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1. Introduction

Data of potential value in the formulation of public and private
policy frequently occur in the form of time series. Questions of the
following kind often arise: "Given a known intervention*,is there evi-
dence that change in the series of the kind expected actually occurred,
and, if so, what can be said of the nature and magnitude of the change?"

For example, in early 1960 two events occurred, which we will
refer to jointly as the "intervention", which might have been expected

to reduce the oxidant (denoted by 03) pollution level in Downtown Los

Angeles. These events were the diversion of traffic by the opening of

the Golden State Freeway and the coming intc effect of a new law (Rule 63)
which reduced the allowable proportion of reactive hydrocarbons in the
gasoline sold Tocally. The expected effect of this intervention would

be to produce a more or less immediate reduction (that is, a step change)
in the oxidant level in early 1960. Figure 1 shows the monthly averages
of oxidant concentration level from 1955 to 1972 in Downtown Los

Angeles [ 3]. Using this highly variable and seasonal time series, is

there evidence for a change in level and, if so, what is its magni tude?

*
A term introduced in [1], based on our earlier work [2 ].



Many other problems of this kind have come to our attention in
recent years. These have included the possible effect of the opening
of a nuclear power station on measurements made on river samples, the
effect of Phases I and II on an economic indicator, and the effect of
promotions, advertizina campaigns, and of price changes on the sale of
a product.

Available procedures such as Student's t test for estimating
and testing for a chance in mean have played an important role in
Statistics for a very long time. However, the ordinary t test would be
valid only if the observations before and after the event of interest

varied about means Hy and Mo s not only normally and with constant

variance but independently. In the examples we have quoted, however,

the data are in the form of time series in which successive observations
are usually serially dependent and often non-stationary, and there may
be strong seasonal effects. Thus the ordinary parametric or non-
parametric statistical procedures which rely on independence or special
symmetry in the distribution function are not available nor are the
blessings endowed by randomization.

An approach we initiated earlier [2] was to build a stochastic
model which included the possibility of change of the form expected.
Such model building is necessarily iterative and, as discussed for
example in [4], involves inferences from a tentatively entertained
model alternating with criticism of the appropriate tentative analysis.

The process proceeds [5] by successive use of Identification (tentative



specification of the model form), Fitting, and Diagnostic Checking.
Using these ideas in the present context we come to the following
general strateqy:
(i) frame a model for change which describes what
is expected to occur given knowledge of the
known intervention;
Lit) work out the appropriate data analysis based
on that model;
(ii1) if diagnostic checks show no inadequacy in the
- model, make appropriate inferences; if serious
deficiencies are uncovered, make appropriate
model modification.

Suppose the data ...Y, 4,Y.,Yy,4,... are available in the form

of a series dtained at equal time intervals. Following, for example,

[ 5] we will employ models of the general form

ye = fle,g,t) + N (1.1)

where:
¥y = F(Yt) is some appropriate transformation of

172 ; .
Yt ,5ay log Yt s Yt or Yt itself;

flk,&,t) can allow for deterministic time effects,
the effects of exogenous variables £ and in

particular interventions;

Nt represents stochastic background variation or noise;

k is a set of unknown parameters.



In section 2 we discuss a gereral integrated mixed
autoregressive movina average model for representing the noise Ht.
A class of general dynamic models canable of representing the effect
of interventions is civen in section 3. The associated parameter
estimation procedures are given in section 4. In section 5 two
illustrative examples of interventionanalysis are presented. The
first concerns the Los Anceles oxidant data and the second considers
possible effects on the consumer price index of recent covernment
actions. Finally in section 6, the nature of the maximum likelihood

estimators for some specific level-change parameters is discussed in

some.detail.-

2. A stochastic model for the noise

We suppose that the noise ﬂt = yt-f(K,g,t) may be modelled

by a mixed autoregressive moving average process

qa(B)Nt = G(B)at (2. T]

where:

B is the back shift operator such that By, = y ;3

TRL I EL I T EIEE is a sequence of independently

distributed normal variables having mean zero and
variance c; which for brevity we refer to as "white"

noise;
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9(B) = 1-8,8-6,B%... 82" P(B) = 1-@,B-9,8%... ¢p5
are "moving average" and "autoregressive" polynomials

in B of degrees q and p, respectively:
the roots of ©(B) 1lie outside,and those of ¢(B)

1ie on or outside the unit circle.

For the representation of certain kinds of stable non-stationary

series the operator @(B) is factored so that
o(8) = (1-8)%(B) (2.2)

where the roots of ¢(B) all lie outside the unit circle. This
corresponds to the use of a stationary model in the dth difference.
Also, for seasonal data with period s (e.g., monthly data with s = 12)

it is often helpful to write @(B) = @I(B)q%(BS) and 9(B) = 81(8)82(85)
with <P2(BS) = (1—BS)D¢2(BS) to allow for seasonal non-stationarity.

Finally then we shall entertain a class of noise model of the

form
¢](B)¢>2(BS)(I—B)d(l-Bs)Dt‘-lt = 0,(8)8,(8%)a, (23]

where the polynomials ¢](B), ¢2(BS), eI(B)’ eZ(BS) are of degrees

Pq2P22975955 respectively.



3. A dynamic model for intervention

Frequently the effects of exogenous variables & can be

represented by a dynamic model of the form

k k (lJ.(B}
= = J

where:

the Yy represent the dynamic transfer from Etj;

the parameters «x previously lumped tocether are

~

now denoted by & and w;

the polynomials in B

r
g = 1-84.B-...- ; ; = o O

P 0j R
JJ J 1 JJ

are of degrees rj and sj, respectively;

we shall normally require that mj(B) has

roots outside and GJ(B) ,roots outside or on the

unit circle.

In general the individual Etj could be exogenous time series,

whose influence needs to be taken into account. For the present purpose,
however, some or all of them will be indicator variables taking the
values 0 and 1 to denote the non-occurrence and occurrence of

intervention.



For illustration, suppose for a single exogenous variable

(k = 1) the model is

_ . - w(B) 8(R)
Yo T Y T EmY St oy A o (3.2)
then the transfer Yy to the output from Et is generated by the

linear difference equation

Figures2(a), 2(b), and 2(c) show the response y, transmitted to the

output for various simple dvnamic systems by an indicator variable

(1)

representing a step. We can denote such an indicator by Ey = St

where
sV . ? : . 1 (3.3)
>
Similarly we use P(T) for a pulse indicator where
t
PS:T) )0 AT (3.4)
1 t=T.

Referring to the figure for the case we have discussed for the
Los Angeles 1960 intervention, we would expect that the chanae could be
modelled as in Figure 2(a), so that immediately following the known
step change in the input an output step change of unknown magnitude

would be produced according to

” (T)
Yy = wBSt



Sometimes a step change would not be expected to produce an immediate

response but rather a "first order" dynamic response like that in Figure

s(T)

2(b). The appropriate transfer function model is th31gt ] GB N

It is readily shown that the time constant of this system is

estimated by {—10966}'1 and the steady state gain is w/(1-6).

When & approaches the value unity we have the transfer function model

Yg = f%%-S£T) in which a step change in the input produces a "ramp"
response in the output (Figure 2{c)).

It is to be noted that since
(-)s{T = p{M (3.5)

any of these transfer functions could equally well be discussed in

(1)

¢ and sometimes matters are best thought

terms of the unit pulse P
of directly in terms of PiT). Thus supposing we have monthly sales

data and wish to represent the effect of a promotion or advertising

campaign lasting less than a month. The simple first order model

4y = 1-53 t
might do this (Figure 2(d)) with wy indicating the initial increase

in sales immediately following the intervention and & representing the

rate of decay of this increase.



This particular model implies that no lasting effect will occur
as a result of the intervention. When this might not be so, the model
2(e)

SO S )
Yt TYT-B T T-B ( 't
could be used in which the possibility is entertained that a residual

gain (or loss) in sales w persists.

If it were believed that the full impact of intervention might
not be felt until the second month, after which there would be a decay
and possibly a residual effect as in the previous case, then the model

w,B2 B2
N 1 b (T)
dy. = Lk ¥ymmp Y pp o Py

might be appropriate. This would insert a preliminary value W

into the output (which in the above context would usually be less than
w]). The same form of model shifted forward and with some sign
changes in the parameters could be useful to represent the effect of

price changes. In the application illustrated in Figure 2(f), W,

would be positive and would represent an immediate rush of buying when
a prospective price change was announced. The reduction in buying

immediately after the change occurred would be represented by wytw,
and the final effect of the change would be represented by wo which

is shown as negative but, of course, could have a zero or positive value.
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Obviously, these difference equation models may be simply
extended to represent many situations of potential interest.
The following points are worthy of note.

i) The function y, represents the additional effect of

the intervention over the noise. In particular, when Nt is non-

stationary large changes could occur in the output even with no inter-
vention. Fitting the model can make it possible to distinguish between
what can and what cannot be explained by the noise.

i1) Intervention extending over several time intervals can be
represented by a series of pulses. A three month advertising campaign
might be represented, for example, by three pulses whose magnitude

might represent expenditure in the three months.

4. Calculations based on the likelihood

Suppose we entertain a model of the form

k
¥y = _Z ytj + Nt (4.1)
j=1
k
where E ytj is the transfer function given in (3.1) associated
J=l
with known interventions, Nt assumes the model in (2.3), and a time

series is available of length n+d+sD. Then the likelihood may be

obtained in terms of an n dimensional vector w whose tth element

~

k
is w, = (I-B)d(]-BS)D(yt _ -ET gtj)' The corresponding model for w

?
j= E
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8](8)92(85)
Wy ™ e By (4.2)
97 (B)o,(B”)

is stationary. Thus, following the argument given, for example, in
[ 5] (page 273), and with the vector B having for its g elements

the stochastic and dynamic parameters in the model, the 1ikelihood

function may be written

I I
L(g,oglz) = (ZWUa) IM]“ exp (- - (4.3)
20a
where ﬂ']og is the covariance matrix of the vector ‘g and
n
S(8) = wihw = ] [aglyg]? (4.4)

t=-oo

with [atlzg] as the expected value of a, conditional on B and y.

If none of the roots in the model (4.2) is close to the unit
circle, then, for moderate and large n, the likelihood is dominated by
the exponent. The values of the elements of B minimizing (4.4),

which we shall call the least squares values, are, to a close approximation,

also the maximum Tikelihood values. Alternatively, if we introduce a

prior distribution such that in the neighborhood where the likelihood is

non-negligible p(@,ca) o« p(B)U;1 ,we obtain the posterior distribution

1 LS
plaly) = p(e)[mi% (st 2 . (4.5)
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Again for moderate or large samples and for a non-informative distri-

bution p(B), the term involving S(8) dominates and approximately

n
p(gly) < {S(g)f'z (4.6)
so that the least square estimates correspond with the point of maximum
posterior density.
low if over the region where the density 1is appreciable S(@)
is approximately quadratic (and in any given case it is easy to check
this numerically) then the posterior distribution is approximately a

multivariate t. For then

B
A~ el 2
: . ]§ STJ(BT-BT)(BJ-BJ)
p(Bly) @ 1+ (4.7)
e il (n-g)s?
a
a2{s(g)} : o
where Sij k. hiﬁﬂfﬁi;- and e S(g) /(n-g) .
g

Thus, for moderate or large n, B8 is approximately distributed as

multivariate normal with mean B and covariance matrix

, Vg) = sis .
The square roots of the diagonal elements of V(B) will be referred to
as standard errors (S.E.). id

In practice we may obtain g, V(B) and s; using a standard

non-linear least squares computer program for the numerical minimization
of S(g). To do this we need only to be able to compute the quantities

[at[!,@] for any B and we may proceed as follows. Since the model
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for Wy is stationary, [ath,ﬁj will be negligible for values

t < -Q where Q 1is some suitable chosen positive number. We,
therefore, replace S(@) by the finite sum t=§Q [atl%g]z. 1% 4s
shown in [5 ] that the initial values [ao], [a]],...,[aQ] may

themselves be obtained by least squares or equivalently and more
conveniently by a process of "back forecasting" which also indicates

an appropriate value for 0.

5. Two illustrative examples

The theory developed above is illustrated in this section by
two examples, one employing the Los Angeles oxidant data and the other,
the rate of change in the United States consumer price index, to

determine the effect of known interventions.

5.1. Example 1: The Los Angeles oxidant data

Monthly averages of the oxidant (03) level in Downtown Los

Angeles from January 1955 to December 1972 are shown in Figure 1.

Identification (specification) of the model

The periods between 1955 to 1960 and between 1960 to 1965 were

regarded as containing no major intervention which would affect the 03

level. The series themselves and the sample autocorrelation functions
within these periods suagest non-stationary and highly seasonal behavior.

The autocorrelation functions of such differences (1—812)yt taken
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twelve months apart show sianificant correlations only at lags 1 and 12.

This suqgests the following model for the noise ”t

2 12)

(1820, = (1-04B)(1-0,8

. (5.1)

at.

Intervention I1 and 12 of potential major importance are:

I]. In 1960 the opening of the Golden State Freeway and
the coming into effect of a new law (Rule 63) reducing
the allowable proportion of reactive hydrocarbons in

locally sold gasoline.

o From 1966 onwards regulations required engine design
changes in new cars which would be expected to reduce

the production of 03.
As we have already argued, I] might be expected to produce a step

change in the 03 level at the beginning of 1960. The effect of I2

might be most accurately represented if we knew, for example, the
proportion of new cars having specified engine chances which were in

the pool of all cars driven at any point in time. Unfortunately, such
data is not available to us at this time. We have, therefore, repre-
sented the possible effect of intervention as a constant intervention
change from year to year reflectina the increased proportion of "new
design vehicles" in the car population. As explained more fully in [3 ],

the engine changes would be expected to slow down the photochemical
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reactions which produce 03 and, because of the summer-winter

atmospheric temperature inversion differential and the difference in
the intenéity of the sunlight, the_nef effect would be different in the
winter when oxidant pollution is Tow from that in the summer when it is
high.

A model fori was, therefore, tentatively entertained,for all the

available monthly 03 data from January 1955 to December 1972,which may

be conveniently written as follows

£t2 g3 . (1-0:8)(1-6,8'") Fscal
Yi T Wn1&Esq F Gas —m t w + a ”
£ 01=t1 02 ]_812 03 1_812 (14812) £
where
0 t < Jdanuary, 1960
2
1 Lo January, 1960
1 "summer" months June-October beginnina 1966
St2 T
0 otherwise
1 “winter" months MNovember-May beginninc 1966
E =
13

0 otherwise.

This allows for a step change in the level of 03 beginning in 19260 of
size Woy associated with I]’ and for progressive yearly increments

in the 03 level beainning in 1966 of Wy and Wy3 units respectively

for the summer and the winter months. This representation is admi ttedly

somewhat crude and we hope to improve on it as more data becomes available.
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Estimation results

The maximum likelihood estimates and the associated standard

errors are
MLE S.E.
0)01 "'"I -Og 113
Wy -0.25 7
(1)03 —0.07 .06
8] -0.24 .03
8, 056 .04

~

Since examination of residuals ay fails to show any obvious inadequacies

in the model we interpret ine results as follows. The marginal distri-

butions a posteriori of Wyys Yoo and Wy are very nearly normal and

centered at the maximum 1ikelihood estimate values with the approximate

standard deviations shown.

Thus, there is evidence that

(i) associated with I is a step change of approximately

~

wy = -1.09 units in the level of 03,

(ii) associated with I, there is a progressive

reduction in: 03. Over the period studied, there is a yearly
increment of approximately Wyp = -.25 in the summer
months, but the increment (if any) in the winter

is slight.
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5.2. Example 2: The rate of chanoe in the U.S. consumer price index

A second example supplies further intuitive appreciation for
the kind of calculations which are being performed.

Figure 3 shows the latter part of a record of the monthly rate
of change in the consumer price index (C.P.I.) aiven more completely
in [6]. The complete (July 1953 to December 1972) data include 234
successive values, 218 of which occurred prior to the institution of
controls in August 1971. As indicated in the figure, in the three
months beginning September 1271 Phase I control was applied,and after

that to the end of the recorded period Phase II was in effect.
Inspection of the autocorrelation functions of the first 218
observations and their differences prior to Phase I suggests a noise

model of the form

(1-B)N, = (1-6B)a,. (5.3%

The maximum likelihood values for the parameters are

MLE SeF.
8 0.84 .04
o 0.0019

Inspection of the residuals and of their autocorrelations
reveals no obvious inadequacies of this model so we adopt it.
We now ask the question "What are the possible effects of

Phases I and II?" To answer the questicn, we subpose



7a

2
‘t‘
w
0 w.B
tog * 1o
e—o—@ .4 ¥
(f) ci: S B
&
4'1

£
—0—6—6——9 $]

(b) (e)
o—o—6 —6—=8
+ %
B
(T) w o
wBSt Wy o8
e e ¥ e Bl
(a) (d)
INPUT
S1(;T) ;o 0o i '_Q—Q—Q—I——H—O—H—'
STEP PULSE
Figure 2. Responses to a step and a pulse input
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(d),(e),(f) show the
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response to a step input for various simple transfer

models
response to a pulse for some models of interest.
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(i) that Phases I and II can be expected to produce
chances in level of the rate of chanae of the C.P.I.
(i1) that the form of the noise model remains
essentially the same.
On these assumptions the approximate model (ionorina estimation errors

in the noise structure) is

_ (1-.84B)
Yo T Wby T updde Y 3 (5.4)

where

1 t = September, October,and November 1971
0 otherwise

1t > December, 1971

0 otherwise

which may be written

t T U1Xy tegXee t Ay (5.5)
The sequences {zt}, {xt]}, {th} may be readily calculated

numerically from the equations

(1 - .848)2t = (1-B)yt
(1 - .84B)xtT = (1—B)£t1
(1 - .84B)xt2 = (1—B)£t2

using for example the initial approximation = 0,

Sy = %71 T M
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Also, since (1-3)/(1-83) = 1-B(1-8) (1 + 6B + 92p + ...)}

we have that
“ET VY X T Rt X T EpoBi o

where Yioqs gt_],] , and Et-1,2 are exponentially weighted moving

averages of values prior to time t. For example
Vi1 =00 g + 69y, + 0%y, gh...)
We see that (5.5) is very much 1ike the regression equations
we are all familiar with in which the deviation of Y from its

average is related to the deviations of Et] and £t2 from their

averages. Notice, however, that the model copes with non-stationarity
by using not the usual arithmetic averages, but local exponentially
weighted averages which change as the series proaresses.

Using equation (5.5) the constants o and Wwyp May now be

estimated by ordinary linear least squares as

MLE Sk
¥ -0.0022  0.0010
Wyo -0.0007  0.0009 .

Alternatively, a non-linear least squares program may be employed to

estimate Wg1» Wops and 8 simultaneously from the complete set of

234 data values yielding the estimates



20

MLE o
9 0.85 .05
Wy -0.0022 0.0010

Wy -0.0008 0.0009 .

The analysis suggests that Phase I may have produced a real
drop in the rate of increase of the C.P.I. but the effect of Phase II

is less certain.

6. Nature of the maximum 1ikelihood estimators for

some level change parameters

The maximum Tikelihood estimators of parametérs such as wy1 >

tgps and  wg, in (5.2) and (5.4) measuring level changes are functions

of the data. It is instructive to consider the nature of these functions.

We first state some useful results in the summation of series.

Lemma 1 Let {vk}: be a sequence of numbers and let {xt}m
-0

=]

and {yt} be two sequences of numbers such that X4 & yt 0 for

-00

t < 0. Suppose that all three of the following double sums converge '

Se =} J many s So= Y ¥ wowx
(6.1)
Sa = ) ) VyXx "
3 ke el k7 u”ut+k
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Proof: The equality of 52 and S2 is obvious, and that of S] and

'52 follows by summing the terms.in S] with respect to

kand u =t - k.

It is convenient to express ST’ 52’ and 53 in terms of the
backshift operator B and its reciprocal, the forward shift operator

F=g1, Letting

V(B) = Y v,B and V(F) = 7§ vF (6.2)
IS k=0
we can then write
= - T .
S t§1 xtV(B)yt and S, t£1 ytv(r)xt ; (6.3)

Further, suppose we define

ny(k) = tz] YiXe g ny(k) = tZ] Kedlpg o k= 0,21,82,,.,

so that

ny(k) = ny(-k). (6.4)

The quantity S3 in (6.1) can be expressed as

(o]

53 = kZO kaxy(-k) = V(B)ny(O). (6.5)

It follows that when the conditions of Lemma 1 hold,



22

tgl xtV(B)yt = tz] Y V(F)x, = V(B)ny(D). (6.6)

This result can be readily extended into the followinag:
Lemma 2. Suppose W(B) = V1(B) + VZ(F) where V1(B)

and VZ(F) are two power series in B and F, respectively, such that

the sum 21 xtH(B)yt converges. Then
t:.
tgl xtw(B)yt = H(B)ny(O) ’ (6.7)

©

Lemma 3. Let G(B) = J ngJ and H(B) = Y h B

JE=co k==co

k

be two power series in B and converge for IB] =1, and let

D(B) = G(B)H(B). Then

D(B)

v )
JL%_mdga (6.8)

where

co

)
g;h

.
=-00

[ 1y
]

L=
In‘particu1ar

(i) if g, =9 . and he =h_,, then
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J
di = d"ﬂ,: -Z g\}gj_'_z 3 E’ = O’ 300} (O ]0)
j=0
(iii) if H(B) = 1-B, then
d'Q' = gﬁ.wgﬁ.'] L =O:i1,---3iw: (6.-”)

=1 f =m0

(iv) it 95 =9 5 and hJ =0 j < -1, then

d, = hi K 612

0 jZO 393 (6.12)
(v) 1f 95 = 9_; and hj =0 Jj>1, then

0
d, = (s 6.13
0 jZ_m 395 (6.13)

6.1. One parameter "linear" dynamic model

- Consider now the dynamic model in (3.2). Formally, it can be

written in the form

Q(Bly, = g%‘-g{%} B 4B, (6.14)

where Q(B) = ¢(B)/0(B),
even though in practice the y; are only available for t = 1,...,n.

Since the roots of &(B) all lie outside the unit circle, Q(B) can be



expressed as a power series in B which converges for |B]| =

In this section we discuss the situation where

_gﬂ((g%g_g%} - B R(B) (6.15)

and investigate the nature of the maximum likelihood estimator of B,
assuming that (i) the coefficients in Q(B) and R(B) are known and
(i1) the power series R(B) converges for |[B] =

Letting

2, = QBly, and x, = R,
we can write (6.14) in the form of the usual linear model
z, = Bxyt+a, (6.16)

so that the maximum likelihood estimator of g is

~ n n “.!
B = Z. X xZ with Var( 3) = ( % ) : (6.17)
tzl e tZT k L :

For large n, we apply the results in (6.6) and (6.7) to obtain

Lzt = L0 RO, = T ERFNG, = RFG)C,(0)

and

=

Lt = LRGIEREIE, = RERGIC,(0).



Thus ~
B = R(F)Q(B)ng(O)/ R(F)R(B)ng(a) (6.18)

and

o 2/
Var(g) = Oa/R(F)R(B)CEE(O) ;
liaking use of (6.10),we can write R(B)R(F) as

R(B)R(F) = 1, + Z Nl (6.19)

Suppose now that gt = PgT) is a pulse at time T, and a

large number of observations are available before and after T. 1In this

case
\ [” 1 k=0
Caa(" 1- . and bgy(k) = Yrg (6.20)
so that
§=r6] R(F)Q(B)y; and Var(g) = a(;] 7 (6.21)

where it is understood that B is operating on T.

Now , non-stationafity in real world time series data can often
be removed by differencing. In what follows we shall suppose that the
polynomial @(B) in (6.14) is divisible by (1-B). We now consider

two special cases of interest. i

Case (i)
—%%%% =g B . (6.22)

That is, the pulse input P£T) gives rise to a- response at time

(T+1) measured by B which dissipates completely after the (T+1)th period.
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It should be noted that with any number of periods of pure delay, the
response will follow the same pattern but be appropriately shifted. In
this case , Q(B) = R(B)F so that, from (6.19) and (6.21),

~ _ T [ee]
8% Y1 - ?221 FAL NIV (6.23)

where Ay = —2r2/r0. Also since @(B) 1is assumed divisible by (1-B),

ro+2j3r,=0 and hence J A, =1,
0" M5t PH
As an example, consider the integrated moving average model of

order one for the noise term Nt for which

@(B) =1-B and 6(B) = 1-8B. (6.24)
Since
REIR(F) = HLRE) . {2-(1—6);92'1(5242)} ,
we find that

A, = (1-0)e%, (6.25)

~

Thus, B represents a comparison between Y141 and the mean of two

exponentially weighted averages, one of the observations before time

(T+1) and the other, after, with the magnitude of the weights

(1—9)82_] monotonically decreasing as & increases.
The above set up is applicable to situations where the response
to the pulse input is expected to be short-lived. For example, the

effect on the demand for electricity during a sudden heat wave in the
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summer, or the sale of beer in Wisconsin should the Packers win the

Super Bowl. Essentially, we are comparing the observation Y141 with

the neighboring ones to determine if Y141 is an "aberrant" or
“outlying" observation. The results in (6.23) and (6.25) are appealing
since in forming the comparison more weicht is given to observations
close to the intervening event and less and less weight to observations

remote from the time when the event cccurs.
Case (ii)

“%%%% - {%%. . (6.26)

Here, the response to the pulse P£T) is a siep change in the

level of the observations measured by Rg. Thus

Q(B) = (1-B)R(B)F (6.27)
and, from (6.11), (6.19), and (6.21), we have that

<« (es]

f\— _‘[ _ )
B = rg R(B)R(F)(1-B)yqyq = ﬁz AYTer4g” L OYT- ¢ (6.23)

4 o 5
where ay =1, (rl—r£+]) so that RZO o= 1.

The quantity é is, therefore, a contrast between two weighted averages,
one of observations before the intervening pulse PiT) and the other
afterward, where the weights are symmetrical.

As a first example, consider again the integrated moving

average model in (6.24). We find
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% I’ i oy B
B = (1-8) ] 87y -(1-8) § 87y (6.29)
=g  THI*L g=p T4

as obtained earlier in our paper [ 27.

As a second example, we return to the model in (5.2) for the
monthly averages of ozone in Downtown Los Angeles. For illustration,
we shall ignore the effect of interventions after 1966 and discuss
the step change

%%E-P£T) = wy184 T = December, 1959

in the level of the series due to the intervening events around °

that time. In this case, the noise model is such that

() = (1-81%)
and o(B) = (1—618)(1-62812) g
Thus
& S |
(1s%) (1 ) o
i=() J=O . J . J
R(B)R(F) ] —(Z'{T.B)(ETT.F)
(1-0,8)(1-6,8'%) (1-8,F) (1-8,F14) Y=o 3 /350 3
(6.30)
so that from (6.10), iy @ jZO TiMigg -
The T can be obtained from the relationship
(1-6,B)(1-0 812) of 7,89 = %1 pJ
L = 3=0
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By writing “j = 12n + m, we find

Tamim = (17007 (6-6,) 7 16T T ((1-6)¢"- (1-0, )60+ (6-6,) 6]
(6.31)

8]2 ;

where ¢ = 1

From (6.31) and after some algebraic reduction, we obtain,

upon setting £ = 12k+s,

0, (1-6,)2 7 467 03
_ : -1 141-6, ] 1) |k
Mlakes = (1-87) (1-03)7" 112-s(1-8, )+ oy (1-¢82 - ¢—e,,) 2
] o
+(1-0))72(8-0,) 7 (1-90,) 1 (1-62) T (1-9)205¥15%,  (6.32)

The resulting weight function for the Los Angeles data is shown in

Figure 1 above the observations.

6.2. The general "Tinear" dynamic model

The result in (6.18) can be readily extended to the case of more
than one parameter. In the general dynamic model with k inputs in

(4.1), letting

¢(B) :
o8y 5,87 T By%(E) (6.33)

we can then write

g T 10000 (6.34)



30

where as before in (6.14), Q(B) =@(B)/9(B). Assuming that all the

coefficients in Q(B) and Rj(B) are known and these k+1 power

series converge for [B| = 1, the model is then linear in the k

parameters B = (B],...,Bk)'. It readily follows that, for large n,

the maximum Tikelihood estimator 8 satisfies the normal equations

1T >

AB = b (6.35)

vhere A is a k x k matrix and b a k x 1 vector such that

(0)

=
1

[0, agy = Ry(FIRy(8)

i ‘gt

r o
n

(b],...,bk)' with bj = Rj(F)Q(B)CEjy(O); 1.j=1,...,k.

In what follows, we shall investigate the special case having

two parameters,

Yi ={61n(B)B + 32(1-8)']8}P£T) + %T(%)Y a, . (6.36)

In this model, B}n(B)B PiT) » where n(B) s assumed to converge for

|B| = 1, measures the transient effect and B, represents the eventual
change in the level of the observations induced by the pulse input
P£T)_-see Figure 2(e) for the special case n(B) = (I—GB)']. When

By = 0, the model reduces to that considered earlier in (6.26). It is, there-

fore,of particular interest to know to what extent the nature and precision of

the estimator of By is affected by the presence of B]. We shall
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again suppose that the noise term is non-stationary so that @(B) is
divisible by (1-B).
To facilitate comparison with the model (6.26), we shall again

define a quantity R(B) such that

Q(B) = (1-B)R(B)F
so that in (6.35)
Ri(B) = Q(B)n(B)B = R(B)n(B)(1-B) and R,(B) = R(B).

It follows that, provided |A] # O,

)
By = |Al " {apgyby - aj,b,}
. 4 (6.37)
By = [Al " {agyby - ap,by}
where [§| = a]]azz-a%z :
b1 = R(B)R(F)(1-F)n(F)(]-B)yT+] s

o
n

2 R(B)R(F)(1’B)YT+]’
a1y 2y0s and a,, are, respectively, the coefficient of B8° in the

power series
a77: R(BIR(FIn(B)n(F)(1-B)(1-F)
aj,: R(B)R(F)n(B)(1-B)

LPPE R(B)R(F) .
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Some properties of B] and 82

(i) Both b, and b2 are linear functions of the observations

1

Vi By setting B = F = 1, the sum of the coefficients associated with
Yi is zero for both of these functions. Thus, B] and 82 are

lTinear contrasts in Yy

(i1) The estimator B, can be expressed in the form

B, = Y 0¥ = P M (6.38)
2 gLy NETHIHR L7287 T-g

where ] o, = Yoo, =1
gs0 B g2p 2

i.e., a contrast between two weighted averages, one of observations on

or before the pulse input and the other afterward. To see this, since
B, s a Tinear contrast it suffices to show that  } o, = 1.
2=0

From the expression for b, in (6.37), letting

G(B) = R(B)R(F), H(B) = 1-B
and b2 - Ezimdiyr+1-£

0
it follows from (6.11) that ) d, = a

==C0

22’

Further, making use of (6.12) and (6.13), we see that a1,

in (6.37) is also the coefficient of 8% in R(B)R(F)(1-F)n(F).



33

If we now set

G,(B) = R(B)R(F)(1-Fh(F), Hy(B) = 1-B

and ?‘
= *
%7 b 9 Yy

I=a
A

0
we then have ) d7 = 3;,. The desired result follows since

= Z
= -

® 0 0

he Y
oy, = |A] a d, - a g% 5 = 7,
mzo 18 = 1A 1 Qz_m L “ Bl G

This property is similar to that of é in (6.28) .for the model (6.26),
except that the weight functions are no longer symmetrical. From

least squares theory, we have

a
82 = B = ijr (b] = 3128) (6-39)

~

and the second term on the right hand side measures the effect of
the presence of the term B1n(B)B PgT) in the model.

(ii1) One would expecf that addition of the parameter By to the
model would reduce the precision with.which 62 could be eétimated. A
useful measure of the loss of information is the variance ratio
Var(gz)/Var(g) where it is understood that the denominator corresponds

to the model in (6.26). Now

— = -p where p = ——S 7 . (6.
Var (B) (a]]azz) /e
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We now illustrate the above results in terms of a specific
example. Consider the case
n(8) = (1-68)"" ®(B) =1 - Band 0(B) = 1-6B .
We find
S S (Tee)1#8). o 3 %
By = B - [(1-8)8™ - (1-0)6" 1y (6.41)
2 (9-8) 220 TH14L o
where
“ S0 ol
B = (1-8) ] &%y ~ {36} ] B ¥
gep © PRIERL g TR

as given earlier in (6.29). In this case only the weights associated

with the observations after the intervenina pulse P§T)

are affected

by the presence of 81(1—68)'18 PgT) in the model. The weight

function is shown in Figure 4 for 6 = .5 and § = .25.

Also, for this model the variance ratio is

Var(éz) - (1-8) (1+5)
Var(g)

(6.42)

Table 1 shows the value of this ratio for various values of 8 and §.
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Table 1:  The variance ratio V for various

values of & and 8.

N " -.25 0 2.5 5

-9 2.0 2.80 4.00 6.00 10.00
=25 1.56 2.00 2.67 3.78 6.00
C 1.233 1.60 2.00 2.67 4.00
25 1.20 1496 1.60 2.00 2.80
5 Ll 1.20 1338 1:.56 2.00

Thus, the presence of B in the model can cause large increases in
the variance of 82, compared with B, when & is negative and & is

positive.
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