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1 Introduct'ion

Data frequently occur in the form of k related time series simultan-
eously observed at some constant interval. In particular, economic, industrial
and ecological data are often of this kind. Much work has been done on the
problem of detecting, estimating and describing relationships of various kinds
among such series - see e.g. Quenouille (1957), Hannan (1970), Box and
Jenkins (1970), and Brillinger (1975). In this paper we shall consider a particu-
lar method for characterizing structure.

Consider a k X 1 vector process {th} and let B = Q/ - 4 where u
is a convenient k X 1 vector of origin which is the mean if the process is
stationary. Suppose
1) + a tl.1)

A
= Z
~

Lt il
where

A
2o (1) = Bleglzy g, 2yp o) = L Ty 2y (1.2)
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is the expectation of "%t conditional on past history up to time t-], the
T, are k Xk matrices, {gt} is a sequence of independently and normally
distributed k X 1 vector random variables with mean zero and covariance

matrix ¥, and = is independent of ﬂ%t—l(l)' The model (1.1) can be written

as
P !
-!Z, 8z, =2 (1. 3)
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—



where [ 1is the identity matrix and B is the backshift operator such that

Bz, = %41 - The processp {,zqt} is stationary if the determinantal poly-
nomial in B, det (I - = m,B), hasallits zeroes lying outside the unit

X
£ =]
circle, and otherwise the process will be called nonstationary.

Now suppose k = 1. Then, if the process is stationary,

2y it 2 2

E[zt ]= E[zt_l{l) 1" + E[at]
: - J 2
i.e. &, = D‘/Z\—.L o

We can define a quantity A measuring the predictability of a stationary series

from its past as

o

o
x:?zw:l——— : (1. 4)
Z

N o

Suppose we were considering k different stock market indicators such
as the Dow Jones Average, the Standard and Poors index, etc. It is natural to
conjecture that each of these might be represented as some aggregate of one or
more common inputs which may be nearly nonstationary, together with other
stationary or white noise componentis. This leads one to contemplate some

form of canonical representation and in particular to consider a linear aggregate

-Zt =m 2z,, where m isa k X 1vector, which is most predictable in the
sense of maximizing \ . The analysis in fact yields k canonical components

from least to most predictable. The most predictable components will often
approach nonstationarity and the least predictable will be stationary or even
random. Thus it is sometimes convenient to think about the k-dimensional {

space of the observation z, as containing stationary and nonstationary subspaces.




Variables within the stationary space can reflect relationships which remain
stable over time and may be associated with, or even point to, economic or

physical laws.

2. Choice of the canonical variables

Suppose that Zy is stationary. Denoting the covariance matrices of

A . A : ;
2, and ’%{—1(1) respectively byﬁgo (z) and AI-:O (z), then,since in (l.1) 2 and
A r
fg-*t—l(l) are independent, we have

e

L2 = Llel vz - (2.1)

Until further notice, we shall assume that ¥, and therefore ,go (z), are
positive definite.

Note that from (1. 1)

p
TRy =T e q> 0 (2. 2)
=1
and
S
Lol2) = L Tyl tg) + &, q-=4,
=1
where ,1:]- () = E(z, - gt) is the lag j autocovariance matrix of Zy -

Comparison with (2.1) shows that

Lol Llz) . (2.3)



Now consider a scalar random variable z,c which is a linear

combination

Zt = ’E‘I”]""%t = mlzlt+ G wiw T mkzkt

of the elements of Zy - Thus,

l‘A 1
o ﬂ%t—l{l) T,

il

“

or

4 A .
zZ, = Zt-l(l) + a

A : A

where Zt—l(l) E ( ztl Zo 15 Zyops ...) and zt_l(l) and a, arein-

dependently distributed. It follows that

1 - 1 5
nI,@n =nl@s+n )

In the sense discussed above, the most predictable linear combination

of the z,, is obtained by maximizing, with respectto m ,

jt
0_2
£ o n'Ly2m
R = = | a s m e———— (2. 4)
!
o, v 'Lz m

Now, the maximum value of X is the largest root of the determinantal

equation

det{L @ - *L(a)} = 0 (2.5)

{

and the corresponding elements of m are obtained, except for an arbitrary

scale factor, as the solution of the homogeneous linear equations




{L,7) - Ta)ln=0. (2. 6)

2.1. The canonical transformation

In general there will be k real roots )\I’ awary Rk which satisfy the
determinantal equation (2.5) . They are the eigen values of the matrix
EBl(fz\) ,E(?ZJ . Suppose that the ?\j are ordered with X, the smallest,

and that the k corresponding linearly independent eigen vectors,Ln'I, cey Y,

form the k rows of a matrix M . Then, we can construct a transformed

process {z,} , where

y A i
AT By (1)+r§1ﬁC 2.7

p
i e A 3 e et ‘
with 2, =Mz, 8,=Ma, 2 0=} &,z ,end 7, = MqM
=]

Corresponding to (2.1), we now have

Loldr Sdelt 2 (2.8)

AN A
where T (2) = ML (2)M', T(z) = MC(®)M'and Z =M ZNM'.
Since from (2.1)

-1 o -1
4 =1, @I, 2 +L;, (2 Z2, (2.9)

it readily follows that (i)

MTZ DT, @ M = A and M T @ EM = 1- 4 (210

where A is the k X k diagonal matrix with elements (kl, aalesanis xk),



(11) U= '\j<l’ L s wy
and
(iii) for i# j
o Sm = om LyRm = 0

In other words, M Z M' , M 'l:()@ M' and, therefore, MTI (z) M' are
all diagonal. Thus, the transformation (2.7) produces k component series
{th’ o "zkt} which
(i) are ordered from least predictable to most predictable,
(ii) are contemporaneously independent,
o “~
(iii) have predictable components {zut_l)(l), % 51 Zk{t—l)(l)}
which are contemporaneously independent, and
(iv) have unpredictable components {élt’ i ékt} which (

are contemporaneously and temporally independent.

2.2 Scaling of the transformed series.

Now the above canonical analysis is clearly scale invariant in the
sense that changes in scales of measurement of the original th will not
affect the hj or the relative weighting applied to the original variables in
generating the canonical variables .th . However, the canonical variables
themselves have no natural scaling. If ¢ is an arbitrary constant, then

.th and c 'zjt can equally be called the jth canonical variable. This corresponds

to the fact that each of the k eigen vectors m,, ..., Iy contains an

arbitrary scale factor. In particular, multiplication of the jth vector mﬂ by

1 o 3
c will magnify the corresponding variances of zjt’ Zj(t—-l)(l) and ajt by cz.
Fal

Also, for the predictable vector z (1), the elements of the jth row of f:TLz will {

t=1
be multiplied by ¢ and those of the jth column divided by ¢, leaving the

remaining elements unaffected.




2.3 Zero roots

It turns out that special interest attaches to situations where certain

of the ?\J. approach zero. When the k

| roots, A, .. .?\kl, are zero, the
Al
matrix "EO(Z) in ( 2.8) then can be written
n 9 9 kl
{:O(z) = 0 D kz 2. 1)
4 ks
where D is an diagonal matrix.
Writing
2 = (2 2p] emd ap =)t 3l S
S e
we now show that, with probability one,
i T R el
Proof:
In (2.7) write
e i
Al Lo L5
T i T oo S e D (2.14)
L1 ol | ky
kl k2
so that
o - (k)
By F o Ly 13111 Zit-n P L1z Bo-gf TR
=] g



Then, (2.11) implies that, with probability one,

p-1
iJ AN
UMz, Lo Mgy M2y
£=1
o oo, ol :
where U, | T Tl This means that the k, X1 transformed
vector - U, Mz, can be expressed completely in terms of past values of

T s A .
24 Now from (1.1) UMz, = Ele%t—l(l) + U Ma, it follows that,

with probability one, U, Ma, =0 which implies that U, M zMU =0.

’ ~ /-.41

Since MZ M' is positive definite, we musthave U, = 0. In the same way,

it is readily seen that U, = ... = U =0 and hence (2.13) follows.
Thus, if k; of the roots, Xy, ...,MN,, , are zero. the transformed
series {;zut} can be expressed as (
L1t T A1
- . wl AU N :
Zo = L T Eyent L Zzz Rap-n tRa (21
=1 =1

so that the canonical transformation decomposes the original kX1 wvector
process {gt} into two parts: (i) a part {’.%l’c} which follows a kl dimensional
white noise process and (ii) a part {th} which is stationary but the predictable
part of 2z ot depends on both ﬂ%l(t-l) and f'%z(t-l) ; I=ly vy B

The practical importance of equation (2. 15) is that it implies that there

are kl relationships between the original variables of the "regression" type

m,,a

jl 1t

F oo : = . .. j =
+m]k zkt pj - aJt (1 =12 kl) {



where the :aJ'-t are contemporaneously and temporally independent. We

shall later illustrate this situation with an example.

3. The AR(]) process

In this section, we discuss some properties of the canonical
transformation when {gt} follows an k-dimensional autoregressive process
of order 1. Thus with p=1 and Ly 7 ¢, expressions (l.1l), (2.2) and (2. 3)
yield

By =2 b+ By where 2.0 = b 2. (3.1)

I,00 = 0L, I =g L2+ 2 (3.2)

and

L, =9Iz

ON ~

It follows that

Lolaliadela)l &t 8 (3.3)

and the required roots 7\j and vectors L, are the k eigen values and

eigen vectors of the matrix

-1
Q: fEO L@),@L&,&)&' e (304)
The transformed process can now be written

. . . o . _l
Bread oz . T, where 4 =M ¢ M (3. 5)

3.1. Nonstationary series and unit roots

In the above we have assumed that z. is stationary. In practice,

T

many time series exhibit nonstationary behavior. A useful class of models to

represent nonstationary series may be obtained by allowing the zeroes of the
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P (
diet {d = z ;;J Bj) of (l.3) to lie on the unit circle. For the AR(l) model in
=

(3.1), let @), ..., o be the eigen values of the matrix ¢ . Then

k

det(I - = I (l-o,
et(l - ¢ B) '-1(1 oz}B)

J_

so that the zeroes of det(l - ¢B) are simply (aIl, S oy aj_l ). If oneor

more of the @y are on the unit circle, then I,(z) does not exist and the
canonical transformation method will break down. However, it is of interest
to study the limiting situation when ]<2 of the afj approach values on the unit

circle. We now prove the following theorem.

Theorem 3.1. Suppose that Zy follows the stationary AR(l) model in (3.1)

where the covariance matrix 2 of a, is positive definite. A sufficient and

necessary condition for kz of the eigen values of ,gogg)'igro(,gw' to tend to

unity is that kz of the eigen values of ¢ approach values on the unit circle.

Proof:
Let k = k1 + kz and the eigen values of ¢ be divided into two sets
&) = (al, 5 0§ § akl) and 2y = (ak1+1’ 516 ¥ 4 Czk) with no common element and such

that «. and its complex conjugate belong to the same set. The characteristic
polynomial of ¢ can be written as the product
fla) = fk {a) fk () (3.6)
1 2 :
where

2
£ (a) = a - y, @ - asm =Y and f, (@) =a "-s,& - 8
kg 1 ky k, 1 k,

are real polynomials of degrees kl and kz with roots 2 and 25 respectively.
Now there exists an k X k real nonsingular matrix G, such that fgg@:lis of (

the block diagonal form
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it is readily seen from (3.3) and (3. 4) that the P\J. are the roots of the

determinantal polynomial

=1 1=1
ASTRER AP Yy LUPYS 1
det £ (1-)) - = 0. (3.10)
"y I Ty aAtwo A"
To prove sufficiency, we need to show that if the kz eigen values
fw,
a > e b j= ktl...,k (3.11)
then (3.10) will tend to
(1—7&)}% det {(l—x),\\gll—)@\rn} = (3.12)
It suffices to prove that (3.11) implies that ‘
-1 )
A~ 0 and A "V, =0 - (3.13)
From (3.8
visy g (L+s vt slw ]_1 (3.14)
":"'22 ~ D2 - ~2 P ~ N22 et
so that
2 i=1=1 o1 a
det § det[1+8 "V,58 " W,, |
When (3.11) holds, det @2 = di —~ 1. Since § is nonsingularand W,,
2
~]

is positive definite, it follows that V ,, =0 and hence A —~ 0.

To show ,3_1,,\51'2 ~ 0, we have, from (3.14) and (3. 8),




S

-] - =1 ., ~
[ =[PP +2 */3\,722*’5 1J (3. 15)
and
wail]
Lot rps L erdeyrnly Tifow 1l s B
BRI =248 Wy d "1 BY,R +A W, Golo)
-l 1
where P = A "SA. Thus, when (3.1l1) holds, in (3.15) S e on where
,_130 is an orthogonal matrix, and hence (3.16) becomes
' =1 1 = =1 '
o e PR 1 B (3.17)

Since by supposition, § and R have no common eigen values, it follows

from a well known result in matrix equation (see e.qg. Gantmacher 1959, Vol 4.

p. 220) that f}:]‘,}j;z = 0. This completes the proof of the sufficiency part of
the theorem.

Nexti to show necessity, recall that |o.fj| < tTand 0 = }“j <1, for :
J=ly veng ks Thus, if k, of the )\j tends to one, then exactly k, of the %
must approach wvalues on the unit circle. For, if otherwise, and suppose
k' # kz of the a'}. approach values on the unit circle, then from the sufficiency
part of the theorem which we have just proved, k' of the ?\j must approach

one , which contradicts the supposition. The theorem thus follows.

The eigen vectors

It is easy to see that the systems of equations [Q =Allm=0

~

is equivalent to

1

{(1_,\)/1”,-’\5* wl b =0 (3.18)

where C'h =m . When (3.11) holds, from (3.8), (3.9) and (3. 13)
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1 =1
[-‘1411 TR ATED P B
R A
1) ) %
B 7

Thus, the matrix of eigen vectors M' must be of the form

. 1
5 =My s k]
QJ!'—IMI - ,;_[‘i‘ _ (3‘19)
0 :d by
k) k,
)

where the columns of ,I;IJI'I are the eigen vectors of V Wi

The transformed matrix &

It follows from (3.19) that

QZMQM“ l (3.20)

_ o Co Fo A it <]
where & = H RH|] , 25, =80 22 = (Ec¥W12 Wy - W, ¥y R Hy

and §JO is the limiting matrix of § when all its roots approach values on the
unit circle.

To summarize, for the AR(1) model in (3.1),

(i) if, and only 15 kz of the eigen values a]. of ¢ approach values




] B

on the unit circle, then kz of the eigen values ?\j of

_1 ! ) 5
I;O(,.\z) ,‘ELOL%)@”’ will approach unity,

(ii) the transformed model for f:%t is, in the limit,
B T a18t-1) T 21t
(3. 28)

By = Dol fln-i) T toen T8

. s o R i . ey L] : :
where z\ = {z;, .z} and a, ={g;, .8, }. The canonical transformation

therefore decomposes z, into two parts:

t

(i) a part ﬂ-%l which follows a stationary AR(l) process and

T

{i1) a part ,g, which is approaching nonstationarity and also

2t
depends on Zlte=1y *

3.2 Zero and unit roots.

For the AR(1l) model, suppose that kl of the )x]. are zero, k3 of them
approach unity and the remaining kz = k= kl_]% are intermediate in size.

Then, from the results in (2.15) and (3. 21) and upon partitioning 'zt, ;@Jt and

$ into

Ay = {mz.-n;f%zfj fzv.%t} ’ 2t :{'glti Lot : 2’3t}

HatgeT ok R T

and

b o= | L 22 L3 k, (3.22)




i G

the transformed process @t} takes the form

Ly T = 1t

¥a (3.23)

2ot = 21 311y T 2222 2(t-1) 2t

Z3¢= 231 31-1) TR3222(¢-1) T 233 831-1) TRt

Thus, there are (i) a k -dimensional white noise process {;ZVIt}’

(ii) a kz-dimensional stationary process {;%V'Zt} such that the predictable
part of z,, depend only on Z1(t-1) and Z5(t-1) and (iii) a k3 dimensional

near nonstationary process {,;2431:} such that the predictable part of f-%%t

depend on ,zjl(t_n, 52(t—l) and az.fs(t—l) ?

3.3 Variance components for the AR(l) process.

Whatever the scaling of the transformed process {'zi} in (3. 5), since
: B as

] . 1 - E * ]

the jth element th is th 5 ¢ji Zi(t—l) + ajt , where (¢jl’ s B ,dajk) is

the jth row of ¢ , and since Z) 41y * " * 9 Zk(t-1) and 8, are independent, it
follows that

k
B - 2 2
o2 = 7 ¢ji°232. +of (3. 24)
o j

The contribtuions of Zy(=1) """ Zy(t-1) and a4 to the variance of 2y are,

therefore d>2 U-Z cb.z cr-z and cr-z respectively. It is convenient
’ jl zq ’ ' Tk 2y 3

to consider these variance components in term of their proportional contribu-

; ; . 2

i.e. to consider (c|>].i U‘Zi) / Lo

’

tion to o : and ¢ /o =1-\,. This can
Zj i aj ZJ ]

be done conveniently by arranging the canonical variables with scaling such

that the variances of .th are all unity.



_17_

For the general process (l.1), to arrange for this scaling the matrix
M must be chosen such that MT, (z) M'=1 . Corresponding to (2.7), let

the transformed series in this scaling be written as

Zt :ﬂ%t—l(l) +'§-'t (3. 25)
Ther,
o G Tk
ol Tola) 4% (3.26)
where L[ (2) =1, I.(z)= £ = "I"_"ﬁ and AI}J*is the diagonal
* *
matrix in (2. 10) . For the AR(l) process, f%t-l(l) ='¢5~Z-4t—l’ and hence
% 4 £ =’a='
¢2 {qa.z. rf-z)/tr and ¢ ¢ = A : (3, 27)
ji iz j ~
%k

In this scaling, then, the rows of & are orthogonal and the sum of squares
of the jth row is ?\]. .

The preceding canonical analysis will now be illustrated by an example.

4, An Example: US Hog Corn and Wage Series.

Quenouille (1957) studied a 5 -variate time series containing 82
yearly observations from 1867-1948. He made adjustments where necessary,
logarithmically transformed each variate and then linearly coded the logs, so
as to produce numbers of comparable magnitude in the different series. His

resulting five series which he denoted by x b4 e are plotted in

W T L3 s
Figure 4.1 and are identified in Table 4.1



Figure 4.1.U. S. Hog Data
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Table 4.1

As logged and linearly Used in our

Variate Symbol coded by Quenouille analysis
Hog Supply H X1t 71t = *it
Hog Price Hp Xop ?’2*[ 0 XZ(t+1)
Corn Price R x =
P 3t 75t - X3t
Corn Supply R, X4t it = *at
Farm Wages W Xt ;'St = R

4,1 The AR(1) model.

Quenouille fitted the data to a first order autoregressive process but
was doubtful as to the adequacy of the model. We found, however, that the
fit can be improved by appropriately shifting series 2 and 5 backward by one
period as indicated above.

Employing the model Ly T 8& +2't in (3.1), where 2y :% =L,
and denoting estimates of the covariance matrices I J.(g) by/gj < ThHe

quantities needed for analysis are as follows:
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[ 0.6831 1.2523 0.6535  0.9533 5224 |
6.1939 3.7845 2.0209 5.5708
6877  0.2633  3.4746
1407 2.1925
. 7206
L i
o.5864  1.3670 0.7513  0.8632  1.5151 |
1.2038 5.2334 3.1639 1.8849  5,0392
0.4616  3.5820 2.7173  0.5605  3.0633
1.0108 1.8972 0.8338 1.6260 2.2508
1.3993  5.1586 3.2153 1.9817  5.3246
fid
0.3922 -0.0555  0.0082 0.2552  0.0915
0.1088  0.0926  0.5019  0.3280  0.3520
2 =2,C, -0.7797 -0.5758  0.9139  0.6155  0.5393

0.8715 0.-2979 -0.0732 0. 3845 -0, 2785

-0.0536 =052239 0.1033 0. 2420 1.0076

The canonical analysis yields the following estimated eigen values
and eigen vectors of g;l LEJMI‘O@ . The latter are scaled according to
*
(3. 25) so that all the components of the transformed process {z} have

unit estimated variances.
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A
). H H R R w

] 5 p p S

1 0.0232 ( 1.0000 0. 3876 -0, 2524 -0. 5896 -0. 2665) X ,0284
2 0.1421 ( 0.2080 1.0000 -0.8614 -0, 3382 -0.3655) X ,0111
3 0.5061 ( 0.8925 -0. 6433 ~0. 8817 -0. 4784 1.0000) X , 0074
4 0. 6901 (=0. 9358 -0. 2410 =0, 4391 -0.5614 1.0000) X , 0129

5 0.8868 ( 0.6687 -0.1206 ~-0.0134 0. 0396 1.0000) X ., 0039

The transformed process is E{ - EJE{_I + ;-Jt with
{“.1213 -.0778  .0465 ~.0110 .011:«’.7i
5 f’ 2500 LRl o qPMnE D 0300 0119
S= it~ gt LBy Neadel L laud - Giga
f .0885  -.0025 -.0492  .8235  .0416 |
| ~.0Bol  C.0378F L0396 . -, 0863 - 9360

0
|

* A
and the resulting series % = M %, are shownin Figure 4.2.
A

: _ A *2 ™ o
The estimated (proportional) contributions, qui and 1 - )\J., of zl(t—l)’
% *

i 25“_1) and ajt to the variance of z].t are given below in Table 4.2.



Figure 4, 2.The Transformed
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Table 4. 2

* * % * % *

2it-1)  ZFa-D 0 Esit-l) R4t %se-D) %
Elt JOES  QEBA-FL. 002 & LobEhs Y. 080 L 9T
2y Oy CBUT. . LOhE .60l 088 L858
§3t & 10 S | e obz - M g0t Yy
§4t . B ' G ) o el )RR
§5t 2006~ " 6ol JH0zTT \Sonl REERE Y B

We see from the above calculations that there is very little contribution
* %
to 214 and 2ot from past history. These two transformed series are essentially

* * *
white noise. The remarkable feature of Z3y 244 and zg,  is their heavy

dependence on their own past, and this is especially so for the latter two

E sk
components. It is almost true that Z4t and ZSt can be expressed as two

independent univariate first order autoregress processes

%k = 82 * 3
By (i1 Zie~1y 5 i
and (4.1)
* * *
By i e Ay

4,2 Interpretation

We see that for the most predictable component z corresponding to

bt
N
x5 = . 8868, the autoregressive parameter is close to unity indicating that the
%k %
series is nearly nonstationary. That is, approximately, (1-B) Zgy = Agy
% ] i p A * :
Now Zegy T M5 24 and from the estimated eigen vector M, , 25, is

essentially a linear combination of farm wages (W) and hog supply (HS),
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Zey = . 0039 (ZSt + .67 th) (4. 2)

It follows that

(1-B)zg, + .67 (1-B) 2}, (4. 3)

are very nearly randomly distributed about a fixed zero mean, pointing to
a stable relationship between the first differences of I—IS and W. Since

the variables are logged, (4.3) seems to imply that _incrementally a

percentage increase in hog supply is associated with a percentage decrease

in farm wages.
* *
The nearly random components Z and z, (omitting the subscript t)
associated with small values of )\ are also of considerable interest. Their

existence implies that any two linear combinations of the component series

in the hyperplane

1+@ chz1+c222+0323+c4z4+0525 (4. 4)

vary nearly randomly about fixed means . In choosing the component it is

natural to seek combinations which are scientifically meaningful.

Now the dollar value of the hogs sold is proportional to HpI—IS and

the dollar value of the corn needed to feed them is RpRS . Ifthena Z exists

involving these dollar values it will be such that approximately ¢ 1S5 and

gy = By least squares or otherwise it is easy to find the linear combination

3 4
for which this is nearly true. Specifically, by setting « = 30. 0l and B = 59. 51

we obtain the relationship

+ z —0.7823—0.7324-0.4825 N (4.5)

2
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That is to say Z in (4.5) is approximately randomly distributed about a

fixed mean.

Taking antilogs this implies that

Hfs
(4. 6)
0, 15,,.0, 50
(RpRS) w

is approximately constant. The numerator is obviously a measure of return

to the farmer and the denominator a measure of his expenditure. The analysis

points to the near constancy of this relation reminding us of the "economic law"

that a viable business must operate so as to balance expenditure and income.
Another relationship of considerable interest is that between the hog

supply and the ratio of hog to corn prices. It is well known, Wallace and

Bressman (1949), that farmers decision on hog production is heavily influenced

by this ratio. Now if we choose

o = 34,81 and. B =-=93,01

we then obtain

Z:.TSZI-.64zz+.6423—.2324+.1125 (4.7)

Upon taking antilogs, this implies that, very approximately,

. 64
T R ha T e U (4. 8)

where k is some constant, indicating that a stable relationship existed

between hog supply and the price ratio.
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4.3 The order of the process

As we mentioned earlier, doubts were raised by Quenouille as to
the adequacy of the autoregressive process in representing the Hog data.
Following Bartlett (1947) a multivariate goodness of fit test is provided at

any given stage of fitting as follows.

Let ﬁSer) represent the k X k matrix of sums of squares and cross products of
residuals after fitting an autoregressive process of order p in (l.1) to
a k-variate series of length n. Then, on the assumption that a process of
order not higher than p produces an adequate fit, the necessity for the term

of order p may be judged by computing

K= e g der g®H (4.9)
An approximate significance test is provided by referring the criterion

7 = {n-1%- pk} log A (4.10)

to a table of XZ with kz degrees of freedom.
The analysis is given below for the realigned Hog Series. To avoid
end effects the fitting of the autoregressive process is begun throughout from

the sixth observation. Thus the series length is effectively n = 76 for each

series.
Order p of fitted
autoregressive process Criterion 2 = {74. S—SP}loge A
1 398.5
2 94,2
3 29.7
4 44,8 [
5 44,6
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The individual items are distributed approximately as xz with k2 = 25

degrees of freedom. Evidently there is some evidence of inadequacy even of

a process of order five. However, it is also clear that a great deal of the varia-
tion is being accounted for primarily by the first and to some additional extent by
the second order process. In fact, a canonical analysis using the second order
autoregressive process have been carried out and the results are very similar to

those discussed earlier in Sections 4.1 and 4. 2.

5. Further Considerations

5.1 Singularity of the matrix 2Z

So far it has been assumed that the covariance matrix of a,, & Sin
(2.1) is positive definite. Situation occurs when EQ(Z:) is positive definite
but £ is singular. Specifically, supposing that the rank of X is kl’ then it
readily follows from (2.5) and (2.9) that the kz roots hkl TIRERF ?\k are
exactly equal to one, and the transformed covariance 2} matrix of ét in

(2.8) takes the form

; | R ook
= | (5.1)
:“ 0 d ](2
k) k)

where ’D-’l is an diagonal matrix with positive elements. Partitioning Zi

f.%t and ;151 as given in (2.12) and (2.14) , we see that féJZt = 0 with probability

one. Thus the transformed model is
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o gy = Ll . .
L1t P A Bue-n P Tz Ra-n TR
=1
(5. 2)
- (£ (9
Lot ~ L To1 Ayt-n T T2z Bot-9
1=1

In other words, the k,-dimensional vector P% is completely predictable from

2 2t

the past values f-%l(t—l) and A-Z'vz(t—l) o =Tl S

In practice, situations may occur that 2-:: is nearly singular. From the
results here and those discussed earlier in Section 3.1, we see that for the
AR(1) process, certain of the roots }‘j will be nearly equal to one either when
some of the eigen values of ¢ approach values on the unit circle or when Z
is nearly singular. The problem of how to distinguish between these two cases

is currently being investigated.

5.2 Singularity of the matrix Eo(g)

Examples can also occur when EOL%) is singular. Consider, for

Z

instance, a trivariate series {z ZBt} and suppose 2y is labelled

1E 7 t

"persons employed in the state of Wisconsin in month t", z op @8 "persons

is

unemployed”, and z,. as the "work force". Then it could happen that Z 34

3t
in fact obtained as the simple sum z;, +z,, in which case I';(z) would be

1 2t
necessarily singular. Other examples from the physical sciences are discussed
in Box, Erjavec, Hunter and MacGregor (1973). It is not unusual to find exact
and quite complex linear relationships imposed by the method in which the data

is put together. Two situations can occur depending on whether or not the

nature of any exact linear relationships existing in the data is already known.
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If known, then the problem may be avoided by eliminating, in advance of

the analysis, any dependencies and applying the analysis to a linearly
independent subset of r of the k series. This can often be done very

easily by removing from immediate consideration any derived series. When

the nature of exact relationships in the data which might exist are not known,

a principle component analysis of the estimate ,Q_Ogg_) ofgo(g) should be

first conducted. The existence of k-r roots which are nearly zero indicates the
existence of k-r linearly independent exact relationships which define a hyper-
plane in the k space given by the k-r corresponding eigen vectors.

The canonical analysis of this paper may now be carried out on any
subset of r linearly independent series which lie in the nonsingular space.
Even when it is believed that the nature of any linear dependencies is already
known, it isalways a wise precaution to carry out the preliminary principle
component analysis of QO(Z) anyway. Occasionally the relationships found

are unexpected and can be informative.



g

References

Bartlett, M. S. (1947). "Multivariate Analysis”, Suppl. J. Roy. Statist. Soc.
9, 176-197.

H

Box, G.E.P., Erjavec, J., Hunter, W.G. and MacGregor, J.F. (1973).
"Some problems associated with the analysis of multiresponse data"
ITechnometrics, 15, 33-51.

Box, G.E.P., and Jenkins, G.M. (1970). Time Series Analysis Forecasting and
Control . Holden Day, San Francisco.

Brillinger, D.R. (1975). Time Series Data Analysis and Theory . Holt, Rinehart
and Winston, N.Y.

Gantmacher, F.R. (1959) The Theory of Matrices . Vol. I Chelsea Publishing Co.
i1 o 4

]

Hannan, E.J. (1970). Multiple Time Series . Wiley, N.Y.

Quenouille, M. H. (1957). The Analysis of Multiple Time Series . Griffin,
London,

Wallace, H.A. and Bressman, E.N. (1949) Corn and Corn Growing . 5th Ed.
Wiley, N.Y.



unclassilied
SECQURITY CLASSIFICATION OF "THIS PAGE (When Data Entered) > .
READ INSTRUCTIONS

; REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
Technical Report #428
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
A CANONICAL ANALYSIS OF MULTIPLE TIME

Scientific Interim

SERIES
CHE 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
G. E. P. Box and United States Army Grant No.
G.C. Tiao DAHCQO4-76-G-0010
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
Department of Statistics
University of Wisconsin
1210 W. Dayton St., Madison, WI 53706
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office ‘I:T_OXL?MTE,S;}?;ZS

Durham, N.C. 30

T4. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS, (of this report)

15a, DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

autoregressive process canonical variables
multiple time series variance components
eigen values -

eigen vectors -

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

This paper proposes a canonical transformation of a k dimensional stationary
autoregressive process. The components of the transformed process are

ordered from least predictable to most predictable. The least predictable
components are often nearly white noise and the most predictable can be nearly
nonstationary. Transformed variables which are white noise can reflect relation-
ships which may be associated with or point to economic or physical laws.

A 5-variate example are given.

DD ,fai™s 1473  EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entored)



