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SUMMARY

This paper modifies the optimal C(o) test derived by Neyman for
use in comparative censored survival studies. In particular, the problem
of comparing the survival experiences of two populations (treatment and
control) which are subject to random censoring is considered. The survival
times of individuals are assumed to follow a probability density which is a
function of certain parameters, whereas no functional form for the censoring
time probability density is assumed. The problem of identifying whether treat-
ment is beneficial is reduced to the problem of testing the value of a parameter £.
It is found that the regression coefficients of the optimal C(a) test are
functions of the unknown censoring time probability densities, However, these
regression coefficients may be estimated in such a fashion that the resulting
test statistic retains the same optimality properties as the optimal C(a) test

and therefore the problem has an explicit solution.



1. INTRODUCTION

In "comparative survival studies" two populations of individuals,

a "control" group and a "treated" group, are observed over a length of time.
In the simplest of such studies (in the absence of censoring) the recorded
observations consist of times until death of the participant from a specified
disease or cause. In most human clinical studies the "control" group is it~
self receiving the standard therapy while the "treated" group is receiving an
additional or different therapy. The statistician and medical personnel are
interested in comparing these therapies and recommending one as superior. The
length of 1life of any individual in the study is assumed to be independent

of the lengh of life of any other individual and is assumed to follow a density
which is a function of certain parameters. These parameters reflect the

group to which the individual belongs. For example, the Tifetime of the con-
trol group participant might be assumed to follow an exponential density

6 exp(-0t), t > 0, and the lifetime of the treated group participant assumed
to follow an exponential density (6+£) exp [-(0+E)t], where neither 6 nor &
is known. If the parameter £ is smaller than zero the therapy applied to the
treated group is to be preferred. Unfortunately in practice and particularly
in human clinical follow up studies, some participants are often removed from
observation, Such individual are said to be censored from the study.

Some of the causes of censoring might be reasonably assumed to be
independent of the "force of mortality". It is these causes of censoring in
which we are interested.

Loosely speaking, if in addition to the assumption of independence

of the force of mortality and the force of censoring, the statistician were



capable of specifying the exact form of the force of censoring then the theory

of C(a) tests as formulated by Neyman (1959)might be applied to determine whether
the control therapy or treatment therapy were superior. However, the statistician
may be unwilling or unable to further specify a parametric form for the force

of censoring. This paper proves that an optimal C(a) test may still be derived

for deciding which therapy is superior.

2. FORMULAE AND NOTATION

In the experimental situation which we will discuss in detail in-
dividuals are assigned to the control or treated group at random with known
probability m of being assigned to the control group. For each of n in-

dividuals a three-tuple (Yi’ai’si) is observed. Let

Yi = time at which ith individual dies or is censored from the study.

a; = Zero if ith individual was assigned to the control group, and
one otherwise.

§. = zero if ith individual died from the specified disease, and one

if he was censored from the study.

For each participant, the time at which he is censored or dies is
assumed to be the minimum of two independent random variables, One of these
random variables represents the hypothetical time of death of the individual
in the absence of censoring and the other random variable represents the
hypothetical time of censoring in the absence of death. More exactly, intro-

duce the unobservable random variables



Tcd = time of death of participant if he were assigned to the
control group.

TCS = time of censoring of the participant if he were assigned to
the control group.

Ttd = time of death of the participant if he were assigned to the
treated group. '

Tts = time of censoring of the participant if he were assigned to
the treated group.

Note that the letter s 1is used as a mnemonic for censoring.

As stated Tccl and Tc are independent, as are Ttd and Tig IT- &

S
equals zero, Y = min (Tcd’Tcs) and if o equals one, Y = min (Ttd’Tts)'

The random variables TCS and Tts are assumed to have arbitrary
densities ho(t) and h}(t) respectively. Let the corresponding cumulative dis-
tribution function be denoted by Ho(t) and H1(t).

The random variables Tcd and Ttd are assumed to have exponential
densities with parameters 6 and (6+£) respectively. Neither 6 nor £ are
assumed known. The analysis which is undertaken here does not depend on the
assumption that TCd and Ttd have exponetial densities. The reader should find
it relatively easy to extend these results to more complex distributions such
as the Weibull.

For convenience let X = (Y,a,8). The density of X will be denoted

p(x|m,6,£) and is given by



p(x|m,0,8) = [~ (9exp(~6y) (1-H, (y))}'™® thy (y)exp(-y)1% ™

[(1=m) {(o+E)exp(~ (+E)y) (1-H ()™ £hy (y)exp(~(846)y)1°

3. NEYMAN'S C(a) TEST

The statistician desires to test HO: g > 0 against H]: £ <0, at
some predetermined level o (e.g. .01). If H0 is rejected the standard treat-
ment is abandoned in favor of the new treatment.

The C(a) test introduced by Neyman (1959) is a "locally asymptotically
optimal" test procedure for testing H0 against H].

Assume that p(x|m,8,£) satisfies the Cramer-type conditions in Neyman
(1959). In the customary notation, the optimal C(a) test rejects H: £ > 0
whenever

1
=25 A

n ~ A
n o}
A E [(DE(Xi,en) - da (en)d)e(x.l :en)] i Z (3-1)

s =0
0(en) i=1

where
(a) z_, is the lower cut off point of a unit normal distribution.
(b) ¢€(x,e), ¢e(x,e), are defined as the partial derivatives of the
log density function 1n p(x|m,0,£) with respect to the test
parameter £ and the nuisance parameter 6. These partial de-

rivatives are evaluted at £ = 0.



(c) The coefficient a®(8) is so selected as to minimize the variance of

¢’E(Xse) - a(e)‘be(xse) (32)

on the assumption that & = 0.

(d) The expression o(6) stands for the S.D. of (3.2) on the assumption
that £ = 0.

(e) The én is a "root -n" consistent estimator of © on the assumption

that £ = 0.

Direct calculation yields

¢g(x’e) _ alnp(géﬂ,e,g) . u(T;S) T— (3.3)
£=0
5y (x,0) = Blnp(;éﬂ,e,g) Y _ (]-u)él-G) 5 a(1é6) iy (3.4)

The C(a) test only requires a "root -n" consistent estimator 6, of

1 N~
2

8. That is, n (en-e) stays bounded in probability as n - « on the assumption £
(Neyman defines a root -n consistent estimator in a different but equivalent
fashion Javitz (1975)).

Let

=
1

cd total number of deaths in control group

=
1

- total number of censoring in control group

=
|

td = total number of deaths in treated group

=
I

tg = total number of censorings in treated group



-
n

sum of Yi for control group participants

-
1

¢ = sum of Yi for treated group participants,

Under the assumed conditions, the maximum likelihood estimator ©

+ N
_ cd

D >

is root -n consistent for 6 and will be used in the remainder of the paper,

Using (3.1), (3.3), (3.4), the optimal C(a) test rejects HO: £>0

whenever
n”* 1-2%(8, red™ed iy ) < (3.6)
O(é\n n I en t ¢ =t
where
n Cov[¢g(x,e),¢e(x,e)]w,e,g=0]
a (8) =
Var[¢e(x,e)|w,e,g=0]
02(6) = Var[¢g(X,8lw,6,E=0} - ao(e)Cov{¢€(X,e),¢e(X,e)|ﬂ,6,E=O].



Under the assumed conditions

321np(xfﬂ,£,e)

Cov 9 (X:0) g (X,0)[m,0,8=0] = -E[——5m5"

m,0,5=0]

£=0

u(]-G)] _1-m
92 82

= Ef 0 exp(-ex)[I-Hl(x)]dx

O 8

azlnp(XIﬂiﬂag)

Var[¢e(X,B)|ﬂ,8,E=0] = =Ef o2
v

0.,8=0]

£=0

pre1=e) | (1-a)(1-5), (3.8)

6 62

]

8 exp(-@x)[1—H](x)]dx + JL-? 0 exp(—ex)[1—H0(x)]dx

I-m
G 62 0

o B

821np(xiﬂ,e,g)|

- |£=0

VaY‘[ng(XsS)l?T:@sE:O] = ‘E[ TI',S,E=0]

- E[&(]éd)] = ]'g ? 8 exp(-ex)[]'H](X)]dx
0 6= 0

Since ao(e) and 02(6) are functions of arbitrary ho(x) and h1(x) they

cannot be calculated.



4. MODIFICATION OF NEYMAN'S OPTIMAL C(a) TEST

The following theorem states that if ;ﬁ and Sn are consistent estimator's
of a°(8) and o(8) on the assumption that £ = 0, these estimators may be sub-
stituted into the optimal C(a) test (3.1) without changing its local asymptotic
optimality properties or its distribution.

Theorem 1. If ag and o, are consistent estimators of a’(g) and o(0) on the

assumption £ = 0. Then

_!/2 n ~ ~ ~
n 0
~ L [¢ (X'se ) - a (8 )¢ (X-,B )]
U(en) i=1 E 1 n n' e n
(4.1)
T X6 ) - 2% (Xeah)
8n §21 [¢£ i’n n¢8 i°Yn ]

converges in probability to zero on the assumption £ = 0 and on the sequence of

asymptotic alternatives considered by Neyman (1959).

(The proof is given in the appendix)
By the strong law of large numbers and Slutzky's theorem the covariance
(3.7) can be consistently estimated by Ntd/(nen)’ and the variances (3.8) and
. . ~ A2
(3.9) can be consistently estimated by (Ntd+ch)/(neﬁ) and Ntd/(nen). Consequently

consistent estimators for ao(e) and 02(8) are, respectively,



N
i) td
a. = {4.2)
N NegtNeg
~ N, N
oi = — td cd ‘ (4.3)
nen(Ntd+ch)

Substituting (3.5), (4.2) and (4.3) into (3.6) we reject Hyt €20

whenever

Ntch'chYt Ntd+ch L
Y 3V N <2 (4.4)
¢ i td 'cd
5. EXAMPLE

As an example of the application of the modified C(a) test (4.4) data
from the 44 month prospective study sponsored by the American Cancer Society
and reported by Hammond and Horn (1958) was examined. Some 200,000 men in
the age range 50-70 years were interviewed and a statement obtained from each
to his smoking habits. Periodically, inquiry was made and the time and cause
of death as stated on the death certificate were recorded. Table 1 summarizes
the essential data for the group of men 60-65 years of age at the time of the
original inquiry. Deaths are dichotomized into two classes: deaths from cancer

and death from other causes.



A

TABLE 1

MALES 60-65 YEARS OF AGE

Non Smokers Smokers
Man yrs. exposure to risk = 27,817 man yrs. exposure to risk = 75,557
No. of cancer deaths 67 No. of cancer deaths 428
other causes 371 other causes 1,588
Total 438 Total 20016




-11-

The terms in this paper and their associated meaning in this ex-

perimental study are identified as follows.

control group: smokers

treatment group: non-smokers

death: death from cancer

censoring: death from any other cause, survival until

end of study, loss to follow up, etc.

The expression "man years exposure to risk" is the total number of

years Tived in the 44 month period of study.

From Table 1 we obtain that

Ntd = 67 > ch = 428

t T 2817 YC

-
I

75,557

(5.1)

In order to use the specific test criterion (4.4), we are of course

assuming that the risk of death from cancer is constant amongst men 60-65 years

of age during the 44 month period of the study.

Substituting the values of (5.1) into the formula for the optimal C(a)

test (4.4), the value of the test statistic obtained is -8.70,

We conclude

therefore, that there is a highly significant difference in the rate of cancer

amongst smoker and non-smokers.
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APPENDIX

Let pn(e,a) denote the joint density of n iid random variables each
with density p(8,£). If we show that the sequence of densities pn(8,£=0) is
L
contiguous to the sequence of densities pn(8,£=n 2r), then it suffices to prove

Theorem 1 under the assumption & = 0.

Theorem A.1 (Le Cam's Second Lemma)

p, (0,650 77)
[
p,(6,£=0)

densities pn(e,g=0) ggg_pn(e,g=n

] is asymptotically normal (-%02,02) then the

If L= 1In
— n

%,

T) are contiguous.

Proof Hajek and Sidak (1967, pp. 203-208)

Theorem A.2 Under the assumed Cramér type conditions in Neyman (1959) the

sl .
sequence of densities pn(e,g=0) ggg_pn(e,£=n >r) are contiguous,

Proof By Theorem A.1 it suffices to show that

n " £
z 1np(x.i:esn ZT) = 1nD(X.~| :890) Ed N('I/L’GZ:UZ)
i=1
under the assumption that & = 0.

Expanding in a Taylor series about & = 0 yields

(X eO)+IE'1
OplA;.0, 5 N

nm=s

n
™ L d. (X:,0,E%) (A.1)
i=1 j=1 &7



3B

where

_ 31np(X,0,£&)
(bg()(seag) = ag
2
27 1np(X,6,E)
b, (X,6,E) =
EE 352
and 0 < g* g_n_%r

The first term in (6.1) converges in law to N[O,TZVar[¢£(X,9)|8,£=0]]
by the Central limit theorem.
One of the Cramer conditions states that there exists ¥(x,0) > 0
satisfying
[¢£€(x,e,g*)| < p(X,8) for all &* in a vicinity, v(0), of 0,
and

E[w(X,0)|8,E=0] < o,

Mourier's theorem yields

sup

g*ey(0)

i

nmm=

1 _ " 07/ 2:S:
L £(X;50,8%) - E[9:.(X,8,8%)[6,E=0]) =*3" O,
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By this theorem and continuity of E[¢££(X,e,€)|6,g=0] in £ey(0),

we obtain that

= | —

=01 5

M=

.]

It is easily shown that
E[¢gg(x,e,0)|9,£=01 # —Var[¢€(x,e,0)|e,£=0]

therefore the second term in (6.1) converges in probability to

2
- %?~Var[¢g(x,e,0)|e,a=0]. Using STutsky's theorem Ln converges in law to

2

N[- 5 Var[o,(X,8,0)[0,£=01, ° Var[o.(X,8,0)]6,5=01].  QED.
Theorem A.3
o N T VAR
o(8y) 4=1 6T e
nz n A 30 5
_ Gn iil [¢€(X1’en) a0 (Xy50,)]

converges in probability to zero on the assumption £ = 0.




ST

Proof Rewriting the above we obtain

(A) (B)

o(6y) %y (6. (X.,0 ) - a%(8.) 5
[1- 10 I [6p(X;50,) = a7(0,)d5(X;,0,)1]
Gn 6(§n) i=1
(c) (D) (A.2)

N n N
+ (ap-a’(8)) A= T 4g(X5.0,)].

Clearly terms (A) and (C) converge in probability to zero. Term B
which is the optimal C(a) test derived by Neyman (1959) converges in law to a
unit normal. To complete the proof we need to show that term (D) is bounded

in probability. Expanding by Taylor series

I oc1s

b (X5 0%)] (A.3)

1 i=1

where 6* falls beteen 6 and gn.

The first term of (A.3) converges in law to a normal distribution
with 0 mean and finite variance. The estimate an is root n consistent
therefore n%(gn—e) is bounded in probability. Finally by Cramer's conditions
and Mourier's Theorem n'1 _2] ¢88(X1’e*) converges in probability to

=
—Var[¢8(X,e)|e,£=0]. Term (D) is therefore bounded in probability and the

proof is complete.



