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Summarz.

Following some remarks on the early history of the
design of experiments, a seemingly unknown 1815 paper of
Gergonne's on polynomial regression is discussed, and a

translation of the paper presented.

1. Introduction.

The design of experiments may well be oldest of all the
fields of statistics. Examples of planned, controlled
experiments considerably predate the first attempts at formal
analysis of random data, going back at least to the old
testament, perhaps further. Some thoughts on sample size can
be found in work of Galen the Physician dating from 150 AD
(see Galen (150), pp. 96-119). In the eleventh century, many

modern principles of design were spelled out by the famous

1 This work was partially supported by the Wisconsin Alumni
Research Foundation, and, while the author was on leave in
the the Department of Statistics at the University of
Chicago, by NSF Research Grant GP 32037x.



Arabic doctor, scientist, and philosopher Avicenna, in the

second volume of his Canon of Medicine, the leading medical

text for nearly eight centuries. Avicenna listed seven
rules for medical experimentation, stressing the need for
controls and replication, the danger of confounding effects,
the necessity of varying one factor at a time, and the wisdom
of observing the effects for many differing factor levels.
(See Crombie (1952), pp. 89-104),

It is therefore not surprising that work on the design

of regression experiments preceded the introduction of the

method of least squares. One early example of this can be

found in the first volume (1799) of Laplace's Mécanigge Céleste

(see sections 28-29, chapter 4, book 2), where it is recommended
that if random errors are present, a polynomial regression
function will be best estimated at a point by spreading the
observations in a wide interval about that point. The

purpose of this present note is to introduce a paper which

was inspired by these sections of the Mecanique Celeste.

The paper we present was written by Joseph-Diez Gergonne
of the University of Montpellier, France, editor and founder

of the journal Annales de Mathématiques Pures et Appliqueés,

and it appeared in his own journal in 1815 under the title
"Application de la methode des moindres quarrés a l'interpolation
des suites". It appeared in the midst of a twenty-year period

in which it might be claimed that mathematical statistics

advanced further than in any similar period in history:



Legendre's first publication of least squares in 1805,
Gauss's linking of least squares to probability in 1809,

Laplace's Theorie Analytique des Probabilites in 1812 and

its supplements of 1814, 1818, 1820, and Gauss's papers of
1821 and 1823 presenting the so-called Gauss-Markov theorem.
Gergonne's paper was not a landmark of this era;
indeed it seems to have completely escaped the attention of
all bibliographers of the statistical literature of that time,1
although Gergonne's journal was widely circulated at the time
and must have been read by most European mathematicians.
While the paper itself contains no really startling results,
it nonetheless is an extremely interesting document in the
history of statistics, both as one of the earliest attempts
to discuss some of the problems of design and analysis which
are inspiring so much research today, and for the insight it

gives us into the spread and development of statistical

thought in the early years of the nineteenth century.

2. Gergonne's Paper

The problem Gergonne considered is one we would now
describe as follows: given a situation where one observes a

response which depends upon a single independent variable, and

1 It is not mentioned by Merriman (1877), Gore (1902), or Kendall
and Doig (1968), nor is Gergonne listed in Lancaster (1968).
The paper is listed in the Royal Society of London's Catalogue
of Scientific Papers 1800-1900, Subject Index (Vol. I,

Pure Mathematics) under "Interpolation'.



where one wishes to estimate the value of the response function
and its derivatives at a single point, how should one select
the values of the independent variable at which the experiment
will be performed, when random errors in the observed responses
are expected. Gergonne's treatment of this problem is
interesting but not profound. He began with a general discussion
of the problem of interpolation, viewed both geometrically
(in terms of points and curves) and algebraically (in terms
of variables and functions)., He observed that even with no
errors present, the problem is somewhat indeterminate, but
that with sufficiently many observations this would not cause
serious difficulty, and one could conveniently fit a simple
polynomial model to the data.

The first method of fitting he discussed is the one
which was most prevalent at the time: fit a polynomial
consisting of as many terms as there are data points. Gergonne
was aware of the difficulties this method presented when the
number of observations was large, but he went on to extend
an argument of Legendre's analyzing the effect an error in
a single observation would have on the derivatives of the
interpolating polynomial, concluding that Laplace's advice was
sound: within the class of equally spaced designs, accuracy
increases with increasing spread and more distant spacing.

Gergonne then noted that the only way a widely spaced
experiment could be achieved over a narrow range would be by

discarding (or declining to take) observations, and suggested



that a much more sensible procedure would be to use least
squares., He developed the normal equations for polynomial
regression, discussed the numerical simplification which
came with an equally spaced design, and showed how any design
may, by the appropriate transformation on the independent
variable, be transformed to an equal spacing design to simplify
calculations. The paper closes by posing a problem which
cannot be said to be well solved today: "we know that a
number of points, however many, are located near a parabolic
curve of unknown fixed degree, and we wish to know the most
likely ['plus probablement'] value of the degree of this curve.”
In many respects, the paper belongg more to data analysis
than statistics. By not explicitly introducing any probability
structure, Gergonne was following the example of Legendre rather
than that of Gauss or Laplace, thus illustrating that true
scientific innovation is often very slow in catching on: the
technique of least squares was not in principle greatly
different from many of the techniques which preceded it,
and it was its computational simplicity coupled with the
authority of Gauss and Laplace which led to its early widespread
adoption. The truly innovative work of Gauss and Laplace,
incorporating probability models as a foundation and justification
for the adoption of this technique, was not well understood by
Gergonne and many others at this time, but was only very
slowly spread as the work was extended and improved over the

following century.



Gergonne's paper was, however, novel in a number of
respects. It presents what may be the first explicit application
of the principle of least squares to a general polynomial
regression model. More significantly, it is one of the
earliest attempts to deal mathematically with a design problem
in a regression framework, showing that the planning of
experiments was already being considered in mathematical
terms in 1815. The paper also describes the use of coding as
a device for simplifying computations, and it displays a
surprisingly modern feel for the problems of statistical
analysis and model fitting, including a realization that
polynomial models are ill-suited for éxtrapolation and an
understanding that no single method of analysis gives a
uniquely best answer.

It is likely that Gergonne's paper, written in the
" south of France by an educated man who followed work in all
the major intellectual centers of Europe, is more representive
of the general level of statistical thought in Europe than is
the work of giants such as Laplace and Gauss. While the
paper seems to have never been cited in the statistical
literature, it would be a mistake to conclude that it must
then necessarily have had no influence on the statistical
practice of the time. To see how this may be, we turn to
Gergonne's journal and its role in the development of applied

mathematics.



3. Gergonne and his Journal.

Joseph-Diez Gergonne (1771-1859) is best known as the

co-founder and editor of the Annales de Mathématiques Pures

et Appliqueés. Gergonne founded his Annales in 1810, at

which time it was the first and only journal devoted entirely
to mathematics and its applications. It remained the only
such journal until 1826 and the first appearance of Crelle's
journal.

Gergonne's Annales was a remarkably lively and broad
journal. By the time he became rector of the University of
Montpellier and ceased publication of the journal in 1831,
articles had been published on nearly every branch of pure
mathematics, and on a wide range of applications including
optics, circulation of the blood, sundials, economics,

" palitical science, celestial mechanics, gambling, and law.

The 1list of contributers includes some of the foremost mathema-
ticians of the time: Cauchy, Poisson, Ampére, Abel, Poncelet,
and Galois. Gergonne himself contributed over 200 papers,

a majority in geometry, the field Gergonne was most interested
in and the one in which he is most recognized. Many of his
papers were published anonymously, attributed to '‘un abonne"
("A subscriber"); these included his only other effort in
statistics, a paper on the estimation of means which appeared
in 1821.

Of Gergonne's own work, the.only portion which receives
recognition in most histories of mathematics is his work in

geometry, where he became embroiled in a bitter priority fight



with Poncelet over the discovery of reciprécal polars and the
principal of duality. In many respects his achievements as
editor were greater than those as author; his journal was
widely read and had a lasting influence on the development

of mathematics far beyond that of the individual articles.

Bibliographical Note:

The most accessible treatment of Gergonne's life and

work is the article by D.J. Struik in the Dictionary of

Scientific Biography (Struik (1972)) (with references), although

Struik has overlooked a number of important sources, including
Bouisson (1859) and Henry (1881), making his account incomplete
and incorrect in some minor respects, such as the date of
Gergonne's death and the spelling of his middle name.

In the following translation of Gergonne's paper, an

effort has been made not to introduce any modern statistical

terminology and to accurately reflect Gergonne's thinking.
To ease the way for modern readers, however, some of the

mathematical terminology has been updated (examples: '"polynomial

function" for "fenction compléte, rationelle et entiere"

and "derivatives" for 'coefficiens différentiels". All
italics, including those in the quotation from Laplace, are
Gergonne's, as are the footnotes unless otherwise noted. Some
readers may be unfamiliar with the term "osculating circle",
which is a geometric measure of curvature at a point - a

geometric analogue of a second derivative.
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The Application of the Method of Least Squares

to the Interpolation of Sequences

by
J.D. Gergonne

(Translated by Ralph St. John, Bowling Green State University)

When a function of a single variable is known, we can
always determine rigorously and directly the values of the
function and of its various derivatives at a given value of
the independent variable. Similarly, given a curve we can
always, for any abscissa, obtain the 6rdinate, the tangent,
the osculating circle, etc.

Just as instead of giving a curve we can give only a
certain number of its points, we can similarly instead of
~giving a function of a variable give only the values this
function takes for a certain number of values of the independent
variable, and subsequently ask what are the values of the
function and its various derivatives for any other value of
this variable., Similarly we could ask for a given abscissa
what are the ordinate, the tangent, the osculating circle,
etc. of a curve about which we know only a certain number of

points. This constitutes the problem of the interpolatien of

sequences.

This problem obviously reduces to recovering from the
given values, the function from which they were obtained, or
from the given points, the plot of the curve on which we

assume they are located. However, the problem is indeterminate
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for, given non-consecutive points, even an infinite number of
them, we can always pass through them an infinity of different
curves.1

These curves could very well differ notably from one
another in certain parts of their range; the same difference
will be observed in the ordinates, tangents, osculating
circles, etc. for a given abscissa. However, we note that
if the given points are close enough to each other, the curves
which include them will not differ greatly over this interval,
at least if none of the curves has within this interval an
asymptote parallel to the axis of the ordinates. We also
note that these given points can always be numerous enough, and,
at the same time, sufficiently close to each other, that the
differences between these curves become almost indistinguishable.
The ordinates which result from a single abscissa within this
range will therefore be essentially equal; however, the
difference between the tangents can be more sensitive, that
between the osculating circles even more so, and so forth.

We conclude from this that, if functions of diverse form
have the same value for certain known neighboring values of the
independent variable without becoming infinite for any value

included between these, then these functions will take on values

1 We can consult on this subject a dissertation on page 252

of volume 5 of this jouirnal. [Trshs, note: The article
referred to, "Considerations philosophiques sur 1'interpolation',
is by Gergonne but contains no material relevant to statistics.]
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scarcely different for other values of the independent variable
included within the above interval. However, this will not be
the case for the derivatives of the various functions, which
can differ more and more as the corresponding order increases.

We can therefore, without noticeable error, arbitrarily
adopt one of thse functions as the desired function; similarly
when many curves which pass through the same points have only
slight differences, we can assume that any one of these is
really the curve on which these points 1lie.

Since the curve or the function can be selected in an
infinity of different ways, it it convenient to select the
simplest way, that is, the parabolic curve or the polynomial
function that graphically represents it. This choice
is well founded since it is known that all finite functions of
a finite variable can always be expressed in a series of
increasing powers of this variable.

The procedure we have just arrived at is also that which
is commonly followed; we assume that the ordinate of the desired
curve is a polynomial function of the abscissa, into which we
allow as many terms as there are sets of given values; the
coefficients of these terms are unknown, and we determine them
by assuming that the curve passes through the given points.
Once these coefficients are determined, it is a simple matter
to calculate the ordinate and the derivatives for any abscissa.
However, we can rely on the values obtained from this formula
only when it is applied to an abscissa within the interval

containing the given points, and also not too close to the

largest or the smallest,
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This method, which was employed by Mr, Laplace in his

5 5 E: 1 2
memoir Recherche des orbites des cometes™, contains a source

of error in the supposition that the curve is a parabolic
curve. Nevertheless, if we could rigorously believe in the
given values of the function, and if these values were very
numerous and very close to each other, then what we have said
abouve shows that the error resulting from this supposition
would never be very large.

However, this is not always the case. The discrete
values of the function, which we have used to construct our
formula, are often deduced from experience or from observations
subject to limited precision. Thus, as Mr. Legendre has observedz,
it often happens that the errors which'affect these observations
can have more and more influence on the final solution and
on the results we deduce from this solution, as more and more
values are obtained.

Assume that we have plotted an arbitrary curve, and that
we have obtained from it many ordinates very close to each other.
Suppose we have subjected these ordinates to very small changes,
sometimes positive and sometimes negative, and subsequently we
attempt to pass a continuous curve through these altered ordinates.

We will easily see that, even if these alterations have had only a

1 See the Memoires de 1'Academie des Sciences, Paris, for 1780,

See his Nouvelles methodes pour la determination des orbites
des cometes, Paris, 1800,p. 1v,
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very small influence on the size of intermediate ordinates, that is
not the case with regard to the tangent, which may have
undergone a notable change for the same abscissa, and this change
may be even more noticeable with regard to the osculating circle.
These graphical observations can easily be confirmed by
calculations. Suppose we have an odd number of given ordinates
corresponding to equidistant abscissas, and assume that this
common distance is one. Let zero be the abscissa and b the
ordinate at the middle; 1, 2, 3 ... the abscissas and
bl, bz, b3 »»« Lhe ordinates which follow: -1, <2, -3, the
abscissas and bl, bZ’ b3,... the ordinates which precede. We

wish to obtain the various derivatives at zero. We obtain

for the case of three ordinates

dy _ e A | o
T = —7= =¥ = (b +b;)-2b;

for the case of five ordinates

2 2
il 8(b1-b1)-(b i)l 30b-16(b1+b1)+(b +by)
z& 12 ’ d_x}f 12 :

for the case of seven ordinates

1 2 3
45(b —bl)—Q(b -b2)+(b —b3)

d =
X 60 ’
1 2 3
d2 490b-270(b +b1)+27(b +b2)—2(b +b3)
A 180 !

and so forth.
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Suppose that the other ordinates are exact and that the

2
ordinate bl is in errer by the guantity 8. Let E%%, Eg-g denote
dx
the resulting errors in the derivatives at zero. It is easy

to see that, in the case of three ordinates

2

d 1 d 2
E <% = 38, E = 28;
dx 2! A% 2
in the case of five ordinates
) ’
% 5 dx 3
in the case of seven ordinates
& B 49y 6
2 S B
dx

Therefore the errors in the first order derivative increase as do

%, %, 2, %,... and thus tend monotonically to the

the numbers

actual error in the ordinate bl. Simitarly, the error in the

second order derivative is double that of the first order derivative.
Mr. Legendre was therefore justified in saying that in

increasing the number of values, we exposed ourselves to an

increase in the errors in the same proportion. This result

assumes that there is only one incorrect ordinate, which excludes

all possibility of compensating errors. Moreover, this assumes

that the incorrect ordinate is precisely that whose value, exact

or not, exerts the most influence on our two derivatives.

Whatever the case, this source of error did not escape

the attention of Mr. Laplace. Here are his comments (Mécanigue
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celeste, Tome I, p. 201)1: "These expressions are more precise
as there are more observations, and as the interval separating
them is smaller. We could therefore use all the neighboring
observations for the chosen period, if they were exact, but

the errors to which they are subject would lead us to a

false result. Therefore, to reduct the influence of these

errors, we must increase the interval of the extreme observations

as we employ more observations,"

It would probably be more correct to say that we must

employ observations more and more distant from each other as

we employ more observations. We shall see, in effect, that

with this procedure we can reduce these errors. Let a be
the interval, assumed constant, which separates consecutive
values of x, an interval which we previously assumed to be

one. Our previous results then become, for three observations

2
d 1B d Z- B
o R :
dx 2 a’ ix2 2 ;7
for five observations
Ed=ggEd2=48l
H% 3 a’ 3 =
X a
for seven observations
pdr.38 pdy_¢ g
S R 4;2"

1 This passage may be found on p. 411 of volume I of Bowditch's
translation. [Trans.]
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Therefore, as long as a takes on values which increase more
rapidly than does the sequence %, %, i,... our errors will
continually decrease as we have more and more observations.
Suppose, for example, that we increase the value of a according

to the positive integers. Let this value be one for the case

of three observations. We thus have for three observations

2
d 1 d 2
S = 0. T = £g;
dx 2.5 dx 2
for five observations
3% 3 57
dx
for seven observations
dx g7 dx 6

Thus we see that the errors in the first order derivatives
decrease as do the inverse of the positive integers, and that
the errors which affect the second order derivatives decrease
according to the progression, even more rapid, of the inverse
of the triangular numbers. The method of Mr. Laplace is
therefore, from this point of view, entirely beyond reproach.
However, suppose we have between two fixed known limits
sufficient observations to reduce to a very small value the
difference between successive values of x. Following what we

have just said, we must discard as many observations as we will

2
use in our search for %X and é—%. Thus, this 1s a serious
- dx

inconvenience, especially if we have no reason to suspect that
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the values we discard are worse than those we use. In this
manner we deprive ourselves of the compensation of errors
upon which we may rely if we use all the values, |

While reflecting on this subject, it seemed to me that
it was possible, using the method of least squaresl, to
reconcile things and to obtain by this method all the precision
one can possibly hope for in this situation. Here is the
method I believe we should use.

Let &, a1y 8yenn be the values of x, however many, and

let b, bl’ bz,... be the observed corresponding values of ¥. Let

y = A+ bx + Cx?+Dx+ ..,

allowing -as many terms in this function as we would have emploved
using the previously described procedure of discarding
observations. We wish to determine the value of the coefficients
A, B, C, D,... . If the number of coefficients were equal

to the number of observations, we could assign the coefficients
values giving zero errors. But this is impossible in this

case and we shall be content to minimize the sum of their squares.,

We know that the method of least squares is based on the principle
that the mean value (which is.most probable to be nearly exact) of
many values near a quantity, is that which, assuming it were correct,
would minimize the sum of squares of the errors which affect the
other observations. The first printed work in which this method was
mentioned is the memoir of Mr. Legendre already cited in a preceding
note (1806). In a work published in 1809, Mr. Gauss declared that he
has been using a similar method since 1795, Mr. Laplace subsequently
showed that this method conforms rigorously to the theory of probability.
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These errors are respectively

A + Ba + Ca2

+ DA+ 2
A+ Ba1+ Ca% + Dai * - By
X # Ba2+ Cag : Dag ¥ = b2‘
We wish to obtain
(A + Ba + Ca2 + Da3 + -b )2
+ (A + Ba,+ Ca2 + Da3 # s =B )2 = minimum
1 1 1| 1
+ (A + Bay+ Ca’ + Daj + -b,)*
et T
That 18, in differentiating with respeét tok, B, G D,
(N B wEn S5 DR Rl e RO W e )
+ (A + Baj+ Ca’ + ... - b )(dA + a dB+ a%dc el e
+ (A + Ba2+ Cag + - bz)(dA + ade+ agdc H o mie =)

Because of the independence between A, B, C, ... the multipliers

of dA, dB, dC, . must separately be zero. We abbreviate in

general
T - aT # ag i wae
m m
Za"b = a™b + aglb1 + azb2 S T
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and we obtain these equations

EaOA + ZLaB + ZaZC - ZaSD ¥ gaw = L& Dy
faA + ZazB + 233C + Ea4D * see = 3aD , (1)

EaZA + ZasB * Za4C + EaSD . SIS EaZD,

There are exactly as many equations as there are unknown
coefficients A, B, C, D, ... . Although the methods previously
discussed give values for y and its derivatives of a precision
slightly inferior to that of the observations from which they
were calculated, we can often hope with this new procedure
to improve on the precision of the observations themselves.
The simplest case, and the most frequent, is that in
which the values of x increase by a constant difference. Thus
we can substitute the natural numbers for this progression.
Let there be 2n + 1 known corresponding values of x and y.
Let zero be the middle value of x, such that the numerical

sequence 1is
*fy =(A=1) s suw =35 4“2y =Ly *0, *13 #2, %3, .. + {H-1).8 .

Let In™ denote the sum of the mth powers of these integers. We
obtain

Zao = 2n+1, 4 =10, £a2 = ZZnZ, Za3 =0, Za4 = ZZn4

Thus equations (1) become
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(2n+1)A + 25n°C + ... = zb , 2In%B + 28n%D + ... = Zab ,

2En“A  + 2En'C + ... = Za’b, 250°B + 25050 % ... = 22O,

2za*h o+ 220% + ... = 22%, 25098 + 280%0 ¢ ... = 22,

In addition to that fact that the sums of powers of the integers
are given by known formulas, we also gain the advantage of

being able to calculate separately the coefficients of even
terms and those of odd terms, which will considerably simplify
the amount of work.

Even in the case where neither the values of X nor the
values of y occur in an arithmetical prdgression, We can profit
from these simplifications by proceeding as follows. Suppose
that x and y are both functions of a third variable z, whose
values are completely arbitrary, but are equally spaced; as

with x above. We would seek by our procedure the values
2 2

of %%, %X, é—%, g—%, +++ + We would then obtain, using known
A z
formulas 5 2
dx d 5 %Z d x
dy _ dy/dz a%y _ 9% 4 i
H% g% d N dx. 2 g
ge )
dz

This method seems to me preferable to that which consists of
interpolation between observations in order to render them
equidistant. It is understood, of course, that it may be
dangerous, in a problem of a rather delicate nature, to change

the values of the observations before using them.
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It seems to us that the introduction of the method which
we have described into the method of Mr. Laplace, for the
determination of the orbit of comets, will greatly increase
its precision, at least in the case where we have a large
number of observations. However, this method, as is true of
many other methods, will basically be nothing more than well-
directed groping.

There remains another problem to be resolved, which can

be stated as follows; we know that a number of points, however

many, are located near a parabolic curve of unknown fixed degree,

and we wish to know the most likely value of the degree of

this curve. The solution to this problem would eliminate

the uncertainty of the analyst who, wishing to apply the
method of Mr. Laplace, is able to empldy a large number of

observations.



