution to le(t)d H(t), which is
normally dist:ibuted. The function Yn(t) is called the quagtile funcﬂon, and one fact
contributing to the mathematical complexity of this approach is that as the distribu-
tion of Yn(t) is somewhat intractable for t # i/(n+l), some i, the proof that
n%(Yn(t)—G_l(t)) converges to W(t) becomes more difficult than might otherwise be
the case.

If X =n+1, the order statistic process G_l(F(t)) has a distribution
which agrees with that of Yn(t) for t's = i/(n+l), but its distribution is nicer
for other t's, and its use permits a simplification in this approach to proving
the asymptotic normality of Sn’ under moderate regularity conditionsz.

We begin with a theorem concerning the convergence in distribution of
Dirichlet processes, which while more general than needed in the present
- section, may be useful in other applications (such as censored data).

Theorem l: Let F(t) be a Dirichlet process on [0, 1] indexed by v, as described

by Definition 1. If a(t) = w(t)\"" is continuous on [0,1]. X = v(1), then



Z?\(t) ={ X+ I)%(F(t) - o(t)) converges in distribution to the Gaussian process
Z(t) on [0, 1] with EZ(t)= 0, cov(Z(s), Z(t)) = a(s)(l-a(t)) for s <t, as
N = o ot) fixed.

By convergence in distribution, we mean that the probability distri-
butions of Z?\(t) as distributions on the space I of functions which are right
continuous and have left-hand limits at all points, converge to the distribution
of 7(t), as described in Billingsley [3, chapter 3]. Note that as every realization
of P(t) is a distribution function, and thus is right-continuous and monotone,
it is in D and thus Z}\{t) ig in by

Proof: By Theorem 15. 6 of Billingsley [3, p. 128], it is sufficient to show

that (a) for any fixed t Sty e [0,1] the (finite dimensioﬁal) joint distri-

I
bution of (Z}\(ti}’ i3 B Zh(tk_) ) converges to that of (Z(tl), T Z(tk) ), and
()  E{ (Z,(1) - Z,()F (Zy(t,) - 2, ()7} £ (alty) - alty)?,
for all X and any 0 = ‘c1 _5_ LR S tz ; l. ( (b) implies that the distributions
of Z)\ are "tight".) We note that EZ}\(t) =0 allt, cov (Z}\(s), Z}\(t) )
= cov (Z(s), Z(t)) all s, t, by section 2.

Just as is the case with the quantile function, the proof of (a) is easy.
In fact, it is accomplished by exactily the same sequence of steps used to
prove the joint asymptotic normality of a finite set of quantiles. We omit the
details; see Mosteller [10], Wilks [17, p. 271] or David [4, p. 20l]. It is in veri-
fying a condition like (b), however, that one encounters the necessity of em-
ploving sometimes tedious approximations when dealing with the quantile |
function. But with the Dirichlet process, (b) follows almost immediately
from known properties of the Dirithet distribution. The left-hand side of
. the inequality in (b) equals

(x+1)°E{(2, - a) % (2, - 1)° }, where

Z, = E(t) = F(ty), a =olt)- alt)), Z, = F(t

} =B b =olt.) =at

5] &




and (Zl’ ZZ} has a Dirichlet distribution with parameters (Aa, A\b; \(1-a-b)).
Then multiplying out and using standard formulae for the product moments

of a Dirichlet distribution (Wilks [17, p. 179]), we find after some algebra

that

2 2 ab
E {(Zl—a} (Zz—b) jE OO+ 20 253) [X + (a+b)(6-\) + 3\ab-18ab]

ab
FENIE TR I T

A

Z2ab
(A+1)(N+2)

2ab
(M-l)2

A

atb G

(A+1)?

A

For the first inequality we used the facts 2Xab < X and (a+b)(6-\) S 6, for

the second A + 23> X +1, and for the third 2ab < (a+b)®. Then since

at+b = o(t,) - a(tl), the final inequality gives {(b). The theorem then follows

5)
from the previously mentioned theorem in Billinglsley, since o(t) is con-

tinuous and monotone.

QuE. D

Remark: For some applications it is worth noting that essentiaily the same
simple proof can vield more general results. For example; ~(t) need not be
fixed, it is enough to require that v(t)/\ converges to a continoué limit as

A == o Also, the hypothesis that ~(t) is continuous can be dispensed with

In view of the discussion on page 133 of Billingsley [3] (especially formula

(15. 39) the above proof covers this case with only minor adaptation. In fact,
essentially the same proof shows weak convergence of the normalized distribution

function of a Dirichlet process on the g-dimensional unit cube, by appealing to
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Theorem 3 of Bickel and Wichura [18],

Corollary 1: If F(t) is a uniform order statistic process on [0, 1],

(?\-1-1)% (F(t) - t) converges in distribution to the Gaussian process W(t) on
[0,1] with mean 0 and covariance function min(s,t) - st. (W(t) is some-
times called the Brownian bridge. )

To prove asymptotic normality of Sn we would require the extension
of Theorem | to the general order statistic processes. We shall present this
result only for the case o(t) = t (although the more general case presents
no great difficulties), and shall follow essentially the same program as
Bickel [ 2]. The principal difference is that in [2] the sample functions are
continuous, here they are only in D. Let g(x) = de_ G(x).

Theorem 2: If g(Gnl(u) } is continuous and bounded away from zero on an
open interval including- [e P € 2], where 0 < ¢ 1 < €5 < 1, and Fit)isa
uniform order statistic process indexed by A, thenas N > the process

-1

1 " " -
(N+1)2 (G “(F(t) - G 1(t) ) converges in distribution to [g(G I(U )] 1V\T(t)

over |[e 1 ez], where WI(t) is the Brownian bridge of Corollary 1.

Proof: The proof is straightforward, based on the mean value theorem.

- = s L - s
as =5 7w = [e(@7HunT™ for ¢ < usge,, G Em)-a Ty ) -
L — 1)
(M +1)2 (F(t) - 1) [g(G™ Y 0t)) )]}, where 6(t) is between F(t) and t. Corollary
1 implies that sup IP(t) - ﬂ E, 0, thus sup 1 0(t) - t| B 0. The conditions

t HE
of the theorem imply that [g(G_l(t) )]_1 is uniformly continuous over [e 16 Ts

Then Slutsky's theorem implies that the finite diménsional marginal distributicns
1 . - % -

of (A+1)% (G 1(1-"(t)) - G 1(t) ) converge to those of [g(G 1(t) )] L

-1
hoor

dition for tightness given by Theorem 15. 2 (or 15. 3) of Billingsley [3, p. 125]

W(t); further,
the uniform continuity of [g(G— and th_er necessary an.d sufficient con-
imply that this process inherits the tightness of Z)\(t). The. Theorem then follows
by Billingsley Theorem 15.1[3, p. 124].

Q:E.D.




s

With these results established, one can then proceed to prove the
asymptotic normality of Sn under a variety of conditions. For example, the
proofs of Bickel [2, section 4] apply with G_l(F(t)) replacing the quantile
function, with only minor modification.

We should remark that the results concerning Sn that follow from
Theorem 2, while applicable in many interesting cases, are much weaker than
those found by Shorack [11,12] using a variant of the stochastic process approach,
or Stigler [14,. 16] using a projection approach. It remains to be seen whether the
civilized behavior of the order statistic process might permit a slight strengthening

of Shorack's results.



4, Small Sample Asymptotics.

In section 3 we saw that a linear function of order statistics
; - B
Sn = % Cin X(I) could be represented as an integral f G 1(F{’c)) d Hn(t),
@}
where G_I(F(t)) is an order statistic process indexed by X\, and

Hn(t) = Ecin I[ii tn+n] For this integral to have the same distribution as

Sn it was necessary that \ = n+l, but the integral in question may make

perfectly good sense for any function Hn of bounded variation. In particular,
1

[ehrw)) amy for

It g8 n e 'Hn(t)—*‘ H(t), we might wish to consider
o}

fixed, finite X, even A small.

| Why? The answer is simple, and was alluded to in the introduction. The
exact distribution of Sn may be rather sensitive to sample size as well as
intractable. We have already suggested replacing the sometimes cumbersome
guantile function by G”l(F(t)), which has a smooth distribution (even if it is
a pure jump function with probability one). We now propose replacing the
sample size or algorithm dependent weight function Hﬁ(t) by an apiproximation
H(t) and regarding the distribution of the resulting integral Tn = I Gnl(}“(t))d H(t),
with N = n+l fixed and small, as a "small sample asymptotic" a%proximation
to the distribution of 8 . We do this in the hope that ths dieiten of -
will prove more amenable to analysis than that of Sn’ vet for small n provide
a better approximation to the distribution of Sn than does the asymptotic normal
distribution (c.f. Stigler [16]).

For example, the c-trimmed mean has been defined in many different

ways for finite samples. One way is given in [1]; another [15] would take

G = [(1~c)n] = [an] )‘1 for 1 = [en] +1,.5., [{l=a)ni; Cipy = 0 otherwise.

In either case Hn is a step function; in either case Hn(t) =+ (1-2a) L if

gst<L=u Hn(t) - 0 if t<ga or >1l-a. Thus we might hope that
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T, = (1—20')_1 fl—a g (F(t)) dt would have a distribution that is a useful
approximationoto that of Sn’ and better indicate its performance for small
samples than does the limiting normal distribution. Similarly, we might
study the behavior of G_I(F (. 5)) rather than either the exact distribution of
the median (whose form depends on whether n is odd or even) or the limiting

N(G“l(.5}, (Zg(c;"l(.s))'z) distribution. (Note that a7l

F(.5)) has exactly
the distribution of the median for n odd, for n even it is the “"(n+l)/2nd
order statistic".)

How successful this device is of course depends upon what aspect of
the distribﬁtion of Sn one is interested in, and on whether G and H are
such as to render the distribution of Tn tractable in that aspect. In the follow-
ing remarks, we concentrate on the variance V(Tn) as an approximation to
V( Sn), although when the distribution of Sn is nonnormal V( Sn) may be a
misleading measure of the performance of Sn as an estimator (see [1, chapter 5]
on this point). We shall proceed heuristically at a number of points, supposing
G and H satisfy sufficient regularity conditions that the moments we discuss
are finite and given by the integrals in question, and the expansions valid in the
rantje considered.

With this understanding, the variance of Tn is given by

=l

V(Tn) = flﬁ cov (G l(F(s))_, G AFt))d H(s) d H{t)-.
o 0
It is commonly the case with estimators of location parameters that the distri-
bution G is symmetric about a point that may be taken to be zero, and H
corresponds to a measure on [0,1] that is symmetric about .. 5 Under these
conditions (which are the only ones considered here), we have
4 1

St anw = | BT
(3] @]

Yrenamt) = o, and W(T))
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could also be written

1 1 "
Wt ) = | [ EGTHE(s) GTHE()] dH(s) dH(Y) or
o O
bk =] S -1 =
= [[ E{[GTU(F(s)) - GT{(s) J[G UF(t) - G (t)]} dH(s) d H(t) .
00
) . gE ol (k)
It G ig differentiable with derivatives - G "(t)= g 7/ (t), then one

dt
may consider expanding G 1 in a Taylor's series (although other expansions

might be better for some distributions) to get

O St < (1)
Wy e 528 - — k(,s)].‘? £ £, (s,t) d H(s)d H(s),
: k § o © r Pt J
where fjk(s’ ¥) =K [(F(s)—s)j (F(t) - t)k ] , a product central moment for an

ordered Dirichlet distribution, expressible in terms of complete gamma functions.

When G is symmetric as assumed here, this formidable expression may

simplify slightly, since then g(k)(t) = ("1)k+19(

)j+k £

k)(l-t), fjk(s, t)

= (-1y™ £, (1-5, 1-t), and gs) g(k’(t)fjk(s,t) = gt (1-5) K )(1-t) £l 1t
The implicit hope in performing this expansion is that a very small number
of terms will provide an adeqguate approximation. While the extent to which this
hope is realized will not be explored here, we do note the following points
in its support:
l. When G is uniform and G—l(t) =t, only the firstterm k =1 =j
is non zero and the expression (n+2)“1h[‘f (min(s, 1) - st)d H{s)dH(t) gives
V(Tn) exactly.
2. The firstterm k =1-=j gives

(n+2)™! [ [1a(G7 s g (G 7H)] ™! [min(s, )-st]d H(s) d H(t) which is just the
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asymptotic variance of Sn divided by n+2 rather than the more usual n. Thus
additional terms may be viewed as corrections to the approximation given by

the asymptotic variance. Incidentally, the change in normalization to (n+2)_1

may itself significantly improve the degree of approximation when the g(k)(t)
are small for t in the support of H, k>1, as may be the case when trimming
is employed.

3. When Srl is just a sample pth percentile, then the approximation
suggested is just that based on the probability integral transformation, and
goes back at least to Karl Pearson (cf. David [4, p.65]). For this case there
is no novelty in the present approach other than one of the interpretation of a
npth order statistic when np is not an integer. For the case of the median,
T = gt (F(.5)), and if G is symmetric about zero, g(k)(. 5y =0 fork

even. Then if we keep only the terms corresponding to k=j=l; k=1, j=3; and

k=3, j=1 in the above expansion, we find

1}

(gt 5) )2 n gl () ot ) B(B(. 5)=. 5)°
; . 5)-.

Wi AHnt2)

= VIC, n),- S8y,

Let

¥

V(G n) = (4n+2) " gt 5))°

the approximation to V(Tn) (and thus to V( Sn) ) obtained if we only retain the

j=k=1 term in the expansion. Then we may compare Vl(G_ n}, VG, n), and the

P
more usual formula V (G, n) = ( E—I&) VI(G-‘ n) (the asymptotic variance divided

2
by n) as approximations to V(Sn). Table l{a-c) presents this comparison for
n = 5,10, 20,40 and (a) G = 2, the N(0,1) distribution, (b) G the standard

Cauchy, (c) G(x)=.75% (x) + .25 S(x), where S is the distribution of

]



]G

7U"! with Z N(0,1) and U uniform [0, 1],

independent of Z.

The

"exact" value of V( Sn) was taken from the Princeton Monte Carlo Study

[1]. Note that for n odd, V(Sn) = V(Tn); for n even Srl is the average of

the comedians (a "quasimedian" in FET )

n nV,(G, n) nV(G, n) nV (G, n) nv(s )

5 1,122 1.220 1.571 1. 465
10 1. 309 1, 411 1.571 1. 366
20 1. 428 1.505 1.571 1. 498
40 1. 496 1,544 1.571 T8 27

(a) G =2, the N(0,1) distribution.
¥

n nVI(G, n) nV(G, n) nV (G, n) nV(Sn)

5 1. 782 2. 246 2. 467 6.3
10 2. 056 2.558 2. 467 3.7 or 3. 4
20 2. 243 2. 624 2. 467 2.9
40 2.350 2. 589 2. 467 2. 43

(b) G the standard Cauchy.

n nvy(G, n) nVv(G, n) nV (G, n) nv(s,)

5 1. 466 1,621 2.052 2. 43
10 1.710 1.871 2.052 1.87
20 1.865 1,987 2.052 1. 94
40 1. 954 2. 031 2.052 2. 00

(c) G(x) =.75®(x) + .258(x), S(x) = [ @(xu”

O

l)du.

Table 1. Comparison of the variance of the median V(Sﬂ) with approximations

based on one term of the Taylor's expansion (Vl)’ on terms through

(1, 3) and (3,1) (V), and on the asymptotic variance (V*).
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On the basis of Table 1 we have at least some encouragement,
although the use of the first alone of the expansion does seem to be
inferior to its multiple, the asymptotic variance.

As an alternative to the expansion of G-l as a means for determining

the variance of j G*1

(F(t)) d H(t), one might focus on a particular family of
distributions G, whose inverse cumulatives are particular well-suited for
calculation. The most important such examples are Tukey's lambda distri-

butions (cf. Joiner and Rosenblatt [8]). These include the logistic, the

uniform, and close approximations to the normal and t-distributions as special
cases. Here G u)=c H(u - (1-u)®), T_=c M JF®CdH() - [(1-F(£) dH (D),

and if H is syfnmetric we find

11
VT ) = 2¢7°4 | [ E(F(s)Fof dH(s) dH(®)

(o0,

¥
- [ [ E(F(s)(1-F(t) )" d H(s) dH(t)}
0 o :

This can be expressed in terms of integrals of product moments of Dirichlet
random variables, which themselves are ratios of products of complete gamma
functions. In this form it may prove feasible to evaluate V(Tn) numerically for
a variety of weight functions H. (c.f. Hastings et. al. [19].)

An interesting problem, though unsolved and probably difficult, wo.uld
be the determination of the optimal weight function H for this "small sample
a.symptbtic " approximation V(iTn) to V(Sn). Tt;at is, given G attempt to
minimize V(T ) subject to_[ dH(t) =1and | G (t)dH(t) = 0. This could
be attempted either generally or within a restricted family such as Tukey's

Lambda family. In this latter case, if ¢ > 0 the easy solution is to let H put

mass .5 at 0 and at 1 (the "midrange"), but otherwise the solutions, which
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might provide more efficient estimators than do weights based on the

asymptotic variance, are unknown.
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5. The Uniform Order Statistic Process, and an Application to the Yule

Process.
Going back at least to Laplace, ingenious statisticians have derived
an incredible variety of distributional properties for functions of the order

statistics U(i) £ .. 5 U(n) of a sample from a uniform [0, 1] distribution.

David [4] is a good source of examples. Since all of these properties

are really properties of the Dirichlet distribution of the sample spacings

U(l) = U(l_l) it's not surprising that generalizations of these

properties for the uniform order statistic process exist and are easy to find and
prove. We shall content ourselves with one example which has an interesting

application in finding the passage time distribution of a Yule process.

A well-known property of uniform order statistics is that [U(})/U(}H)]J,

j=l,2,.. ,n, arethemselves independent and uniform [0, 1] distributed,

’

(n+1) e

where U See David [4, P. 19]. If F(t) is a uniform order statistic

process indexed by X, then a generalization of this property is that if X\ > 0,

B> - }Cl, and t; =§ +jx"l, then
Kt].
Bt i
( J)
F(th) , allj such that 0 < tj < tj+1 33 x

are iﬁdependently distributed uniform [O, 1], We omit the easy proof, based
on the representation of the Dirichlet distribution in terms of independent
gamma distributed random variables. When N =n+1 and B =20 t'his reduces
to the earlier property.
The reason for citing this generalization is because it allows a remark-
h

ably easy derivation of the distribution of the time to the kt "birth" ina

Yule process. For the present purpose we shall define a Yule process as a
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pure birth process whose birth intensities 6m increaseas 6m =m+ 6 (the
treatment of the case 6m = &(m + 6) would follow by a change of scale).

Such a counting process may be characterized by a sequence of independent

exponkentially distributed random variables Wl‘ WZ’ .+iy Where EW, = 6;1
and ‘El Wi gives the time of the kth birth.

. i The distribution of Bk = i]%l Wi can be easily derived by the following
trick. First note that exp [—6iWi]_ are independent uniform [0, 1]. Then

K S
exp(B,) = ifil [exp {- 6, W, }]
has, by the above with A=k + 6 and P = 9(k+6)_1 , the same distribution as
k - Mty 61'1 b’
T [F()/Ry,) ] = (F(t)) ",
since then ?Lti 6;1 == tk 41 and this product telescopes. Thus Bk has

the same distributionas - 1nF (%{Ti ), where P(%—%) has a beta (8+1, k-1)

distribution!
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Footnotes

The given counts are from the first editions [9] of volumes 1-4

(1798-1805), and exclude separately paged supplements to volumes
3 and 4.

One way of viewing the relationship between the quantile function

Y (t) and G_l(P(t)) is to note that in the uniform case (G(x)

= X)}

the properties of the Dirichlet distribution imply that

Y (1) = R | FiAn+l)) = XY a1 n), if a2 nal
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