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1. Introduction and Summary:
Let Xy, .-+, X, 4 be independently and identically distributed random

variables with a common distribution function (d. f.). The goodness-of-fit
problem is to test if this d.f. is equal to a specified one. A simple probability
integral transformation on the random variables (r. v. 's) would permit us to
equate the specified d. f. to the uniform distribution on [0, 1]. Thus from now
on, we shall assume that this reduction has been effected and under the hy-
pothesis, the observations have a uniform distribution on [0, 1]. The original
problem thus, is equivalent to one of testing for uniformity viz. whethér a
given random sample of observations come from a uniform distribution on [0, 1].

Leh AL S SRR e S By be the order statistics. The sample
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spacings (Dl’ ¥y Dn) are defined by
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where we put Xé) =0, X'rl = 1. Tests for goodness-of-fit (or equiv'alently
uniformity) based on spacings have been proposed by several authors. See
for instance Pyke (1965) or Rao and Sethuraman (1975) and the references
contained therein. It can be seen (see e.g. Pyke (1965) Section 2.1) that

the distribution of (Ty, ..., T ) under the hypothesis of uniformity is Dirichlet
D(1,1...1; 1) distribution with any subset (Til, .59 o Ti ) of them having

k
D(l,...,1; n-k) distribution. See Wilks (1962) pp 177-182 for an elementary



discussion on Dirichlet distributions.

In analysing circularly distributed data, testing forr uniformity i. e.
deciding whether a given set of observations on the circumference of a unit
circle indicate a preferred direction, is a very basic problem. This is a
necessary preliminary step before estimating or making inferences on the
mean direction. Also the goodness-of-fit problem on the circle is equivalent
to this just as on the line. In the circular case, the spacings may be de-
fined as the arc-lengths between successive observations on the circumference,
ignoring the zero-direction. Apart from the minor difference that n observations
on the circle lead to n circular spacings while on the line (n-1) observations
-make n spacings, the distribution of the spacings in either case is the same
(see for instance Rao (1969) pp. 63-67 or Mardia (1972) p.l72. For pur-
poses of inference on the circle, one requires a statistic that is invariant
under changes of the origin and a general invariant statistic is of the form

h(T . oy Tn) where h(-) is a function that remains invariant under cyclical
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permutations of the arguments. For instance functions symmetric in all the
arguments may be considered though they are not asymptotically efficient. See
Sethuraman and Rac (1970). Thus the spacings {Ti} play a crucial role in testing
goodness-of-fit on the circle whereas for the linear case, one has tests that
are not necessarily based on spacings. Therefore all our further discussion on
spacings can be related also to the circular case and is indeed more important
in that context.

In Section 2, we propose a simple class of tests Rn = Rn(nﬁn) based
on spacings and obtain the exact distribution under the hypothesis of uniform-
ity. Section 3, deals with the asymptotic distribution of Rn while sections 4

and 5 respectively discuss the Asymptotic Relative Efficiency (ARE) and

Bahadur Efficiency (BE) of Rn relative to Un, another spacings test discussed




by Rao (1969). Since the limiting efficiencies of a number of test-statistics
including Un have already been investigated by Sethurmaman and Rao (1970)
and Rao (1972), the results of sections 4 and 5 provide a basis for comparing
Rn with any of those tests. Tinally in Section 6 we discuss the statistic R>; .
which has the maximum limiting efficiency in the class of tests Rn( nén). We
also provide a table that can be used to obtain critical values of Ry';l and
illustréte, by means of a numerical example, how simple it is to use this

R* - test.
n

2. The statistic Rn and its exact null distribution.

Choose and fix a 6n > (0. We shall call a sample spacing 'small' if it
is less than Bn in length. The test criterion is to reject I—IO, the hypothesis
of uniformity when we observe too many 'small' spacings, since this clearly
indicates clustering of the observations. At this stage we will leave open
the choice of 6n though a suitable value might be to take for instance 6n = -*H ,
the expected length of any spacing under uniformity Since Ti 's are of order
(1/n) under H,, we consider the so-called "normalized" spacings {nT.l } and
define

R .= Rn(nén) = {number of(nTi) 5 2 nén},

"

number of spacings T.1 smaller than 6n‘

and reject HO if Rn is too large. The exact distribution of Rn is given by

the following.



Theorem 2.1 Under the hypothesis of uniformity, the probability function of

Rn is given by
k . n-1
B _ e e oy :
PR =k} ={) Jfo(l) Gpd Sl o= Anrkd 04,8,

(2« 1) for k = 0, 1 n-1

) g oty

= 0 otherwise

with the notation ¢(x» = x if x> 0 and =0 if x <0

Proof:

Let Ei denote the event that ith spacing Ti exceeds 61‘1’ R
and let P denote the probability that a specified set of m arcs exceed
Clearly we have to have m < [6—1|, the largest integer contained in 6_L

n
Since the spacings are exchangeable,
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with the notation < ) used in (2.1). Now if Sm denotes the probability
that any subset m of these n events take place, then because of

exchangeability,

(2.2) B =1

" ne)
(m) ¢ 1 —m6n>

Further if Hm denotes the probability that exactly m of these n events

take place, then we have (see e.g. Feller I, p. 106)

n j=m i
B...r 3.8 el el Sj
j=m
which on substituting (2. 2) gives
n = i n~l1
= Z (- ()1 ) L1-3j6 >
j=m :
. n ) A > 1<)
- g e %
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using again the notation ( ) of (2.1). Finally since Rn = k if and only if
exactly (n-k) of the spacings exceed 6:1 (hence exactly k arcs are smaller

than 6n)’ we have
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Remark 1.
The distribution in (2.1) can also be derived by using the results
of Darling (1953) who gives the characteristic function of Nn(oz, B), the

number of spacings with values between o and P . It is given by
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Since our R = Nn(O, ﬁn), the characteristic function of Rn is obtained by

letting o =0 and B = 6n, i.e.
1ER ) 1y CH® 2 on [ (E -z§_ | n
E (e / = i jc-ieo e  z s\:1+(e -1) (1-e )::» dz .

If we expand the factor in braces and select the coefficient of e

for any fixed k =0,1,..
_aas Gt I ~(n-k)& 2 f &2 k|

PR_=k) = L7l 27 n {1-e “) . dz

: e z &
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k , c+iee  z(l-(n-k+j) o _
= (E} =z | ) 1)J %—U— [ e z @ dz
i=0 j 4 E jioo
n K |/
(k)z( J<l- n-k+j) 6_ >
j=0

The last equality follows from the Residue Theorem.




Remark 2.

Another spacings statistic of interest is Un =

discussed in detail by Rao (1969) in connection with testing uniformity of
circular distributions. Its density function was investigated by Darling (1853,
Sherman (1950) and Rao (1969). We show below that this statistic U_ s
closely related to Rn(l) with 611 =1/n. Let K= n—Rn(l) denote the (random)

number of spacings with lengths larger than 1/n and

S5 Moekal E Sesiagt a0k T
SRR R e Ty
n
where T(l) Borm. £ T(n) are the ordered spacings. Thus SK denotes the sum

of those K largest spacings which exceed 1/n in length. Notice that

0. =

et 5
n Z.EXT_nL

{2 ->)

Mauldon (1951) derived the distribution of Sk’ the sum of the k largest
spacings for any fixed k. Treating this as the conditional density of SK given

K=k and using (2. 1), we can write the joint density of (S, K) and hence obtain

K-u
the density of Un through the relation (2. 3). The resulting expression for the
density of Un is very complex and attempts to show that this is identical to

the density given for instance in Darling (1953), have not been successful.



3. Asymptotic null distribution of Rn'

In this section, we establish the asymptotic normality of Rn under
]
the hypothesis of uniformity as well as under.a suitable sequence of alterna-
tives. Notice that for computing the Pitman Asymptotic Relative Efficiency (ARE)

of R, which will be considered in the next section, it is enough to obtain the

,
limiting distributions under a sequence of alternatives which converge to the
hypothesis (see for instance Rao and Sethuraman (1975) ). Hence we will
specify the alternative hypotheses by a sequence of distribution functions
An(x) depending on n and converging to the uniform distribution, which

corresponds to the null hypothesis. Under the alternative hypothesis, we

specify the distribution function to be

1
(3.1) A (x) = x+ L () / n , 0

IA
b
| A
e

where Ln(O) — Ln(l) = 0. We further assume that LH(X) is twice differentiable
on [O, 1] and there is a function L{(x) which is twice continuously differentiable

and such that L(0) =L(1) =0, n”%sup | L (x) - £1x)] = o(l) where
o<x<1| T

#(x) and £'(x) are the first and second derivatives of L(x). This sequence of
alternatives is smooth in a certain sense and has been considered before. See
for instance Rao and Sethuraman (1975).

We define the empirical distribution function of the "normalized"

spacings {nTi’ i=1l...n} by

n
(3.2) Hn(x) I I(nTi;x)/n for x > 0
i=1

(1 if z<x
where zix) = <
| 0 otherwise




Let !
| 1
(3.3) G (x) =1-e 4+ e (x- x2/2) - ( [ 2% (p) dp)/Nn for x > 0
- 0
and

{¢ (x) = ¥V (H (x) - G (x}), x20 }.

Qn(') can be considered as a stochastic process with values in I{0,2] . See

Rao and Sethuraman (1975) from which we have the following

Theorem 3.1 (Rao and Sethuraman (1975) )

Under the alternatives (3.1), the sequence of stochastic processes
{z;n{x) = '\/E( Hn(x) - Gn(x) ), } converges weakly to the Gaussian process

{¢(x), x >0} in DJ[0, ] with mean function zero and covariance kernel

K(s, t) = e“t(l-e_s—ste_s) for b < 8 & &g,

Moreover if g(-) is a real-valued measurable function on D[O,m]
which is a. e. continuous with respect to the probability measure induced by
the Gaussian process {{(x), x > 0}, then the distribution of the real-
valued random variable gf Qn) converges weakly to that of g({) as n —- =,

At this stage we will assume that 6n is of the form 6n = §/n for
some & > 0. Since the individual Ti's.are of order 1/n in probability under
the hypothesis, for asymptotic purposes this would be the correct normalization.

When &_= 8/n, we have the following theorem on R_ =R (né_) = R _(8).
n n n n n

Theorem 3. 2.

R (6)

n

' Under the sequence of alternatives (3.1), N'n ( - G_(8)) where

Gn(x) is defined in (3. 3), has a limiting N(O, crz) distribu’cion with
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Proof: Note Rn(é) = number of(nTi) < (n 6n) = &

n Hn(é)

where Hn(x) is the empirical distribution of the normalised spacings and is
defined in (3. 2). Thus

__ R (8)
Nn (—— -G _(8)) = ~Nn [H(8) -G (8]

= § (6).

n

Therefore the stated result follows from Theorem 3. 1. q. e.

Corollary 3. 3.

Under the null hypothesis of uniformity

R (8)

n

T O T e TR 1R R

has a limiting N(O, 1) distribution.

This Corollary 3.3 may also be obtained alternately using Theorem
9,1 of Darling (1953). But unfortunately the expression for the limiting
variance given there, is ircorrect. We now state the correct version without
proof. This result may also be obtained as a corollary from Theorem 3.1 of

Rao and Sethuraman (1975).

Theorem 3. 4.

Denote by Nn(%, % } the number of spacings whose length lies

between -?1 and % Then the random variable Nn( %, %) is asymptotically

normally distributed with an asymptotic mean and variance given by
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4, The ARE of Rn relative to Un.

For a definition of ARE, see Fraser (1957). The ARE of a test relative
to another may be defined as the limit of the inverse ratio of sample sizes re-
quired to obtain the same limiting power at a sequence of alternatives converging
to the null hypothesis. This limiting power should be a value in between the
limiting size « and the maximum power 1, in order that it can give an insight
into the power behaviour of the test. If this converges to a number in the
interval (e, 1), then a measure of the rate of this convergence, called
'efficacy' can be computed. Under certain standard regularity assumptions
(see e.qg. Fraser (1957)) which includes a condition about the nature of alter-
natives and the asymptotic normality of the test statistic under the alternatives,

which are satisfied here,the 'efficacy' is given by
4
(4.1) efficacy = (ﬁ?)

in this case. Here p and o2 are the mean and variance of the limiting
normal distribution under the sequence of alternatives (3.1) when the test-
statistic has been normalized to have a limiting normal distribution with mean
zero and finite variance under the hypothesis. In such a situation, the ARE of
one test with respect to another is simply the ratio of their efficacies.

From Corollary 3.3, Nn (__n&_ == e_é )) has a limiting normal

-6 _2

) - -5
distribution with mean zero and variance e 6(1—e e ") under HO' On

the other hand, from Theorem 3. 2, under the sequence of alternatives (3.1)

the same statistic has a limiting normal distribution with mean

1 2

: -5

( j Ez(p) dp) e (& - 6—) and the same variance. Hence the efficacy of
0

2



-

Rn(:S) is given by

15 4 g2 4
(ks € (o) @ ) (8 =5
(4. 2) >

s O

Sethuraman and Rao (1970) show that the Pitman efficacy of Un in this

situation is given by

Lo, 4
( [ £ (p) dp)
0

)2

(4(2e - 5)

Hence the ARE of Rn with respect to Un is given by

(4. 3)

From the results of Rao and Sethuraman (1970) who compute the efficacies of
many other spacings tests, one can compare the ARE of Rn with any of

those tests. We will return to the expression (4. 2) again in Section 6.

5. Limiting Bahadur Efficiency of Rn relative to Un:

We refer the reader to Bahadur (1960) for the concepts of Bahadur
Approximate slope (BAS‘) and Bahadur Approximate Efficiency (BAE). We use

the same notations as in Bahadur (1960). We consider the class of alternative

densities

(5.1) g (x) = 1 +k£x) 0<% £ 1
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where k is a real number and fx) is any square integrable function on

[0,1] with _]'1 £(x) dx = 0. For instance in connection with the circle,

taking £(x) = cos 2mx yields the so called cardioid curve. Here k is a
scale parameter and since uniformity corresponds to k = 0, the null hypothesis
formulates HO: k = 0, These alternatives are very similar to those formulated
earlier in (3.1). We now take as the standard sequence

R_( &) » A 1
Lot s im0 f o e wbB 570 13

(1¥ .
(5. 2) 1, = { >
Since T(I? has a N(0,1) distribution asymptotically from Corollary 3. 3,
this' sequence of test statistics satisfies conditions (1), (2) and (3) 7 on
p. 276 of Bahadur (1960) with a =1. To find the probability limit of T / Nn

]

we state a result from Rao (1969).

Theorem 5.1 (Rao (1969) ).

Under the alternative distribution G(x) on [0, 1] with
continuous density g( ), the statistic H (a) defined in (3.2) converges in
probability to 1 - 6f exp (-a g(u) dG(u) .

Thus under the alternative (5.1)

Pr 1
(5. 3) —— = H(8) ~—=> 1- [ exp(-8g,(u)) g, (u)du
0

i

. | o b ki) (1 + k2(u) ) du

As in Rao (1972) , the comparison of the limiting efficiencies is made

’

easier by considering approximations to the slopes when k is small, since
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in any case we let k ~ 0 for obtaining the limiting efficiencies. Thus for
k small, by expanding the exponential function in a power series and noting

1
that [£(x) dx= 0, the probability limit in (5.3) can be shown to be
0

2

1 2
- e P+ k() £ an) (B - 8) +o(kH) ]
0

(1)

O is given by

Hence the BAS of T

2

1
(5. 4) c = -8 -kt ([ Fax) /4’
0 ;

“[=5%) .

on the otherhand, similar calculations yield the BAS of the standardized U

to be
1

C,(k) = k4(j' £ (x) dx) ¢ / 8 (2e-5)
0

Thus the limiting Bahadur efficiency of Rn relative to Un is

{5 %) lim (
k =0 2

This value, it may be noted, is the square root of the ARE derived in (4. 3).

6. The statistic R; and a table of significance points.

In this section, we consider the class of tests {RH(B)} for varying
& and select the one with maximum efficacy. This amounts to finding out
the value of & for which the expression (4. 2) (or equivalently (5.4) ) is a
maximum. The mathematical problem of finding the maximum does not appear
simple but using a computer, it may be checked that the maximum efficiency

is attained close to a value of & = 0.7379. For example, it may be seen



G

that the efficiency of Rn(l) relative to Rn{o. 7379) is close to 86% . Thus

if one were to restrict consideration to this class of tests, then it is clearly best
to take & = 0.7379. But from a practical point of view, we suggest using a

more reasonable fraction like 6 = 0.75. Since the loss of efficiency in

doing this is insignificant, we advocate the use of the statistic

¥ _ ' .
(6.1) Rn = Rn(0.75) = { number of Ti - o }
as the best among this class. From Theorem 2.1, Corollary 3.3 and

equation (4. 2), we have the following result regarding the exact, asymptotic

%
distributions of Rn as well as its efficacy .

Corollary 6.1:

The following results hold for the statistic R’; defined in (6.1):

(a) Exact null distribution:

k , n-1
= _(n - ' k=i
(6. 2) PIR_=k) = {}) jE:o( W%y ouzs ¢+ (0.TEIER02
for k =0, L .. =),
=10 otherwise .

with the notation <;x>: x if x>0 and = 0 if x< 0,

{(b) Asymptotic Null Distribution:

Vo (=% - 0.5276) / {0.3517} has a limiting N(0, 1)

‘distribution.

(c) _Pitman efficiency:

The Pitman efficacy of R;; againgt the alternatives (3.1) is given by

1
(0.1570) ( [ £4p) dp)* .
0
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Using the exact null distribution of R’i given in (6. 2), the following
table of cumulative probability function F(k) = P(Rﬂ;‘1 < k) in the upper tail
area has been constructed for sample sizes n = 3(1) 10(5) 100+ if the
observed value k of Ri is such that F(k) (from Table 6.1) exceeds (l-«),

then we reject the hypothesis of uniformity HO at that level o .



RS
Table 6. 1. Distribution Function of the Statistic Rn

i

in the range of 0. 90 to 1. 00.

n k F(k) F(k+1) F(k+2) F(k+3) F(k+4) F(k+5)
3 1 . 6350 1. 0000
4 2 .8418 1. 0000
5 2 . 5545 . 9392 1. 0000
6 3 . 7583 . 9780 1.0000
7 4 .8818 . 9923
8 4 . 7030 . 9465 . 9974
9 5 .8334 .9772 . 9991
10 5 . 6621 .9134 . 9907
15 8 .7280 . 9142 . 9841 . 9985
20 11 AhiB2 . 9207 . 9810 . 9971
25 14 . 8112 . 9286 . 9801 . 9960
30 17 . 8399 . 9364 . 9804 . 9954
35 20 .8632 . 9436 .9813 . 9951
40 23 . 8825 . 9501 . 9825 . 9950
45 26 . 8986 . 9559 . 9838 . 9950
50 28 . 8281 9123 . 9611 .9852 . 9952
55 31 .8514 . 9237 . 9657 . 9865 . 9954
60 34 .8710 . 9336 . 9697 . 9878 . 9957
65 37 . 8878 . 9421 . 9733 . 9890 . 9960
70 39 .8293 . 9023 . 9494 .9764 . 9901
75 42 . 8505 . 9147 . 9557 . 9791 - 9911
80 45 . 8689 . 9254 . 9611 . 9816 . 9920
85 48 . 8849 . 9346 . 9659 ., 9837 . 9929
90 | 51 . 8088 . 9427 . 9700 . 9856 . 9936
95 53 . 8538 .9110 . 9497 L9736 . 9872 . 9943
100 56 . 8706 .9216 . 9558 .9768 . 9887 ., 9949
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It may be remarked here that the data need not be scaled to the interval
(0,1) in order to calculate R?; . We now illustrate by means of a numerical
example, the extreme simplicity in using the statistic‘ R:: for testing
uniformity. It may be remarked here that the simplicity in using R;kl in

our view, more than compensates for the lower asymptotic efficiency.

Example

Consider a fire station which received 20 calls on a particular day.
We want to know if these calls are randomly distributed over the entire day
or if they tend to cluster around some particular time of the day. Suppose
that the calls are received at 1:00, 4:30, 6:00, 6:10, 7:00, 8:00, 8:30,
8:45, 9:30, 10:05 a.m. and 1:00, 2:10, 4:00, 5:50, 7:30, 9:15, 10:00, 10:15,
11:00, 11:30 p.m. Since 6n = (0.75) 24/20 = 0.9 hrs. = 54 mts., R:z is the
number of spacings less than 54 minutes. We see easily that Rz = 10. This
R;k1 value of 10, when n = 20, is not significant even at a = 10% as can be
seen from Table 6.1. Hence we have no reason to reject the hypothesis that
these calls are randomly distributed throughout the day. We may remark here
that for the purpose of this test the data could very well be accumulated over

several cycles (days) instead of just one.
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