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SUMMARY

Let Pn(t) be the usual sample distribution function obtained by sampling
from a uniform (0, 1) distribution. Let Bn(t) =~Nn (Fn(t) - ct), where

c =1 +—'§* , WEg b <we, Pop Vn(é) = sup E(Bn('r)), where the supremum is

taken overlil all stopping times T < 1, w; show that 1111 Vn(ﬁ) = V(8), where V(&)
can be computed easily by using a normal distributioil trjzle. We find a stopping
time © (U(Bn) = least t > 0: Bn(t) > aNI-t - 6, « a known number) such that

;

E(Bn(U)) - V(8), asn—>ow B -0 <5< o,

In the course of proving the above, we show that sup IB (t)l  me d
o<t<1 .

’

are uniformly integrable,



Optimal Stopping of the Sample Distribution Function *

1. Introduction:

Let ’c1 < t2 Ssea S ’cn be the order statistics of a random sample from

a uniform distribution on [0,1]. Sett_ = 0 and t 4y =% For0<t<l define

Fn(t):j/n, tj5t<tj+1, 1.0, JnZ and , 0 and
Bn(t) = Bn(t; 8) = Nn (Fn(t) =nexlt).,
where

)

n

-0 < § <o and c= (L +

Define

V (8) = sup E(B (7;8)),

T

where the supremum is taken over all stopping times T <1,
For 0<t<1l =-9w0< & <eo letB(t)=B(t:6) be standard Brownian

motion conditioned (pinned) to pass through -6 att =1. Let

V(8) = sup E(B(T; 5)),

T

where the supremum is taken over all stopping times T <1. Shepp [5] has
shown that

V(8) = E(B(:8)) = [0 5>

9" o

’ 6<Q”

1 o -
-6 +(1-a?) [ 5078 /2 4s
O

where o is the unique real solution of « =

2, * sa-s°/2
= (1-0a%) [ %7 % /%45 (a =.83992...)
@]
and
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(1) & = &(B} = gleast t > 0 such that B(t) > o N1-t -6,

1 otherwise

It is well known that

Y

B_(t; 6) = B(1:8) as n - ©

J b

o
(where ‘Kg means "converges in distribution to" ). This paper will show

that the following two statements are true.

(2) lim V (8) = V(8), - <& <o, and
n >0

(3) lim  E(B (o;8)) = E(B(%; 6) ) = V(8), -0 < § < o0,
n ~> 00

Formula (2) states that "the limit of the values (Vn) equals the value (V) of the
limiting process". &Since (2) is true, (3) states that "o is almost optimal for

the Bn process when n is large"”.

2 Proof of (3} .

In order to prove (2) and (3) we will need some of the theory of weak con-

vergence of probability measures. See Billingsley [1] for details. Let

W(t) = Wt,»), t>0, we Q

2 b

be standard Brownian motion on [0, ©) defined on some probability space

(Q,’:;', Pl) For - < &6 < o  set

(4) B(s)= Bls,w8) = -6 + (l-8) W(I:_ES—), 0<s<l

:—6 S:l

? b

which is consistent with our earlier definition of B,



Let C = C[0, 1] be the metric space of continuous functions on [0, 1] with

metric d given by

d(x,y) = sup )xm —y(t), :
0<t<l1

C[0,) is the set of continuous functions on [0, ). D = D[0,1] is the metric

space of functions on [0, 1] which are right continuous and have left hand limits.

The metric d' on D is of no interest to us except for the following lemma.

then

Lemmal. IfxeC, x e¢D, n>1 and d'(x_,x)—>0, asn—> oo,
n n

sup x (t) = x(t) | -0, as n—> o,
o<t<1| ™

Proof: See [1], p. 112.

Let

Wenote that for xe D and ¢ given by (1),
0(X) = 04(x) = inf {t: X(t)> g, (1)},
where the infimum of the empty set is one. For xeC[0, ®©), set
(5) m(x) = me(x) = inf {t: x(t) > g% () },
where the infimum of the empty set is . Shepp [5] has shown that

Pmg(W) <=} =1, - <§ <=



By (4) above,

(6) 05(B) = m(W) / (mg(W)+ 1), - < § <o,
hence,
(7) | By{ogiB)y <1} =1 =% £6 <,
Let Py = pn, 5 be the measure induced on D by Bn and let p = P

A
be the measure induced on D by B, Since Bn —>» B we say that b converges

weakly to p (written Py = p).’

Let

= {we & o(B) <1 and for every ¢ > 0, there exists a t in the
interval (o(B), o(B) +¢) such that B(t) > g(t)}, -© < § < = |

We refer to A as the event that "B is not tangent to g at o(B)". By (4) and

(6) A may be written as

{we @ mW)<e and for every e > 0, there exists, a te (mf W), m(W) +¢)

such that W(t) > g*(t)} , ~© <§ < |
Henceforth, we restrict ourselves to the case where -® < § < o z

Lemma 2. Pl(A) =] sl Ly

Proof: Since
§<q m>0 and W(t] < g¥(t), 0 £t < =, Parm =1, 20,4

define

o it
B = {W(t) > g*(t), for somet, r<t<m +—H-1} .

B .: Hence
m



Pl(A) = lim Pl(Bm) as m — «©

»

Furthermore,
b 3 _J:.. KN 1_
P(B ) > P {W(t) >g*(m +—=), for somet, m<t<m{ 1.

This implies, by the strong Markov property, that

(8) P(B)> P { sup ;| W(t)>a(Vl1+L -1)}),

since g¥*(x + lr'-n) - g*(x) is a decreasing function of x. The distribution of

sup W(t) is well known (see, for example [1], p. 72). Hence (8) yields
0 <t<a

P(B) > 2P {W()>aVm (N1+1 -1}

————

2[1- @ (o/(m(N1+L +1)))] ~1

’

ag m-» = ,

where @ is the distribution function of a N(0, 1) random variable .

For xe D, let

x{(t=) = lim X(s), as stt,

J¥(x) = sup %(t) -x(t- )|, and
0<t<1
h(x) =hgx) = [0 if x(0) == 0 or J*x)> 1

|X(ogx)), otherwise.

For any fixed &< g, h6 is a bounded function. Furthermore,



(9) E(B (¢)) = [ h(x)dp (x), n > 1, and

(10) E(B(0)) = [ h(x) dw(x) .

Let Dh = Dh(6) be the set of discontinuities of h6' Dh is a measurable

subset of D (see [1], p. 3.0).
Lemma 3., If o = p and h is a real bounded measurable function with
m(Dy) =0, then [h(x)dp (x) ~ [h(x)dp, asn—> =,

Proof: See [1], p. 3L
In order to apply Lemma 3 to the our problem, we need to show that
= 0. Let

%

C* = C™(8) = {xe C: o(x) <1, x(0) = 0, x(1) = -5,

and x is not tangent to g at o(x) } .
By Lemma 2 and (7), H(C*) = 1. Therefore, it suffices to prove the following.
Lemma 4. If xe C*, then h is continuous at x.
Proof: Let x ¢D with x, =~ x, asn—=>®. For xe C*, 0<o(x)<l
Let ¢ > 0 satisfy ¢ < min(o(x), 1 -0(x)). Sinceg-x is continuous, there

exists a 61 > 0 such that

9(s) - x(s) > 28,

Let

By Lemma 1 there exists an N such that for all n > N,



sup |x (1) - x(1)| <&

0<t<l 3

Thus

o

and J* (x ) <1, n >N, since &,<

T(x) - ¢ <cr(xn)<cr(x)+e : n > N.

Since g is strictly decreasing,

5,+9(0(x) = ¢) >% (0(x ) ) > glo(x) +¢)), n2 N.

Therefore,

lim h&rﬁ = lim thﬂxn)) = g(o(x) ) = h(x),

n—>9° n—+ <«

12..E. 1.

3. Proof of (2).

Recall that random variables Xl’ Koy ovw, are uniformly integrable if, and
only if,
lim sup ( 1X l dpP=y,
; J n
e w1 C{ RIS )
Lemma 5. xl’XZ’ ..., are uniformly integrable if, and only if,
(i) sup Elxn] <  and

(i1) lim sup [ |X | dP=o0
n—20 A n ’

where the supremum is taken over all sets A with P(A) <n.

Proof; See [4], p. 62.

Lemma 6. Let Xl, X5, .4+, be random variables. If there is a random variable

Y and an M > 0 such that E|Y|<°0 and



Px [>m <Plyl2m, nz1, nzn_,

thenX , n 21, are uniformly integrable.
Proof: See [1], p.32.

For nzl, =2 < &< a4, let

Y =Y (8) = sup B (ti 6)1 .
0<t<l

Theorem 1. The random variables Yn(é), n > 1, defined above are uniformly

integrable for all 6, - <& <a.

Proof: First consider the case & =0. Let W, W, ..., be independent random

variables, each having distribution function

G(x):l-e_x, x2 0
IfE =W/ +W,+ ... +W_, then (see [2], p. 285)
g 3
Y (0) = N max ék - k ;, nzl
1 <k<n | Sn# n
Note that
£ 3
Yn(D)”(: — max i(Ekk)+n%g - k\P
Nn o 1<k<n | | Sntl B 4

< L___ max «‘;k—k!-%r\jn fé"'ll Z;l __r%
Nn IKk<n \ n+l1
s e max | Ek— k| + Nn |1 n+l l
Nn 1<k<n n
€ -n W
= 1 max lgk—ki + e + —n+l
NEY 1<k <n n N'n



¢ -k is a martingale with E[(§ - k)] =k. Thus, by the Kolmogorov

extension of Chebyshev's inequality ([2], p. 65)

1 1

= e | €~ kl>m) 5:2— , M>0, n> L
By Chebyshev's inequality,
1 1
= | € -nl >m < aa 0, B2 L.
Finally,
P—— W ,.>m) < L. n>1
= n+l — S T H
n n

for m sufficiently large. It now follows easily from Lemma 6 that Yn(O),

n > 1, are uniformly integrable.

For & % 0,
B (t:8) = B (t;0) -6t | 0 <t=<1

Hence, for n2>1
Y (8) = sup [B (t;8)] <Y (0)+ |5] .

0<t<1

Therefore Yn(é), n > 1, are uniformly integrable.

e B D

If Xn’ n > 1, are random variables and a, nz1, are positive

bl

constants, then Xn = Op(an) if, and only if,

B pup P(Ial— x| >m=o0.
n~*o n>1 n



o

Lemma 7. There exists a probability space (£', _’j-"', P') with Bn(t;O)

and B(t;0) defined on it such that

X (0) = sup |B_(t;0) - B(t;0) | = OP,(n_l/4'\J10g n).
n o<t<1l ™

Proof: See [ 3].

Since Bn(t;é) = Bn(t;O) - 6t and B(t;6) = B(t0) - 6t, the conclusion of

Lemma 7 may be replaced by

X (8) = sup | B_(t;8) - B(t; 6)]
n'®) ogtgl fl )

= OP.(n-l/4 Nlog n' )

It is well known (see, for example [1], p. 72) that for

A R

X' = sup B(t; 0), Bl %Y <0 Furthermore, X' C-xp& inf B(t; 0).
gt < 1 0<ts1
Now let
X(6) = inf Bltz 6}
0<t<1
+

O > X(8) > X(0) - &

’

so that
E|X(8) | <=, -o<§<a.

Theorem 2.
lim Vn(ﬁ) = V(6)

n > ©o

y R D e,



T

Proof: We adopt the above notation. In particular, (&', 7', P'), Bn’

and B are as given by Lemma 7. Fix 6. Given n > 0, there is an

el>0 such that for every e gel,

(11) sup JA sup B_(t;6) dP' < n/3
{A:P'(A)< e} o<t<1 "

by Theorem 1. Furthermore, there is an ¢, > 0 such that for every ¢ <e

2 27

(12) sup 1 fAinthma)dP% <n/3,
{A:P'(A) <=}
since the integrand is integrable. Let ¢ = min (e e 2). By Lemma 7 there
isa © such that for every 6> ©
, SN
(13) P'{ sup [B (;8) - B(t;8)| > on logw}<e,

<t <1

for every n> 1.

Fix 6 > ®. (13) implies that

P'{Bn(t) < B(t) + 6n~ l/4 Nlogn , 0<t<1} > l-¢, for every n > 1.
Set

A:Anez{Bn(t)f_B(t)+ 6;11/4\]10gn, ot=l}.,
b

The optimal stopping time for the process Bn(t) is

1l

T

- least t > 0 such that Bn(t) > gn(t)

’

=1 , otherwise

(see, e.qg. [6]), where all that is known about 9, ig that it can be taken

to be continuous, nonincreasing, and gn(l) = -8, Consider the stopping



_12_

%
time Te for the B process given by

T;: = least t> 0 suchthat B(t) > g (t) —on /% N log n

On the set A, T ¥ =7 and
n n

B (Tt )%

£ B(T}F) + en_1/4'\/10gn + n-l/2
nt n n

(Note: n_l/?‘ is the maximum "excess over the boundary" 9% of Bn

at time "rn). Therefore,

(14) V. (8) = E(B (7)) = j'A Bt {DF B (7))
< B(T:} - fc B(T::) + en'1/4 Nlogn + n1/2
QI
+ B_(t).
"¢ 0_‘;?51 "

Pick N sufficiently large that

en_l/4 Nlog n + n_"l/2

By (11), (12), and (14),

V(8 < EBTX))+n < V(8 +n, nx N
or gince 1 is arbitrary

lim sup V_(6) < V(6)

’
n —> < n



-..13_

On the other hand, by (3),

V_(8) 2 E(B () ~ V(8) , n <

Thus lim V() = v¥(s), -0 <86 <a . Q.ED,

N~

It is easy to see that for n, m > ],

0=V (a) = V (e ]

8 =

Therefore

. Aw
0 < lim sup Vn(a)s Vie m) O

n—bDO

; a8 W=
This gives us Vn(é) - O =V(6), as n—* , forevery &> o . (It is easy

to see that Vn(rS) is non-increasing in ©6).

4, Remarks . In [6] we show how to compute Vn(G) for small n and all
b, —© < § <x ., We compare our exact (numerical) results for Vn(6) with V(&)
for some choices of n and & in Table l. Applications of Theorem 2 are also

given in [6] and will appear in a later report.
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_14_

Table 1

Comparison of Vn(é) and V(0o),

5
1 " 1 1
1 2 3 0 3 2
1 | 1.0000 | .7500 | .6667 | .5000 | .3333 | .2500
4| 1.2000 | .8074 ’ . 4493 = | L1606
9 | 1.2144 5 6690 | L4267 | .2192 5
16 | 1.2148 | .7924 - 4142 - | 1205
25 | 1.2132 " 2 . 4062 - =
36 | 1.2115 | .7835 | .6494 | .4006 | .1904 | .1068
v(s) | 1.1930 | .7569 | .6219 | .3688 | .1589 | .0774
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