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1. INTRODUCTION. In a recent paper, Puri and Senturia [5] study
the content Z(t) of a reservoir with infinite depth. In that
model instantaneous inputs and releases occur at random times
such that their number, N(t),in the interval (0,t), for t>0

is a Poisson process with parameter A+p, A,u>0. The inputs form
a sequence of independent nonnegative random variables {Xn},
which are independent of N(t) and have a common distribution
function B. In addition, independent of the {Xn}, the

releases form a sequence of nonnegative independent random
variables {Yn}, which are independent of N(t) and have a

common distribution function D, negative exponential with
parameter B>0. The reservoir has capacity h and is therefore
full when Z(t) = h for some t>0. If an input at time 7.,
say, of random amount X exceeds h-Z(t), the deficiency of the
reservoir, an instantaneous overflow occurs, the level of the
reservoir remaining at Z(t) = h until the occurence of the next
release, Y. Puri and Senturia obtain the Laplace transform

of the content distribution for an initially full reservoir

and for an arbitrary initial content. This was done for the
case in which B is a general distribution function, while

D is a negative exponential distribution function with parameter

B>0. These content distributions, it is shown, tend as t-«

to a 1limit distribution independent of the initial conditions.



One motivation for studying such storage models is an
attempt to extend further a mathematical theory of quantal
response assays. The classical theory developed by Finney [2],
among others, depends upon a threshold level (tolerance limit)
assumption. A new non-threshold approach to quantal response
assays was presented by Puri and Senturia (see [5]). This
approach utilizes a continuous time stochastic process which
describes, for t»0, the effective level of a drug in the
subject's body. Such a stochastic process is developed along
with, yet independent of, an appropriate response indicating
stochastic process. The quantal response assay procedure
considered in [5] is one in which at time t = 0 a single fixed
dose, z, of some noxious substance is administered to the
subject. There are, however, situations in which one would
like to determine dose response relationships when repeated
exposures to some noxious agent occur. In many industrial
occupations, as for example coal mining, or asbestos product
fabrication, such a condition obtains. In order to extend
the applicability of the theory developed in [5] to these
cases, it is appealing to turn attention to the models in
storage theory. Moreover, because of the biological nature
of the systems involved in quantal response assays it is
important that we focus attention on finite rather than infinite
capacity models.

One finds, however, that the vast literature of storage
theory contains relatively few models that are applicable to

the problem of quantal response assays. One reason for this

is that in storage theory the assumption of infinite capacity



has often been made. Unfortunately, this assumption is made not
so much to satisfy the realities of the situation as to make
subsequent analysis more tractable. Some infinite capacity
storage models relevant to the present problem are discussed
in [6]. Most of them are characterized by a deterministic
release rule, which, as indicated in [6], is inappropriate for
a quantal response model.

The situation is much the same when one turns to finite
capacity models. One finds finite models, such as those of
Roes ([7], [8]), Odoom, and Lloyd ([3]), and Ali Khan ([1]),
all of which retain the same assumption of deterministic release,
that is, unit release per unit time, as is made in most infinite
capacity models. Thus the objection raised in [6] to the
applicability of these models to this biological phenomenon
remains. What one would like is a finite capacity storage model
with the inputs and releases comprising sequences (either
independent or dependent) of random variables.

In the present paper, to these ends, a finite version
of the storage model studied by Puri and Senturia [4] is
considered. Exact distributions of the content, Z(t), are
derived for an initially full reservoir, for an initially
empty reservoir, and for a reservoilir with an arbitrary
initial content z, 0<z<h, Limiting distributions, as t-w,
are also derived, and turn out, as expected, to be independent
of the initial content :z.

Let {Z(t), t>0} be a stochastic process which represents

the content of a reservoir with finite depth. That is, Z(t)



takes values in the interval [0,h], h<w, The process Z(t)
is defined constructively as follows. Initially Z(0) = z,
0<z<h, The process Z(t} remains constant at the level z for

a random length of time, whose distribution function 1is

l-exp{-(A+u)t}, t>0
H(t) =¢
.0 t<0

where A,u>0. At the end of this random length of time the
process Z(t) jumps to a new level. We shall say that such a
jump is, with probability A/(A+u), an instantaneous input, X,
to the reservoir and is, with probability u/(A+u), an
instantaneous release, Y, from the reservoir. The reservoir
is full when the content attains the value h. If the input,
Xy exceeds h-z, or the defiwiency of the reserveir, an
instantaneous overflow occurs, so that Z(t) takes the value h
until the occurrence of a release. If the release, Y, exceeds
the content at that instant, then only the available amount

is released, and Z(t) takes the value 0 until the occurrence
of an input. The process continues in this manner, the
waiting times between jumps of the process all following the
same distribution H., We assume that the sequences {Xn} and
{Yn} are independent of each other and of the random waiting
times. The Xn are assumed to be independent nonnegative
random variables with common distribution function B(x).

The Yn are assumed to be independent nonnegative random variables

with common distribution function D(y).



2. THE PROCESS Z(t).

P VI T RV o s

2.1. AN INTEGRAL EQUATION FOR THE PROCESS Z(t).

B e R e e e I PRV ) ~ R IV V)

The following notation will be used throughout.

W(t,z,x) P(Z(t)<x|Z(0) = z), x<h

[ee]

S exp(-0t)W(t,z,x)dt, Re(8)>0
0

®(0,z,x)

_ 1 for x>0
I(x) 0 otherwise

For x40, W(t,2,x] = 0, while for x*hIW(t,z;x) =.1. -let N(t)
denote the number of jumps of the process Z(t) in the interval
(0,t]. Then N(t)<« almost surely. The forward Kolmogorov
integral equation for W(t,z,x) is then valid, and we may
concentrate on the nature of the last jump of the process Z(t)
before time t. The following forward Kolmogorov integral
equation for W(t,z,x) for the case 0<x<h can be readily

established.

(1J W(t,z,x)

I(x-z)exp{-(A+u)t}

t X
+ uf exp{-(A+p) (t-t)}dTS W(t,z,x-y)dB(y)
0 0
h-x
+

uS exp{-(A+u) (t-t)}dtS W(t,z,x+y)dD(y)
0 0

t
+ uf exp{-(A+u) (t-1)dr[1-D(h-x)].
0

Converting equation (1) into its Laplace transform we have,

for 0<x<h and Re(8)>0,



(2) ®(0,z,x) (A+u+0) = I(x-z) + kfxi(e,z,x-y)dB(y)

h-x ’ -1

+ u[f0 ®(6,z,x+y)dD(y) + [1-D(h-x)]8 7].

The existence and uniqueness can be shown by the principle
of contraction mappings. The solution of equation (2) appears
to be rather complicated in the present general form. A
tractable solution is possible in the case in which B is a
negative exponential distribution function with parameter
>0 and D is a negative exponential distribution function with

parameter B>0. We turn to this special case in the next

sub-section.
2.2 SOLUTION FOR THE TRANSFORM &(6,z,x).

From now on we assume B(y) = l-exp(-ay), y>0, 0 otherwise
and D(y) = l-exp(-By), y>0, 0 otherwise, and first exhibit

the solution of (2) in the case z = 0.

THEOREM 1. For z = 0 equation (2) has the unique solution, for

0<x h,

i

(3) $(6,0,X) = 61 + (ae)‘l(rlmy{exp(rlh) (rl-s)“l-

[exp(r,h) (r,-8) " - (ry*a)exp(r ) (r,+a) F(r -8 7110

[exp(r,x) - exp(rx) (ry+a) (rp*a) 1]-exp(ry, )3,



with

[ exp(-8t)P(Z(t) = 0]Z(0) 1
0

0)dt = 6 [1-0" ! (r +a) {exp (r,h) / (r,-8) -

exp(rlh)/(rl-B]}{EXP(Tzh)/(TZ‘B)'

1}-1

(4) exp (r;h) (ry+0) (r,+a) "t (r -8 1171,

1

where Re(6)>0 and Ty and r, are given with plus and minus sign

respectively by,

1
r (8), 1,(8) = -A(8) + [(A(8))® + 4080 (A+p+0)]”

(5)
2(A+u+0)

where

A(6) = o(u+8)-B(A+6).

Proof: We show that one solution of (2) is of the form
1

$(0,0,x) = 6 ~ + Cl(e)exp(rlh) F Cz(e)exp(rzh) with r, and r

1 2
as in (5). Substituting this form of the solution into (2)
we obtain an identity in x. Comparing the coefficients of
exp(rlx), of exp(rzx), of exp(-ax) and of exp(Bx) on both

sides of this identity we obtain the three relations

(6) Cl(e)(rl+&)_1 + Cz(e)(r2+u)_1 + (ae)-l =0,

and

(7) Cl(G)exp(rlh)(rl-B)_l + Cz(e)exp(rzh)(rz-g)'l =0,
(8) Atuts - ad(r+a) T+ up(r-8)" = 0.

Equation (8) has the two roots r, and T, given in (5). Once

1



these roots have been determined it is a straight forward matter
to determine cl(e) and Cz(e) from equations (6) and (7).
These yield the result in (3). The uniqueness of solution of
(2) guarantees that (3) is the only solution for the case
z = 0.

Finally, (4) follows from

(o]

J exp(-6t)P(Z(t) = 0]Z(0)
0

i

0)dt = lim+~0.
x>0

We shall next state a lemma which is essential in the
case (<z<h, Let H be an arbitrary function, defined on the
nonnegative half of the real line, which is integrable in
every finite subinterval of that half line and which can be
expressed as the difference of two monotone nondecreasing

functions. Let also

ki) = J H®™ sy,
n=o

5
B0 sy =1, B sy = s u® D s wyan, 0<s<h-z, n=1,2,...
0

(9)

LEMMA 1. (i) The Volterra type equation
g

(10) F(£) = a + [ F(g-y)dH(y), 0<g<b<e
0

in F, where H is given and has the properties listed above

and a is a given constant, has solution given by
(11) F(g) = aK(g)

and this solution is unique, provided K(Z) converges uniformly

in 0<E<b<m,



(ii) Let B be such that B(s)/s<A<» for 0O<s<e, for some e>0

and some constant A>0. Then for

L

(12) H(s) = [AB(s) + u(l-exp(Bs))](A+u+6) ~, 0<s<h-z,

where z is fixed but otherwise arbitrary, K(s) exists and is

finite fer 0<{&<h-z.,
Lemma 1 was proved in [4], where it was noted that when
B has a density the condition B(s)/s<A<« for 0<s<e, some
e>0, A>0, is satisfied and the lemma holds. In our model,
B possesses a density and thus the uniform convergence of K

is guaranteed. With that we turn to the case 0<z<h in the

following

THEOREM 2. For 0<z<h equation (2) has the unique solution,

for z<x<h,

Je-1+Cl(6)exp(r1x)+C2(8)exp(rzx)-(k+u+e)—1K(z-x), 0<x<z
®(6,z,x) =

15 le_1+C1(6)exp(r1x)+C2(e)exp(r2x] ,2<x<h
where
cl(e) = [(r2+a)_1—(r1-8)exp{(rz-rl)h}(r1+a)-1(r2—8)—1]'1-
-1 -1 7
(14) *[(aB) “+(A+u+8) S exp(av)K(z-v)dv]-
0
+(r-8)exp{(r,-T,)h}(r,-8) "7,
Cy(8) = -[(r,+a) - (ry-B)expl(r,y-r,)h} (r *a) L(r,-8) 117t

7
L5 '[(@9)—1+(K+u+8)_1f exp(av)K(z-v)dv],
0



= [0s

and r r

s 1

as in (5), K as in (9) with,

2 -

1

(16) H(u) = [u(l-e %) - a(1-e™)]a+u+0) "L, o<ush-z.

The proof of Theorem 2 employs the exact same technique

as in Theorem 2 in [4]. That is, first & is designated as

fil(e,z,x) for 0O<x<z
BLO %) =
i@z(e,z,x) for z<x<h

Then noting that the solution & to (2) in the case z=0

2’
has the form

-4,

(17) @2 = 0 + Cl(e)exp(rlx) + Cz(e)exp(rzx), z<x<h,

we construct a solution to (2) by putting ®, as in (17)

2
and setting

=1

@Z(G,Z,X) = 6 + Cl(e)exp(rlx) + CZ(B)eXp(rzx) + gl0,24x) y D<x<g,

(18)

where g(0,z,x) is a function to be determined. The same

Volterra type equation,

1 S
+ [ r(8,s-y)dH(y),
0

r(6,s) = (x+u+e)"

as obtained in [4] Theorem 2 results where now H is given
in (16). The solution to this Volterra type equation is
provided by Lemma 1. It is then a straightforward matter to

determine the constants cl(e) and cz(e) following the same



=T s

method as in [4] to which the interested reader is referred
for details.

The case z = h is now given in

THEOREM 3. For z = h equation (2) has the unique solution,

for Daxeh,

#(0,h,x) = (80) '[exp(r h)/(B-1,)-exp(r h) (r,+a) (B-1,) T (r %) 1171,
(19)
-[exp(rzx)-exp(rlx)(r1+a)/(r2+u)],
with

0

[ exp(-0t)P(Z(t) = h|Z(0)
0

h)dt = (Be)-1[exp(rzh)/(B-rz)-exp(rlh)(r1+a)(r2+a)—1

] 1

+(8-17) "1 [exp(r,h) T,/ (B-1,) ~exp (r h)ry (r+a) (ry*a) “H(B-r ) 7MY,

(20)

where Re(6)>0 and ry and r, are given in (5).

The proof is omitted. The solution follows the same
technique as that in Theorem 1 except that we exhibit a

solution in the form & = Ciexp(rlx) + Czexp(rzx) with r, and r,

1
as in (5). In addition, (20) follows from

S oexp(-8t)P(Z(t) = h|Z(0) = h)dt = 8 1-1im®(6,h,x).
0 x4+h

From Theorems 1,2, and 3 one can derive the moments
of Z(t). Let, for Re(s)>0,
o0 h
c(t,s) = [ exp(sx)dXW(t,z,x) = exp(hs)-sS exp(sx)W(t,z,x)dx .
0

- 00



-12=-

Then

o -1 h o
S exp(-0t)c(t,s)dt = 8 “exp(hs)-s/ exp(sx)/S exp(-0t)W(t,z,x)dtdx
0 0 0

by virtue of the integrability of W(t,z,x) and Fubini's theorem.

From (13) it then follows that

[ exp(-8t)c(t,s) dt = e_l—s{cl(e)(r1+s)_1(exp{(rl+s)h}-1)
0
(z1) +c2(e)(r2+s)'1(exp{(r2+s)h}-1)
- z
-(A+u+6)-1f exp(sx)K(z-x)dx},
0

where Clte) and Cz(e) are the same as in (14) and (15)

respectively. Thus

f exp(-8t)E[Z(t)|2(0)=z]dt = 5[/ exp(-8t)c(t,s)dt}]
0 0 s=0
(22)
B ot -3 -1
= (A+u+6) S K(z-x)dx—Cl(e)rl (exp(rlh)—l)—cz(e)r2 (exp(rzh)-l),
0

and similarly

J exp(-0t)E[Z(t)]|Z(0)=z]1dt
(23) 0

'
= 2 Carpen "L xK(z—x)dx+C1(BJril{exp(rlh)(ril-h)~1}
0

+C2(e)rél{exp(r2h)(rz-l-h)-l}]

The 1imit behavior of Z(t) at t»= is given in the

following theorem.



=15

THEOREM 4., Under the conditions 9£ Theorem 2

1imP(Z(t) <x) = ¢ (x), 0<x<h,

-0

independent of the value of z, where the distribution ¢ is

given for 0<x<h by

'(a+8)[B(h+u){urleXp{-ph}-a(BA)'1}]'1.
¥(x) = [exp{-px}-o(A+1) {A(a+8) I 1], au>Br

1 1

{g[B" -l(uu)'1eXP(-ph)]}fl{l-l(a+s)exp(-pX)[u(k+u)]' , OU<BA,

(24)

where p = (au-BA)/(A+u).

Proof: By a standard Tauberian argument (Widder[9], p. 192)

P(x) = 1imé®(6,z,x) for 0<x<h,
640

Applying this argument to ® in (3), (13), and (19) we arrive
at (24)., Thus the limit is independent of the initial
condition Z(0) = z.
The interpretation of this 1limit is that if average
inputs per unit time exceed average releases per unit time, then
Z(t) has a nondegenerate limiting distribution with positive
mass at h. Moreover, if average inputs per unit time are
less than average releases per unit time, then Z(t) also has

a nondegenerate limiting distribution with positive mass at 0.
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