DEPARTMENT OF STATISTICS

University of Wisconsin Madison, Wisconsin

Technical Report # 398
October, 1974

OPTIMAL STOPPING OF THE SAMPLE DISTRIBUTION FUNCTION

by

Robert L. Wardrop University of Wisconsin

SUMMARY

Let $F_n(t)$ be the usual sample distribution function obtained by sampling from a uniform (0,1) distribution. Let $B_n(t) = \sqrt{n}$ $(F_n(t) - ct)$, where $c = 1 + \frac{\delta}{\sqrt{n}}$, $-\infty < \delta < \infty$. For $V_n(\delta) = \sup_{\tau} E(B_n(\tau))$, where the supremum is taken over all stopping times $\tau \leq 1$, we show that $\lim_{n \to \infty} V_n(\delta) = V(\delta)$, where $V(\delta)$ can be computed easily by using a normal distribution table. We find a stopping time $\sigma(\sigma(B_n)) = least \ t \geq 0$: $B_n(t) \geq \alpha \sqrt{1-t} - \delta$, α a known number) such that $E(B_n(\sigma)) \to V(\delta)$, as $n \to \infty$, $-\infty < \delta < \infty$.

In the course of proving the above, we show that $\sup_{0\leq t\,\leq\,1}\,|B_n(t)|\ ,\ n\geq\,1,$ are uniformly integrable.

1. Introduction:

Let $t_1 \leq t_2 \leq \ldots \leq t_n$ be the order statistics of a random sample from a uniform distribution on [0,1]. Set $t_0 = 0$ and $t_{n+1} = \infty$. For $0 \leq t \leq 1$, define

$$F_n(t) = j/n$$
, $t_j \le t \le t \le t_{j+1}$, 0, 1, $j = 0, 1, 2, \dots$, n, and $B_n(t) = B_n(t; \delta) = \sqrt{nt} (F_n(t) - ct)$,

where

$$-\infty < \delta < \infty$$
 and $c = (1 + \frac{\delta}{\sqrt{n}})^{\frac{1}{2}}$

Define

$$V_n(\delta) = \sup_{\tau} E(B_n(\tau; \delta)),$$

where the supremum is taken over all stopping times $4\tau \leq 1$.

For $0 \le t \le l$, $-\infty < \delta < \infty$, let $B(t) = B(t; \delta)$ be standard Brownian motion conditioned (pinned) to pass through $-\delta$ at t=l. Let

$$V(\delta) = \sup_{\tau} E(B(\tau; \delta))$$
,

where the supremum is taken over all stopping times $\tau \leq l$. Shepp [5] has shown that

$$V(\delta) = E(B(\sigma; \delta)) = \begin{cases} 0 & , & \delta \geq \alpha \\ -\delta + (1-\alpha^2) \int_{0}^{\infty} e^{s \delta - s^2/2} ds, & \delta < \alpha \end{cases},$$

where α is the unique real solution of $\alpha = (1 - \alpha^2) \int_0^\infty e^{s\alpha - s^2/2} ds (\alpha = .83992...)$ and

(1)
$$\sigma = \sigma(B) = \begin{cases} least \ t \ge 0 \end{cases}$$
 such that $B(t) \ge \alpha \sqrt{1-t} - \delta$.

1 otherwise

It is well known that

$$B_n(t;\delta) \Rightarrow B(t;\delta)$$
, as $n \to \infty$,

(where $\stackrel{\textstyle \swarrow}{\Longrightarrow}$ means "converges in distribution to"). This paper will show that the following two statements are true.

(2)
$$\lim_{n\to\infty} V_n(\delta) = V(\delta), -\infty < \delta < \infty, \text{ and}$$

(3)
$$\lim_{n \to \infty} E(B_n(\sigma_j \delta)) = E(B(\sigma_j \delta)) = V(\delta), -\infty < \delta < \infty.$$

Formula (2) states that "the limit of the values (V_n) equals the value (V) of the limiting process". Since (2) is true, (3) states that " σ is almost optimal for the B_n process when n is large".

2. <u>Proof of (3)</u>.

In order to prove (2) and (3) we will need some of the theory of weak convergence of probability measures. See Billingsley [1] for details. Let

$$W(t) = W(t, \omega), \quad t \geq 0, \quad \omega \in \Omega,$$

be standard Brownian motion on $[0,\infty)$ defined on some probability space $(\Omega,\mathcal{F}_1,P_1)$. For $-\infty<\delta<\infty,$ set

(4)
$$B(s) = B(s, \omega; \delta) = -\delta s + (1-s) W(\frac{s}{1-s}), \quad 0 \le s \le 1$$
$$= -\delta , \qquad s = 1,$$

which is consistent with our earlier definition of B.

Let C = C[0, 1] be the metric space of continuous functions on [0, 1] with metric d given by

$$d(x, y) = \sup_{0 \le t \le 1} |x(t) - y(t)|$$
.

 $C[0,\infty)$ is the set of continuous functions on $[0,\infty)$. D=D[0,1] is the metric space of functions on [0,1] which are right continuous and have left hand limits. The metric d' on D is of no interest to us except for the following lemma.

<u>Lemmal</u>. If $\mathbf{x} \in \mathbb{C}$, $\mathbf{x}_n \in \mathbb{D}$, $n \ge 1$, and $d'(\mathbf{x}_n, \mathbf{x}) \to 0$, as $n \to \infty$, then

$$\sup_{0 \le t \le 1} \left| x_n(t) - x(t) \right| \to 0, \text{ as } n \to \infty.$$

Proof: See [1], p. 112.

Let

$$g(s) = g_{\delta}(s) = \alpha \sqrt{1-s} - \delta , \quad 0 \le s \le 1, \text{ and}$$

$$g^*(t) = g_{\delta}^*(t) = \alpha \sqrt{t+1} - \delta , \quad t \ge 0.$$

We note that for $x \in D$ and σ agiven by (1),

$$\sigma(x) = \sigma_{\delta}(x) = \inf \{t: x(t) \ge g_{\delta}(t)\}$$

where the infimum of the empty set is one. For $x \in C[0, \infty)$, set

(5)
$$\pi(x) = \pi_{\delta}(x) = \inf \{t: x(t) \geq g^*_{\delta}(t) \},$$

where the infimum of the empty set is ∞ . Shepp [5] has shown that

$$P_1\{\pi_\delta(W)<\infty\}$$
 = 1, $-\infty<\delta<\infty$.

By (4) above,

(6)
$$\sigma_{\delta}(B) = \pi_{\delta}(W) / (\pi_{\delta}(W) + 1), \quad -\infty < \delta < \infty,$$

hence,

(7)
$$P_1 \{ \sigma_{\delta}(B) < 1 \} = 1, -\infty < \delta < \infty.$$

Let $\mu_n = \mu_n$, δ be the measure induced on D by B_n and let $\mu = \mu_\delta$ be the measure induced on D by B. Since $B_n \stackrel{\mathscr{B}}{\Longrightarrow} B$ we say that μ_n converges weakly to μ (written $\mu_n \Longrightarrow \mu$).

Let

 $A = \{\omega \in \Omega; \ \sigma(B) < 1 \ \text{and for every} \ \epsilon > 0, \ \text{there exists at in the}$ interval (\sigma(B), \sigma(B) \div \epsilon\) such that B(t) > g(t)\}, \sigma < \delta < \infty\$.

We refer to A as the event that "B is not tangent to g at $\sigma(B)$ ". By (4) and (6) A may be written as

 $\{\omega \in \Omega; \ \pi(W) < \infty \ \text{ and for every } \varepsilon > 0, \ \text{there exists, at} \varepsilon \ (\pi(W), \pi(W) + \varepsilon)$ such that $W(t) > g^*(t)\}$, $-\infty < \delta < \infty$.

Henceforth, we restrict ourselves to the case where $\, -\! \infty \, < \, \delta \, < \, \alpha \,$.

Lemma 2.
$$P_1(A) = 1, -\infty < \delta < \alpha$$
.

<u>Proof:</u> Since

$$\delta < \alpha$$
, $\pi > 0$ and $W(t) < g*(t)$, $0 \le t < \pi$. For $m = 1, 2, \ldots$

define

$$\boldsymbol{B}_{m}$$
 = $\{W(t) > g*(t), \text{ for some } t, \ \pi \leq t < \pi + \frac{1}{m}\}$.

$$B_{m} \supset B_{m+1}$$
 and $A = \bigcap_{m=1}^{\infty} B_{m}$. Hence

$$P_1(A) = \lim P_1(B_m)$$
, as $m \to \infty$.

Furthermore,

$$\text{P}_{\underline{l}}(\text{B}_m) \geq \text{P}_{\underline{l}} \ \{ \text{W(t)} > \text{g*(π} + \frac{1}{m}) \text{, for some t, π} \leq t < \pi + \frac{1}{m} \, \} \ .$$

This implies, by the strong Markov property, that

(8)
$$P_{1}(B_{m}) \geq P_{1} \{ \sup_{0 \leq t \leq \frac{1}{m}} W(t) > \alpha (\sqrt{1 + \frac{1}{m}} - 1) \},$$

since $g^*(x + \frac{1}{m}) - g^*(x)$ is a decreasing function of x. The distribution of $\sup W(t)$ is well known (see, for example [1], p. 72). Hence (8) yields $0 \le t \le a$

$$\begin{split} \mathrm{P}_{1}(\mathrm{B}_{\mathrm{m}}) & \geq 2 \, \mathrm{P}_{1} \, \left\{ \mathrm{W}(\frac{1}{\mathrm{m}}) > \alpha \, \sqrt{\mathrm{m}} \, \left(\, \sqrt{1 + \frac{1}{\mathrm{m}}} \, - 1 \right) \, \right\} \\ & = 2 \big[1 - \Phi \left(\alpha / \left(\mathrm{m} \left(\sqrt{1 + \frac{1}{\mathrm{m}}} \, + 1 \right) \, \right) \right) \big] \, \to 1 \, , \\ & \text{as m} \, \to \, \infty \, , \end{split}$$

where Φ is the distribution function of a N(0, 1) random variable.

Q.E.D.

$$x(t-) = \lim x(s)$$
, as $s \uparrow t$,

$$J*(x) = \sup_{0 \le t \le 1} |x(t) - x(t-)|, \text{ and}$$

$$h(x) = h_{\delta}(x) = \begin{cases} 0 & \text{if } x(0) \neq 0 \text{ or } J^*(x) > 1 \\ \\ x(\sigma_{\delta}(x)), & \text{otherwise.} \end{cases}$$

For any fixed $\delta < \alpha$, h_{δ} is a bounded function. Furthermore,

(9)
$$E(B_n(\sigma)) = \int h(x) d\mu_n(x), \quad n \ge 1, \text{ and}$$

(10)
$$E(B(\sigma)) = \int h(x) d\mu(x).$$

Let $D_h = D_h(\delta)$ be the set of discontinuities of h_{δ} . D_h is a measurable subset of D (see [1], p. 30).

Lemma 3. If $\mu_n \Longrightarrow \mu$ and h is a real bounded measurable function with $\mu(D_h) = 0, \text{ then } \int h(x) \; d\,\mu_n(x) \to \int h(x) \; d\,\mu, \text{ as } n \to \infty \;.$

<u>Proof:</u> See [1], p. 31.

In order to apply Lemma 3 to the our problem, we need to show that $\mu(D_{\mathbf{h}}) \,=\, 0 \,. \quad \text{Let}$

$$C* = C*(\delta) = \{x \in C: \ \sigma(x) < 1, \ x(0) = 0, \ x(1) = -\delta,$$
 and x is not tangent to g at $\sigma(x) \}$.

By Lemma 2 and (7), $\mu(C^*) = 1$. Therefore, it suffices to prove the following. Lemma 4. If $x \in C^*$, then h is continuous at x.

<u>Proof:</u> Let $x_n \in D$ with $x_n \to x$, as $n \to \infty$. For $x \in C^*$, $0 < \sigma(x) < 1$. Let $\varepsilon > 0$ satisfy $\varepsilon < \min(\sigma(x), 1 - \sigma(x))$. Since g - x is continuous, there exists a $\delta_1 > 0$ such that

$$g(s) - x(s) > 2\delta_1$$
, $0 \le s \le \sigma(x) - \epsilon$.

Since $x \in C^*$, there exists an r, $\sigma(x) < r < \sigma(x) + \varepsilon$, such that $x(r) - g(r) = 2\delta_2 > 0$. Let

$$\delta_3 = \min \left(\frac{1}{4}, \delta_1, \delta_2 \right)$$
.

By Lemma 1 there exists an N such that for all $n \geq N$,

$$\sup_{0 \le t \le 1} |x_n(t) - x(t)| < \delta_3,$$

and $J^{*}\left(\mathbf{x}_{n}\right)\leq1,\ n\ \geq\ N,\ \text{since}\ \delta_{3}\leq\frac{1}{4}$. Thus

$$\sigma(x) \, - \, \epsilon \, < \sigma(x_n) < \sigma(x) \, + \, \epsilon \ , \qquad n \geq N. \label{eq:sigma}$$

Since g is strictly decreasing,

$$\delta_3 + g(\sigma(x) - \epsilon) > x_n(\sigma(x_n)) > g(\sigma(x) + \epsilon), \quad n \ge N.$$

Therefore,

$$\lim_{n\to\infty} h(x_n) = \lim_{n\to\infty} x_n(\sigma(x_n)) = g(\sigma(x)) = h(x),$$

Q.E.D.

3. Proof of (2).

Recall that random variables X_1, X_2, \ldots , are uniformly integrable if, and only if,

$$\lim_{\eta \to \infty} \sup_{n \ge 1} \int_{\{ |X_n| > \eta \}} |X_n| d P = 0.$$

<u>Lemma 5.</u> X_1, X_2, \ldots , are uniformly integrable if, and only if,

(i)
$$\sup E|X_n| < \infty$$
, and

(ii)
$$\lim_{\eta \to 0} \sup_{A} \int_{A} |X_{n}| dP = 0,$$

where the supremum is taken over all sets A with P(A) $\leq \eta$.

<u>Proof:</u> See [4], p. 62.

Lemma 6. Let X_1, X_2, \ldots , be random variables. If there is a random variable Y and an $\eta_O > 0$ such that $E|Y| < \infty$ and

$$P_{\boldsymbol{\eta}}\left(\left|\,\boldsymbol{X}_{n}^{\boldsymbol{\prime}}\right|\geq\boldsymbol{\eta}\right)\;\leq\;P(\left|\,\boldsymbol{Y}\right|\geq\boldsymbol{\eta})\;,\quad\boldsymbol{n}\geq\boldsymbol{1},\quad\boldsymbol{\eta}\geq\boldsymbol{\eta}_{O}\;\;,$$

then $\boldsymbol{X}_{n},\quad n\geq 1,$ are uniformly integrable.

Proof: See [1], p. 32.

For
$$n \ge 1$$
, $-\infty < \delta < \alpha$, let

$$Y_n = Y_n(\delta) = \sup_{0 \le t \le 1} \left| B_n(t; \delta) \right|$$
.

Theorem 1. The random variables $Y_n(\delta)$, $n \ge 1$, defined above are uniformly integrable for all δ , $-\infty < \delta < \alpha$.

<u>Proof:</u> First consider the case $\delta = 0$. Let W_1, W_2, \ldots , be independent random variables, each having distribution function

$$G(x) = 1 - e^{-x}, \quad x \ge 0.$$

If $\xi_n = W_1 + W_2 + \dots + W_n$, then (see [2], p. 285)

$$Y_{n}(0) \stackrel{\text{def}}{=} \sqrt{n} \max_{\substack{1 \leq k \leq n}} \left| \frac{\xi_{k}}{\xi_{n+1}} - \frac{k}{n} \right|, \quad n \geq 1.$$

Note that

$$\begin{split} & Y_{n}(0) \stackrel{\mathcal{L}}{=} \frac{1}{\sqrt{n}} \max_{1 \leq k \leq n} \left| (\xi_{k} - k) + n \left(\frac{\xi_{k}}{\xi_{n+1}} - \frac{\xi_{k}}{n} \right) \right| \\ & \leq \frac{1}{\sqrt{n}} \max_{1 \leq k \leq n} \left| \xi_{k} - k \right| + \sqrt{n} \left(\xi_{n+1} \left| \frac{1}{\xi_{n+1}} - \frac{1}{n} \right| \right) \\ & = \frac{1}{\sqrt{n}} \max_{1 \leq k \leq n} \left| \xi_{k} - k \right| + \sqrt{n} \left| 1 - \frac{\xi_{n+1}}{n} \right| \\ & = \frac{1}{\sqrt{n}} \max_{1 \leq k \leq n} \left| \xi_{k} - k \right| + \left| \frac{\xi_{n} - n}{\sqrt{n}} \right| + \frac{W_{n+1}}{\sqrt{n}} \right|. \end{split}$$

 ξ_k -k is a martingale with $E[(\xi_k - k)^2] = k$. Thus, by the Kolmogorov extension of Chebyshev's inequality ([2], p. 65) yellow's inequality (2)

$$P(\frac{1}{\sqrt{n}} \quad \max_{1 \leq k \leq \ n} \mid \xi_k \text{--} k | > \eta) \leq \frac{1}{\eta^2} \ , \quad \eta > 0, \ n \geq \ 1.$$

By Chebyshev's inequality,

$$P(\frac{1}{\sqrt{n}} \mid \xi_n - n \mid \geq \eta) \leq \frac{1}{\eta^2}, \quad \eta > 0, \quad n \geq 1.$$

Finally,

$$P(\frac{1}{\sqrt{n}} \quad W_{n+1} > \eta) \leq \frac{1}{\eta^2}, \quad n \geq 1,$$

for η sufficiently large. It now follows easily from Lemma 6 that $\textbf{Y}_n(\textbf{0}),$ $n\geq l,$ are uniformly integrable.

For $\delta \neq 0$,

$$B_n(t;\delta) = B_n(t;0) - \delta t$$
, $0 \le t \le 1$.

Hence, for $n \ge 1$.

$$Y_n(\delta) = \sup_{0 \le t \le 1} |B_n(t;\delta)| \le Y_n(0) + |\delta|.$$

Therefore $Y_n(\delta)$, $n \ge 1$, are uniformly integrable.

Q. E. D.

If X_n , $n \ge 1$, are random variables and a_n , $n \ge 1$, are positive constants, then $X_n = \mathcal{O}_p(a_n)$ if, and only if,

$$\lim_{\eta \to 0} \sup_{n \ge 1} P(\left| \frac{1}{a_n} X_n \right| > \eta) = 0.$$

Lemma 7. There exists a probability space $(\Omega', \mathcal{J}', P')$ with $B_n(t; 0)$ and B(t; 0) defined on it such that

$$X_{n}(0) = \sup_{0 \le t \le 1} |B_{n}(t;0) - B(t;0)| = O_{p}(n^{-1/4} \sqrt{\log n}).$$

Proof: See [3].

Since $B_n(t;\delta) = B_n(t;0) - \delta t$ and $B(t;\delta) = B(t;0) - \delta t$, the conclusion of Lemma 7 may be replaced by

$$X_{n}(\delta) = \sup_{0 \le t \le 1} |B_{n}(t;\delta) - B(t;\delta)|$$
$$= O_{p}(n^{-1/4} \sqrt{\log n})$$

It is well known (see, for example [1], p. 72) that for X

$$X' = \sup_{0 \le t \le 1} B(t; 0), \quad E|X'| < \infty$$
. Furthermore, $X' = -X' = \inf_{0 \le t \le 1} B(t; 0).$

Now let

$$X(\delta) = \inf_{0 \le t \le 1} B(t; \delta)$$
.

$$0 \ge X(\delta) \ge X(0) - \delta^+$$

so that

$$E \mid X(\delta) \mid < \infty$$
, $-\infty < \delta < \alpha$.

Theorem 2.

$$\lim_{n\to\infty} V_n(\delta) = V(\delta) , -\infty < \delta < \alpha .$$

<u>Proof:</u> We adopt the above notation. In particular, $(\Omega', \mathcal{J}', P')$, $B_{n'}$ and B are as given by Lemma 7. Fix δ . Given $\eta > 0$, there is an $\epsilon_1 > 0$ such that for every $\epsilon \leq \epsilon_1$,

(11)
$$\sup_{\left\{A:P'(A) \leq \epsilon\right\}} \int_{A} \sup_{0 \leq t \leq 1} B_{n}(t;\delta) dP' \leq \eta/3$$

by Theorem 1. Furthermore, there is an $\epsilon_2 > 0$ such that for every $\epsilon \leq \epsilon_2$,

(12)
$$\sup_{\{A: P'(A) \le \epsilon\}} |\int_A \inf B(t; \delta) dP'| < \eta/3,$$

since the integrand is integrable. Let $\epsilon = \min{(\epsilon_1, \epsilon_2)}$. By Lemma 7 there is a Θ such that for every $\theta \geq \Theta$

(13)
$$P'\{\sup_{0 \le t \le 1} |B_n(t;\delta) - B(t;\delta)| \ge \theta n^{-1/4} \sqrt{\log n} \} \le \epsilon,$$

for every $n \ge 1$.

Fix $\theta \geq \Theta$. (13) implies that

$$P'\{B_n(t) \leq B(t) + \theta n^{-1/4} \sqrt{\log n} \ , \ 0 \leq t \leq 1\} \geq \ 1 - \varepsilon \, , \ \text{for every } n \geq 1.$$

Set

$$A = A_{n,\,\varepsilon} = \{B_n(t) \leq B(t) + \theta \, \overline{n}^{1/4} \, \sqrt{\log n} \ , \ 0 \leq t \leq 1 \ \} \ .$$

The optimal stopping time for the process $B_n(t)$ is

$$\begin{array}{ll} \tau_n = \text{least } t \geq 0 \text{ such that } B_n(t) \geq g_n(t), \\ W_n(t,0) = B(t,0) + \theta n & \sqrt{\log n}, \text{ on the set } A_{n,\varepsilon} \\ = 1 & , \text{ otherwise} \end{array}$$

(see, e.g. [6]), where all that is known about g_n is that it can be taken to be continuous, nonincreasing, and $g_n(l) = -\delta$. Consider the stopping

time τ_n^* for the B process given by

$$\tau_n^* = \text{least } t \geq 0 \quad \text{such that } B(t) \geq g_n(t) - \theta n^{-1/4} \sqrt{\log n}$$
 .

On the set A, $\tau_n^* \leq \tau_n$ and

$$B_n(\tau_n) \le B(\tau_n^*) + \theta n^{-1/4} \sqrt{\log n} + n^{-1/2}$$

(Note: $n^{-1/2}$ is the maximum "excess over the boundary" \textbf{g}_n of \textbf{B}_n at time $\tau_n). Therefore,$

(14)
$$V_{n}(\delta) = P E (B_{n}(\tau_{n})) = \int_{A} B_{n}(\tau_{n}) + \int_{A^{C}} B_{n}(\tau_{n})$$

$$\leq \int_{\Omega^{1}} B(\tau_{n}^{*}) - \int_{A^{C}} B(\tau_{n}^{*}) + \theta n^{-1/4} \sqrt{\log n} + n^{-1/2}$$

$$+ \int_{A^{C}} \sup_{0 \leq t \leq 1} B_{n}(t).$$

Pick N sufficiently large that

$$\theta n^{-1/4} \sqrt{\log n} + n^{-1/2} \le \eta/3 , n \ge N.$$

By (11), (12), and (14),

$$V_n(\delta) \le E(B(\tau_n^*)) + \eta \le V(\delta) + \eta, \quad n \ge N.$$

or, since η is arbitrary

$$\lim_{n \, \rightarrow \, \infty} \, \sup_{n} \, \, V_{n}(\delta) \, \, \leq \, \, V(\delta) \, \, ,$$

On the other hand, by (3),

$$\label{eq:vn} {V}_n(\delta) \geq {E}(B_n(\sigma)) \to {V}(\delta) \ , \ n \to \infty \quad .$$

Thus
$$\lim_{n\to\infty} V_n(\delta) = V^*(\delta)$$
, $-\infty < \delta < \alpha$. Q.E.D.

It is easy to see that for $n, m \ge l$,

$$0 \le V_n(\alpha) \le V_n(\alpha - \frac{1}{m})$$
.

Therefore

$$0 \leq \limsup_{n \to \infty} V_n(\alpha) \leq V(\alpha - \frac{1}{m}) \to 0 , \text{ as } m \to \infty .$$

This gives us $V_n(\delta) \to O = V(\delta)$, as $n \to \infty$, for every $\delta \ge \alpha$. (It is easy to see that $V_n(\delta)$ is non-increasing in δ).

- 4. Remarks . In [6] we show how to compute $V_n(\delta)$ for small n and all δ , $-\infty < \delta < \infty$. We compare our exact (numerical) results for $V_n(\delta)$ with $V(\delta)$ for some choices of n and δ in Table 1. Applications of Theorem 2 are also given in [6] and will appear in a later report.
- 5. <u>Acknowledgements.</u> I would like to thank Professor Michael B. Woodroofe for helpful discussions and Professor Norman Starr for his guidance in directing this research.

Table 1 $\label{eq:comparison} \text{Comparison of V}_n(\delta) \text{ and V}(\delta).$

δ

		-1	$-\frac{1}{2}$	$-\frac{1}{3}$	0	<u>1</u> 3	$\frac{1}{2}$	1
n	1	1.0000	.7500	. 6667	.5000	. 3333	. 2500	0
	4	1.2000	.8074	-	. 4493	-	.1606	0
	9	1.2144	-	. 6690	. 4267	. 2192	-	0
	16	1.2148	.7924	-	. 41 42	-	.1205	0
	25	1.2132	-		. 4062	-	-	0
	36	1.2115	.7835	.6494	. 4006	.1904	.1068	0
	V(δ)	1.1930	.7569	. 6219	. 3688	.1589	.0774	0

References

- [1] Billingsley, Patrick (1968). <u>Convergence of Probability Measures</u>, Wiley, New York.
- [2] Breiman, Leo (1968). <u>Probability</u>, Addison-Wesley, Reading, Massachusetts.
- [3] Brillinger, D.R. (1969). An Asymptotic Representation of the Sample Distribution Function. American Mathematical Society Bulletin, 75, pp. 545-547.
- [4] Loève, Michel (1960). <u>Probability Theory</u>, 2nd. ed. Van Nostrand, Princeton, New Jersey.
- [5] Shepp, L.A. (1969). Explicit Solutions to Some Problems of Optimal Stopping. Annals of Mathematical Statistics, 40, pp. pp. 993-1010.
- [6] Wardrop, R. (1974). Optimal Stopping Based on Catch Times: The Increasing Failure Rate Case, Unpublished Doctoral Dissertation, Statistics Department, The University of Michigan.