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TOPICS IN MODEL BUILDING

PART IV. SOME PROBLEMS IN MODEL DISCRIMINATION

Certain authors ([5],[10]) have remarked on what they
‘have believed was the instability of the posterior probabili-
ties of the médels calculated using Box and Hill's digcrimi-
nation technique [1]. We show in this chapter that this
instability arose not fér any inappropriateness of the
technique itself but because it was used under the conditions

which violatedcritical assumptions.



4.1 The posterior model probability P(Mily) when the

experimental error variance o2 is not known.

In the preceding part, méthods are given for
obtaining posterior model probabilities P(Mi]c,x) for fhe
case where the experimental error variance o2 is known.
There are, however, many instances in practice where o? is
not known. In some cases, a limited knowledge of o? is
available from some replicated runs in a preparatory
investigation or, in other cases, o? is not known because of
~difficulty in repeating the experiment at the same experi-
mental condition. We first present the procedure for
computing the posterior model probability when o is not
known and then consider the situation where some previous
information is available.

The posterior probability for the ith model M; is

P(M;ly) = [ p(M;,0]y)do

= [ P(Mi|c,sz(clszo; i=1, 0 00 M.  (4.1.1)
However

m
p(oly) = I p(o|M.,y)P(M,|y) (6.1:2)
jzl J g

that is to say, the posterior density of o is the weighted

sum of the p(o|M;,y) with weights P(Milz). Unfortunately,



the latter probabilities P(Mily) are precisely the quantities
we wish to compute. The dilemma can be resolved in the
k

following way.

Substituting (4.1.2) into (4.1.1) we obtain

m
PO1Y) = [ PCilonn | I peolengy)pon 1y)]ao

j=1

: _
= I PM.|y)Sf P(M; |o,y)p(a|M,,y)do, (4.1.3)
j=1 e b Jois

Making use of the notation

Q; = J POM;lo,yIp(a|My,y)do, (4.1.4)
we have
m
P(M;|y) = jflp(Mjlf)Qij; LB R T (4:2.9

Notice here that we have the relationship

m
2% z M.|a, og|M.,y)do
& i (1=1p( ;19,y))p (o] i)

= [ p(G[Mj,Z)do AT I8 im0 6]

m-1
)

Eliminating P(Mmlx) from (4.1.5) by P(Mmlz) L
j=1

P(M;ly),

we obtain



m=1 m-
P(M,ly) = Z P(M|y)Q.: + (1 - £ P(M.|y))Q,
* j:l == 1] j: =

Thus we have the m-1 simultaneous linear equations

(Q,nQ;, PO IY) *+ (@) poQ; IPCLIY) + ...

T T A PR (T

1/ iz 1,i+1)P(Hi|!)

* By Y PO D Y - e e i PR 1) -

, TN

in) 2. ... el (4.1.8)

Using the matrix notation

ZP = w (4.1.9)

where

pre (P(Mll):),P(lez),...,P(Mm_llz)}, (4.1.10)



e B T o T ML |
Q,n"%,1 PR e R
‘ﬁQm-l,m-Qm-l,l U-1,m"%-1,2 Q-1 1 Um-d -1
S e (4.1.1%)
and
il (Ql,m’QZ,m""’Qm-l,m)' (e d-12l
Solving equation (4.1.9) for P(Mi|z); 1=1.2,.7..,m We
have : '
..1 - 3 ;
3 P =g e (4. 1.3
For the case where we have only two models in
consideration
P(M,ly) = E: (4.1.14)
1T G

However, from (4.1.6), Q;*?,; = 1. Using this relationship

in (4.1.14) we have _ g




Q; gl
P(M,|y) = : - : (4.1.15a)
e Q2 Qz% Q12* R34
and so
PO {3)in 1= P(M 1)
Q 1-Q
21 3 (4.1.15b)

Q2% Q27

Now we recall that Q,, = fp(leo,X)p(olmz,X)dU.
Consider the range of o which the model HZ indicates is likely
to contain the true value of o. If the probability P(Mzic,z)
is low in this region, then Q,9 will be small relative to
unity and thus the rival model My will have a high posterior

probability.

For the case where we have three models Ml’ MZ and

MS’ the equation (4.1.13) gives

: ‘1
[Py ly) Qe G1*! ° U3 % Q3

PO, IY) et BNl (%) (F-T06)
which gives

P(Mjly) = Q),Q,5 * Vg * Uil
P(Mal¥) = Qy3Q3) * Qp3Q3; * Q3705



It is noted that when M3 is not included, that is,
P(MSIU,XH) * B for a1l ¢, this last expression reduces to
equation (4.1.15) apart from the common factdr, since
g

To compute Qij we have to integrate the product of
P(Milo;zn) and p(o|Mj,Zn) with respect.to o. When there
is practically no iﬁfdrmation on ¢ we may use the non-

informative prior p(log o) « constant ({3]1) and then it

can be shown that

n-p; <
= S . 2 1.1
ra) T i
p(UIBIi’Zn) = Izl-p.) e 20 U'(n"pi"’l)
1
r( 7 R (4.1.18)

assuming that the vector En of the experimental errors

€15€ps -0 sE follows N(Q,Incz). Also this is the result
based on the linear approximation already mentioned in the
preceding sections.

When some information or;"crz is aﬁaiiable, for example,

from replicated runs in a preparatory investigation, the

prior density of o given by

v
< Vs
= 2 ..v_s__z. & 3 2 -
p(o) = 5{31) g  ELE in (4.1.19)
\2-}




should be used instead of the non-informative prior density.
: : - :

In this expression, s 1is the mean square (with v degrees

- of freedom) from the replicated runs. In this situation the

posterior density of ¢ under My becomes

v+ (n'Pi)
o : vsz+Sizn
zci“f‘l”£> =Gunegtl) o
p(oly,M.) = o e
Bk o
r(—~—7-} (4.1.20)

When we have some replicated runs in the current
experiment which yield the sum of squares vs? with v degrees
of freedom, we have the same p(c|z,Mi) as above except that
Si,n bécomes the lack of fit sum of squares in this case.
For a given value of o, the methods described in Part III
can be used to compute P(Milcr,):n).1 Unfortunately it 1is
not possible to evaluate the integral Q's analytically.

The numerical integration to obtain Q's, however, is quite
feasible.

It is of interest to note that, as v becomes larger,

vs? will overwhelm S;  in (4.1.20) and p(oly,Mj] will tend

n
H]
®
to become more sharply concentrated about o = ¢ (the truc
]
value of o), whence Qij.will tend to P(Mily,o Y fer all .

Thus the matrix Z given by (4.1.11) will look more and more

1 :
In Part III, for convenience the notation P(Milzn) instead
of P(Milc,zn) was used for the posterior probabilities of the
model Mi given the exact knowledge of the experimental error

variance o?.



like I _;, the (m-1)x(m-1) identity matrix so that P(Milf)
given by the equation (4.1.13) Fill approach P(Mi|¥,c*).
In Part III an example was studied where o was
supposed to be known and equal to 0.05. This same example
is now reconsidered but supposing o to be unknown. The
posterior probabilities obtained from (4.1.13) above are
g.001, 0.675, '0.23% and 0.091 respectively for the models
Ml’ MZ’ M3 and H4. These probabilities, interestingly
enough, are not much different from those obtained with
o = 0.05. The reason clearly is that the correct model
included gives a mean square of residuals which is quite

‘close to the value of ¢ assumed.

4.2 Seduential computation of the posterior probabilities

of models.

Once the posterior probabilities are established after

the preliminary runs, we can recompute them Sequcntially as
T
new observations become available.

2

It is not recommended to use the procedures described in
Part TII to obtain the nosterior probabilities in this
sequential situation because, strictly speaking, this would
amount to changing the initial prior information on parameters
at different stages of experimentation.
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4.2.1 o known case.

Via Bayes' theorem,
P(M,ly .q159) = POM, |y .0)ply ,11M: .y .0) (4.2.1)

where the second term on the right hand side is given bv

P(nan My ol 9) = ——"—i————— exp{-“u?_l____ (Yne1'¥ gii) }
/%noz(1+bi) 207 (1+b;)
(4.2.2)

Thi's was dérived by Box and HE1I*[1] Gand s p; in their
notation) uader the assumﬁticn that the vector of exper:-
mental errors g.is distributed N(Q,Iaz), by making use of a
locally uniform prior for &4 and a Taylor series lineaf

approximation of the model

. f fi(gu’"-i) | e
G A0 = alln e

=) =1
(4.2.8)
In equation (4.2.2),
(i) -1 (i)
bi n+1(x1 n 1 n) En,‘,l (4-2.4]

where, denoting [3f;(5 ,8,)/30,.1 . by x(1)

i) =
. g



11

(1) o et (1) (i)
~n+l = (x nil 13 n+l 2,...,xn+1,pi) (4.2.5)
and
(1) ] x(i) :
%1 X2 i 1pi
S : : (4.2.6)
e (1) (1) sl
& Anl *n2 R np, _|

Sometimes it is inconvenient to make computations
after each run and it may be desired td'carry out a group
of experiments at each stage. In this case we proceed as
follows. Denoting the vector of £ additional observations by
_21 and that of combined n+f observations by y ., from Bayes'

theorem we have

PM: Yy, 4p00) = POM |y ,0)p(y,[M;,y,,0). (4.2.7)

In a similar manner to Box and Hill's derivation of (4.2.7)

p(y,IM;,y ,0) is given by

e
p(zllM ,Y !0) FASE —SEHE exp{-zl (1)) M (YQ' Y(l) },
a
. (2ma’) (4.2.8)

=

where
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PSR W R e L

n*l’- ezt T 3 e
" : (4,2.9)

. {2} 1o )

M, = I, + X (x1 Dw (4.2.10)

and
(2} . P (i) (1) E
Xy BAvL L Sneles P Bagiae. |

(i) D o (1)

L‘xn+2’1 n+£ 2 Lariy g xn+£,Pi_d (4.2.11)

More convenient forms of (4.2.8) can be obtained by using

the updating formula given by Box and Wilson [4]

2 (i) .
i (}:2 YR_ ) = Si,n+2’ Si,l‘l (4-2.12)

where S.

i,n+g 1S the sum of squares for the model M, based on

n+2 observations. Furthermore we have

lMil = lei + (x; - 1 n) =1 (1) x(l)l

- ! “Lig! i)' (1)
g aXy ol IR Xt BT Xy

! '
. lxi.n+zxi,n+zL/|xi,nXi,n|- (4.2.13)
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Substituting (4.2.12) and (4.2,13) inte (4.2.8)

~‘v
1

_ roetae e 8. -
-P(leMi’Zn’U) 1 : —21,n i,n exp{- i.,nr% - 1,n} :
(2"02) xi,n+2xi,n+2 20
< (4.2.14)

13

Using this in (4.2.7), we obtain

: 1% %5 ol . e N
P(M;[Yp,0,9) = POM, |y ,0) o exp{- — L.

i,n+2%i negl 2
(4.2.15)
4.2.2 o unknown case.
As in the o known case, updatlng of posterior
probabilities can be done YT e
P(Mi|¥n+l) . P(Milzn)p(yn+1’Mi’Zn) (4°2'16)

where p(yn+lIMi’Xn) is given by

p(ymllMi :Yn) - ]p(yn*'lIMi’Xn’c)p(GIMi »Zn)d0°(4-2-17)

Substltutlng (4.1.18) for p(o]M 5 ) and (4.2.2) for

p(yn.pll !Z’ lU)
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p(an*lll\ii’zn)

n'pi g
S. ) 2 | Ty
i,n . 9 3 4 (i)
2( 2 6(n-p.+2) 1 -(Yn Yn ) &9 \
> Mn-p. " 1 €Xpy - 2 ( T+ 3 o] de.
Pj ) % 20 i v
r 5 }/?F(l+bi) 0
(4.2:18)
Making use of the identity
o - Az k"l _E
J =ik*1) v Sl r(§)27 o (A:2.19)
0
in equation (4.2.18), we obtain
POy ,q M y,)
n-pi+1

(4.2.20)

where Bt Si’n/(n—pi). That is to say, the quantity
(Yn+1 = ?;ii)/si’n(1+bi)% follows a student's t distribu-
tion with n-p; degrees of freedom.

In deriving a version of Box and Hill's discrimination
criterion for the o unknown case, Hunter and Hill [7] assumed
that some replicated runs are available which give an

independent estimate s? (with v degrees of freedom) of o2

and, instead of (4.2.17), used
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@

PR My T = J Py 4pl0.M5,y)p(o]s?)do
0 .

where p(o|s?) is the posterior density based only on g

and is given by

v
2052\7 ust
B = 2
p(a|s?) = -E%—L- gkl o ae (4.2.71)
r(s)
7

This, however, ignores the information about o coming from
“the non-replicated runs.
When a group of & additional observations, y, say,

becomes available at a time, we have
PMily .g) = POGIY IPCy, 1My ) s (4.2.22)
where p(y,[M;,y ) is obtained by
p(Z;_IMian) = lp(Zl]Mi’Xn’U)p(O!Mi ’Xn)dc' (4.2.23)

Substituting (4:1.18) and (4.2.8) inte (4.2.25) and carrying

out the integration gives
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2
p " - —
r(“‘%“‘}'Mil i
plyylMsy,) = —— ’
5 =P,
n-py 7 ir B e(204)
n-pi+£
"“2
wilw ¥ =2 (4.2.24)
P s2
i,n
‘This shows that (y,- Xgl))/si . follows the multivariate-t

distribution t(Mi,n-pi). Again, using the updating formulae

(4.2.12) and (4.2.13}) in (4.2.24), we have

: n-p.
- i
Tl r(n+£2pi) Ix;_’nxi nl;5 Sgon
p(Zg'lMi’Zn} = F(f) n p1- |x . X : |;§ n+2-i)_
r( > ) i,n+2%i,n+g -—i—-i
Si,n+2
(4.2.25)

Substituting (4.2.25) into (4.2.22), we obtain the updating

formula

n-p,
n+g \ oy
F( 2 = j | ; n i n!% ql n
P(Milzn+£) « P(M;|y,) TR : - I% n+£_p1 ;
F( 3 i, n+2"i _n¥e
Y / S 2

(4.2.26)
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We see from equations (4.2.15) and (4.2.26) that,
_with y, fixed, we would arrive at the same posterior
probabilities whether we update them after each observa-

tion or after & observations, exactly as we would expect.

4.3 On the asymptotic behavior of the posterior probabilities

of models.

We examine the asymptotic behavior of posterior
probabilities by applying the updating forimula (4.2.15)
obtained in Section 4.2 to the following simple example in
which M, s a special case of Mzﬂ_'Suppose the following

1

two models are being considered.

x s )

and ¢ is known. Using (4.2.15), the ratio of posterior
probabilities for two models after n+% observations is

given by

P(M].h-{ni-i :0)

R =
n+l ?TMZIZR+£’0)

S -S
e 1 .n
] ;5 { ] k exp{_ 1,n+ v }
2 P(M1|Z’n'°; X1 nX1,n! " 1%2 neg¥s ned 20>
P{M, 1Y, 40 . A ' i S =5
z'=n |X2;nx2,n| |x1’n+£x1,n+1| exp{- 21n+22 zin}
20

(4.3.2)
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and we are interested in the behaviour of Rn+ as % becomes

-
1 ¥
larger. Since le’hxl,hl o %Pd lxZ,hXZ,h| ?

h e <
h uil(xu-xh) where x; 1is the arithmetic mean of X,

u=1,2,...,h, we have in the above expression

% e

] ;5 1
le,nxl,nl IXZ,n+£X2,n+2| _ Vn+g -
T ;ixrx |15_T (--)
1%2 2X2 0|7 X1 ne2¥X) nes Vn
h e
where v, = I (x . .-x.)
h u=1 i

As £ gets larger, Si,n+£ (i=1,2) will dominate

Si,n (ifl,Z) and also VE+£ will grow larger since it is a

monotone increasing function of %, while p(Mliyn,U} F(HZiyn,c}

and VE remain fixed. Therefore the asymptotic behavior of
Rpeg will be determined by
% o -S
1.,ntl " Z2.n+t
B ® i exp{ 3] = .1 }. (4.3.4)

We now consider the two cases Ml correct and ”2 correct.

Case I: M, is correct,.

1

S = uo? where u is

1,n+2 72 ,n+2
a x? variable with one degree of freedom, we have

Since in this case S

R ;
R, = Ve, fexp() (4.3.5)
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-As ! tends to infinity, Ve will get larger. Therefore
R;+2 and so Rn+2 will on the avefage tend to infinity and
establish the model Ml as the correct model. Box and Hill
[1] found in one of their examples where the models are
nested and the data were generated by using one of the
simpler models that this model gradually gained in its
posterior probability as more and more observations became
available. The asymptotic behavior given above may sound
‘paradoxical since when M; 1s true M, may also be considered

-to be true with 622 = 0. However, what is meant by the

'second model MZ is a conjecture that we may need an extra

“term 8,,% whatever value 8,, may assume.

Case II: MZ is correct

: ) %
amh T T S un) Y, (8:3.6)

7where 622 qeg 18 the least square estimate of 922 based on

n+L observations, and so

20

) ; 2
(o )
VE_H/exp{ 22,n+£2 n+£} (4.3.7)

As R+, Vosg™ ‘while 622 N+ will tend to the true value

622. Since the denominator in (4.3:7) will 1ncrease much

®
faster than the numerator, Rn+£ and so R it will on the

average tend to zero and establlsh MZ as the right model.
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It is of intercst to note that the quantity
%
n+i i
: : 2~ . 2 .

increases in the range L 622/0 or equivalently after

v /exP{822Vn+£/202} decreases monotonically as v

n+{
Var(azz’n+2)/8;2 is less than unity.

It should be noted from equation (4-3:5) and {1.3.7)
that  in Case I, where the simpler model Ml 15 gorrect, R:+£
contains a x? variable u with only one degree of freedom
however large 2 may be, while in Case II where the more
elaborate model MZ is correct Var(gzz’n+2) is a monotone
'decreasing function of &. Therefore, it is easy to imagine
that in the former case some relatively large ripples in the
probabilities may occur even for a large value of &, although

the general level of P(Mliy

H
-~

n+£,d) will approach unity. On
the other hand, in the latter case, the -probability for the
correct model Mz will dominate over that for the wrong model
Ml in a quicker and smoother manner. Recently Sidik [8]
carried out some simulations to study the behaviour of
posterior probabilities in a situation where several linear
models considered are nested. His results, although based
on the use of multivariate normal prior densities of
parameters which were chosen in an arbitrary manner, tends

to confirm the points made above.

4.4 Box and Hill model discrimination design criterion.

In this section we give a version of Box and Hill

model discrimination design criterion [1] for the ¢ unknown
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case which differs from the earlier result by Hunter and
Hill (7] due to the difference in the derivation of
p(yn+l|Mi’Xn) mentioned in the previous section.

Suppose n experiments have already been carried out.
Box and Hill [1] proposed to maximize, over the operability

region, the maximum expected entropy change

m m | |
D= F 1 POM )Rty ]
el den e TR

P, P
-1 i
x { / p; &n D dy_,q * f P; 2n b, dyn+1} (4.4.1)

where p, = p(y IMk’Zn)'

For the ¢ unknown case, substituting (4.2.20) into (4.4.1)

we have
m m
e B3 ey yRely )
elia it i'<n “n
i=1 j>1+1 J a0 |
@ ‘ = (1) \-—7_— (1) 21
[ ¥ =y v+l Yy -y -
XI:JH]..[].-F%—:_M ‘ .{_ 12 lnHil*‘})— n+1 n+1;
- \ 1 \\Si,n' 1+Ei ,:. it si’n¢[+5i ; I:;
ey .2
* tn o1 Sojontl ntl ?i Ay
J vj S v1+b. f n
J,.n 3! /
2\ v.+1
el sta) " |- / <(3)
= ' 2 v,+1 Y -y -
- I Hj;l ” \];__(Yni-l yn+l\} 8 {_ 12 SR % }_{ n+l “n+1
® K J SJ,n l+bjf ! \ j S',n/1+ﬁjf
{ o
’ ‘_(1) .‘2\
vyl | Yoiny
+ %T fit]l “nel 'l}dyn+1 (4.4.2)




22

= - 2 =
where Vv, = n-py, Sk,n Sk’n/vk and
L4l 2 % -
Hk = 1/B(§~,E)#vk[(1+bk)sk,n] for k=1,2,..7,m.

" As in Hunter and Hill [7] we may approximate the log function

in the above expression by expanding it via a Taylor series

and truncating after the first order terms, whence

o m |
D =«f S OP(M.]y )P(M.ly.)
R j'Tn
_1(1)\2\ : _=k1) 4
x I:JH 1 + 1 Fnal "mel | {_\J . _]'_.f:yn"'l yn"l\%
1 V. ' 2 < |
\ i si’n{1+bi/ / llsi,n/I+Eif
i _"(j) \z
2 Uj+1 L!Yn+l Yn+1 \}dy
Z vJKS_ ’TTETJ ! n+1
], Jd
_"'(J) 2. "(J)'\z
- [H % l_(yn+1 yn+1\ i i {_v G 1 (Yn+1 Yn+1 .
(el
TS 0 1+bJ ; ] sj,n + 514
o iyl '
Y% 1 e Yonl :
alais sl - (4.4.3)
i\s. /1+b. n
1’n 1l

Making use of the fact that (y -?ﬁti)/@k n/I+5k follows a

n+l
Student's t distribution with 2" degrees of freedom under
the model Mk’ we obtain after some straight-forward

manipulation
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m m

i
pas T 3 Py PO Iy
Ldel g, SR A
= - 3 : : : :
{(vj z)visi,n(l+bi) (vi z)vjsj,n(1+bj)}
2 i 2 ,
A {(vj+1)visi,n(1+bi) (vi+l)vjsi,n(1+hi)}
; = 2 2 3 2
18 (vi 2)(vj Z)visi,n(1+bi) vjsj’n(1+bj)
A - 2 V. *1 v.+1
v 0500 { — ¢ —_ } (4.4.4)
visi’n(1+bi) vjsj’n(1+bj) I
for min{vk} -
As n becomes large, equation (4.4.4j'tends to
3 o T |
D== I T P(M.|y )P(M.ly.)
2 i=1 j>i+l i'~n j'~n
e el il ieb g ' : 1]
L e ;,(i),—(j)}z{ e }‘
2 4 2 n 11 2 2 t
~Si,n(1+bi) sj’n(1+bj) - si,n(1+bi) Sj,n(1+bj);j

(4.4.5)

It is noted that the last expression would be obtained

by replacing 02+ci in the Box and Hill discrimination design

criterion (1.2.20) for the ¢ known case with s; (1+bi).
From the equations (4.2.2) and (4.2.20), it can be seen that,
2 y 2
for the o known case, o®+o} is Var(yn+1|Mi.Zn.0 )s the
"variance of the distribution of Yqe1 8iven Mg and y  while,
“for the o unknown case, this variance tends to s{  (1+b;) as

]
“n-becomes large.
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Suppose there is some independent information about

2

0° from the replicated runs either in the preparatory

o,

. investigation or in the current runs which give a

sum of squares vs? with v degrees of freedom. Then
visi - in (4.4.4) can be separated into two parts
¥

.s? w P BTN 4.4.6
V.S vs S1,n ( )
As V becomes large, the expression (4.4.4) approaches the
discrimination design criterion for the o known case, as

we would anticipate.

4.5 Checking the constraint (H) that an adequate model is

included,

We have shown, in Sections 4.1, 4.2 and 4.3, that we do

not necessarily require replicated runs to carry out the

discrimination procedure. It is important, however, to be
able to check whether or not an adequate model is included
among those considered. When the data contain teplicated

Tuns so that

Zn £ (YII’YIZ!""y1n1IYZ1!YZ2""’anz'"'lygling!"'lygng)

(4.5.1)
g
where n = I N, the sum of squares of residuals Si q for
i=1 '

the model Mi can be separated into two parts, the

pure error sum of squares
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vs? = I Z(yjk-§j)2 with degrees of freedom v = n-g,

ik >
- (4.5.2)

and the lack of fit sum of squares

_Sgé% = ? nj(}j-fj)z with degrees of freedom g o
(4.5.3)

The models may be checked individually by a lack of fit

. test comparing (Siof/(g~pi))/s2 with a suitable percentage
point of the F distribution with degrees of freedom
(g?ﬁi,v).” In the Bayesian approach 19], ?ééidﬁalé may be

parameterized according to

s, e o
TR T (4.5.4)

where £. is the experimental condition at which the j-th

<)
group of the replicates (yjl’ij""’yin ) were obtained, and
%23
uj is the true value of the response at Ej' It can be shown

that checking if the 100(1-a)% HPD region of the posterior
distribution of the lack of fit parameters T' = (TI’YZ""’Yg)
contains the point = 0 is comphtétionaiiy equivalent to

the classical lack of fit test mentioned above with a

significance level of 100a$%.

“°-- The overall checking of the constraint H"may Bejdone

in the following way. We first reduce the data *n to ¥, by
replacing the replicated observations le'ij""’yjnj with
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their arithmetic mean }j (with variance oz/nj). This
reduction in the data affects nelther P(My !c,y Todn (4.1.43
_nor p(y +1|U s+ )-in (4 k) and the residual sum of

squares Si = reduces to SES%, the lack of fit sum of squares

L]

for M, . Therefore by replacing Si,n with SES;) in the

*
equations (4.1.18) and (4.2.20), we can compute P(Mily ) and

&
so the posterior density of o based on y “is‘given by

® *® % :
poly ) P(M;ly dp(olMy,y ) (4.5.5)

- =
[

1

which is also conditional on the constraint H that an

adequate model has been included. On the other hand, the

2

Hh
r}

-3 - - —~ - -y ey N
navxOn - oa O che censtizaint H is

independent o

v
2\ 7 Vs
2(¥B TS
p(o]s?) = -(-(—\2,—)- g B L (4.5.6)
I'(=
2

Plotting and comparing the two densities (4.5.5) and (4.5.6)
will give an overall check of the constraint H.

When o2 is known or some prior information on ¢ is
available we may compute P(Milz) based on the noninformative
prior density following the procedures given in (4.1.2). An
overall check of the constraint H will be done by checking
the location of known o, or the ?rior information available

on ¢, with respect to p(c[zn) obtained above.
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4.6 Froment and Mezaki's problem.

Using the theory we have developed in this chapter,
we now consider some examples to examine to what extent we
can shed light on supposed difficulties which have been
experienced in using the model discrimination procedure.

To examine the efficacy of Box and Hill's model
discrimination method, Froment and Mezaki [5] simulated the
sequential procedure making use of the data of Hosten [6] for
the isomerization of n-pentane over Pt-A£203 catalyst in the
presence of hydrogen with chlorine added as CCL, in order to
maintain the catalyst activity. After eliminating other
possible mechanisms, two models (M1 and Mz) were chosen as
worthy of furtner study. They are derived assuming the
adsorption or desorption process within the isomerization

step as rate controlling.

M1 (Adsorption rate controlling):

n = -————lk;ﬁ-(a+c912) (4.6.1)

112 XU

Mz (Desorption rate controlling):

n = -__AlKTU (a+b622) (4.6.2)
-
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where
~ U(AK-B) e
B8 e e 0 2 03]
A(K+1) d oy |
x 2nfl - WK-—B)‘ 5;1] + A(1 U)El .
(4.6.3)
g AE
be(a-dpmn - AL, g o b
and

c = (B + g-(égl-gl)zn[l

K+U

S(E\% Bl o» Aby.  (4.6.5

In these'expressicns, n is the space time (weight of catalyst/
molar feed rate of n-pentane), El is the conversion of normal
into iso-pentane, EZ is the molar ratio of hydrogen to
n-pentane at the reactor outlet. 611 and 6,, are the forward
rate constants, and 012 and 6,, are the adsorption equilibrium
constants for i-pentane and n-pentane, respectively. A, B,

K and U are fixed known constants.

The output response was taken to be n, and El and 52
were regarded as the input variables. 6's are unknown
parameters. The data used in their study were obtained at
425°C with 0.0121 mole per cent chlorine and are listed in
Table 4.6.1. There were several replicated runs performed
at the same temperature 425°C but with a different

chlorine level 0.0242. Using these runs the experimental



error variance was estimated to be 2.999><10-3 (g-cat./g- ¥
moles n-pentane/hr)z. Froment and Mezaki therefore pro-
ceeded as though 2.9QQXID-3 were the exact known value of o2,
Froment and Mezaki first Ehose 3 observations from
the 13 observations listed in Table 4.6.1, regarded them as
from "preliminary" experiments, and computed the posterior
model probabilities of Ml and MZ using Box and Henson's

formula [2]. They decided the next best experimental condition

by maximizing the Box and Hill discrimination design criterion

over the expe;imental rééiéﬁ,-chosé the 685;;;é;ion from the
data in Table 4.6.1 that had been taken at the condition
nearest to this next best condition, and recomputed new
model probabilities with all four obsgfvations combined by
the sequential formula -

P(Mill'ml"’ ) = P(Milzn,o )p(yn+1|Mi,0 Js (4.6.6)

This simulation was carried out several times, each time

starting wifh a differené set of "preiiminary" observations

selected from the data. The results are listed in Table 4.6.2.
From-this table, it looks as if the posterior probabili-

ties of the models very much depend on the particular set of

three '"preliminary'" observations chosen. In.Cases Z and 3,

in particular, M, looks overwhelmingly superior to Ml while

in Cases 1, 4, 5 and 6, M1 is given the posterior probability

1.000 after only five observations. Furthermore, in Case 4
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Table 4.6.1 Data of n-pentane isomerization used in the

study by Froment and Mezaki. Reaction

~

temperature 425°C; chlorine level 0.0121 mole

percent; A'= 92,65, B = 6.37, K= 2,07,

U = 0.9115
Run No. El 52 . n
105 0.4025 4,885 . 5,92
106 0.3500 5.253 3.84
107 0.2784 5.290 2.84 ;
108 0,2600 - 5,199 1.75
1i9 6.3525 6.8332 5.74
120 0.2728 7.3%0 - 55.8%
121 0.2038 7.344 - 2.66
109 0.3248 7.638 5.28
110 0.2571 8.514 3.90
111 0.2011 8.135 2.65
114 0.3017 10.598 5.73
115 0.2423 11.957 4.37

116 0.1734 10.227 2,65
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P(M2|Z,U) = (0,814 after 4 observations (Runs 109, 120, 121

énd 108), heavily favoring Mz. However, with only one more
~observation (Run 105) added, thehbosterior probability for

Mz went down to 0,000! These erratic results certainly.

raise a serious anxiety about the posterior model probabilities.
Froment and Mezaki concluded that care has to be taken in

the choice of preliminary experimental conditions.

When closely examined, however, it is readily shown
that this disturbing instability in the results which these
authors believed they had found arises either because of
a gross under-estimation of the experimental variance o?
or else because none of the models considered is really
adequate. We can see this as follows. When all the thirteen
observations are used in the least squares procedure, the
sum of squares of residuals S1 = 0.70 for Ml and Sz‘= 1.05
for M, are obtained. The residual variances are respectively
0.0636 and 0.0954 and these are respectively 21 and 32 times
as high as the estimated variance. The thirteen residuals
from the model My which are plotted in Figures 4.6.1 and
4.6.2 do not reveal any obvious lack of fit, however.

When the posterior model probabilities are computed
by the methods for the o unknown situation in Sections 4.1
and 4.2 we obtain the results given in Table 4.6.3, which
show no irregularities as encountered by Froment and

Mezaki. In Cases 2 and 3 we are told that with only 4 or 5
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Figure 4;6.2. Thirteen residuals from the model M

1

against the estimated response ;.




Table 4.6.2 Results of the '"simulation" by Froment and

Mezaki with 6 different sets of "preliminary"

L
LY

TUuns.
Case 1
Posterior Probabilities
Run No. M M
1 2
Preliminary 108
TUuns 121
111 0.517 0.483
Discriminatory 105 1.000 0.00n
TUuns. ‘
Case 2

Posterior Probabilities

Run No. Ml Mz
Preliminary 106
runs 119
109 0.036 0.964
Discriminatory 120 : 0.000 1.000
TUuns
Case 3
‘ Posterior Probabilities
Run No. M M
1 2
Preliminary 106
Tuns 107
108 : 0.519 0.481

Discriminatory 109 0.147 0.853
Tuns 120 0.002 0.998




Table 4.6.2

(continued)

Case

4
Posterior Probabilitiés
Run No. M M
1 2
Preliminary 109
TUnsS 120 ,
121 0.419 0.581
Discriminatory 108 0.186 0.814
Tuns 105 1.000 0.000
Case 5
Posterior Probabilities
Run No. M M
1
Preiiminary 106
TUuns 120
116 0.439 0.561
Discriminatory 109 0.968 0.032
runs 105 1.000 0.000
Case 6
- Posterior Probabilities
Run No. M M
_ 1 2
Preliminary 114
TUuns B
116 0.788 0.212
Discriminatory 108 1.000 0.000

Tuns
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observations there is practically no basis for prefering
either model, while in Cases 1, 4, 5 and 6 the posterior
probabilities of the models gradually point toward the
superiority of the model Ml.

The posterior model probabilities computed from the
equation (4.1.13) using all the thirteen observations
assuming that o is not known are P(Mllzis) = 0.966 and
P(lezls) = 0.034. The posterior density of o, p(clzls),
obtained by (4.1.2) is plotted in Figure 4.6.3. It should
be noted that the estimate of 0? used by Froment and Mezaki
is located at the point at which the posterior density is
nearly zero.

incidentally, as far as this example is concerned,
whether we use Box and Henson's result or the method
described in Section 3.4 for P(Milz,c) in the equation
(4.1.4), only Siight differences occur in the posterior
probabilities of the models as is shown in Table 4.6.4.

The Froment and Mezaki example does not, unfortunately,
seem to be an isolated one. Wentzheimer [10] also
experienced severe instability of posterior probabilities
when he used the model discrimination method in studying the
gas-phase catalytic methanation of four different temperatures.
The eleven models he considered are listed in the appendix
A4.1. As in the example given above, the estimate
(0.00111*10-10) of the experimental error variance was

obtained from several replicated runs at 1100°F that had
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been carried out in the preparatory investigation and
Wentzheimer proceeded as if thishestimate were the exact
known value of o?. Table 4.6.5 shows the posterior |
probabilities obtained at various stages of the experimenta-
tion at 1040°F. However, by checking the residual sum of
squares after 21 runs, listed in Table 4.6.6, we find that,
even for the model Mz which has the smalleét fesidual sum Sf
squares, the residual variance = 5.744XI0-10/(21-5) =

0.359x10 10

and this is 323 times as high as the estimated
variance given above. Obviously the instability encountered
by Wentzheimer has the same cause as that encountered in

Froment and Mezaki's example.
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Table 4.6.3 Posterior model probabilities assuming no prior

knowledge of ¢

Case 1
Run No. Ml Mz
Preliminary 108
TUuns 121
111 .506 .494
105 782 : .258
Case 2
Run No. Ml Mz
Preliminary 106
Tuns 119
109 L .485
120 .486 .514
Case 3
Run No. M1 M2
Preliminary 106
TUuns 107
108 .494 .506
109 .528 472

120 _ .503 .497
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Table 4.6.3 (continued)

Case 4
Run No. Ml MZ
Preliminary 109
runs 120
121 w397 .403
108 .608 + 292
105 .936 .064
Case 5
Run Nc. il MZ
Preliminary 106
runs 120 '
116 .492 .508
109 . 549 .451
105 .661 .339
Case 6
Run No. M1 Mz
Preliminary 114
runs 115
116 . + 473

108 .838 .162




a1

Table 4.6.4 Comparison of the posterior probabilities of

the models after the "preliminary runs"
obtained by Box an&‘Henson’s formula and the
methods given in Section 3.4 for P(Milzn,c) in
equation (4.1.4). (Data from Froment and

Mezaki [5])

P(Milz) using Box and P(Mily) using the
Henson's formula for procedure given in

P(M;|y,0) in the equation | Section 3.4 for

(4.1.4) P(M;]y,0) in the

equation (4.1.4)
¥y 1, My M,
Case .502 .498 .506 .404
Case .500 .500 .515 .485
Case .501 .499 .494 B8
Case .586 .414 .508 .402
Case .494 .506 .492 .508

Case

.588 412 .567 : .433
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Table 4.6.5 Posterior probabilities obtained by Wentzheimer

at 104C°F,
Run No.
Model No.

6 9 12 15
0.163 0.0 0.0 0.0
Z 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0
5 0.464 0.0 0.0 0.0
6 0.350 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0
9 0.012 0.001 0.0 [ o)
10 0.008 0.999 1.0 0.0
11 0.003 0.0 0.0 0.0




Table 4.6.6

Residual sum of squares after 21 runs at

43

1040°F. (Wentzheimer data)
Model No. Residual sum of squareSXIﬂlo
1 6.699
2 5.744
3 6.968
4 6.957
5 6.551
6 6.482
7 14.73
8 15,54
9 13.61
10 13.09
11 - 7.436
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4.7 Effect of different methods for evaluating the derivatives
uj P

In the process of model discrimination, it becomes

necessary to compute the derivatives

BE(5,50)
xuj = | ———— e (4.7.1)
J 6=8

for each model where 6 is the estimate of parameters based
on the available data. These derivatives are very often

approximated by

= rer .A = 4 +A ~ \
xuj {*\zusglrezy'ﬂ',sj ..sej,‘sc,ep_,
- f(gu;ﬂl,ez,...,ej,...,ep)}/aej O

either because this is computationally more confénient or
sometimes because it is impossible to obtain the response
function analytically, for example when the models are given
in terms of differential equations that cannot be integrated
analytically.

In the above approximation, Aej is usually set to
and where d is a small number such as 0.01. It frequently
happens, however, that the mechanistic models contain five
or six pa}ameters and some of the least squares estimates
are very close to zero (for example, see [10]}), and so the
A8's will become even smaller. When this happens, the

round-off error in xuj becomes serious since we are dividing
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one number very close to zero by another. Even with models

containing only two parameters such as in Froment and

.

-  Mezaki's example mentioned previously, this effect can be

substantial. Listed in Table 4.7.1 are the posterior
probabilities of models (o unknown) for Froment and Mezaki's
cases 3, 4, 5 and 6 computed using analytically evaluated
derivaties and also using the approximate derivatives
obtainedrin the mannerrdescribed above. Also shown are the
estimates of the parameters. In Cases 3 and 4, where the
-second param;ters 812 and 822 are sometimes estimated to be

very close to zero, the effect of the different procedures

to evaluate the derivatives is considerable while, in Cases
§ and 6, where none 2f the parameter ostimates are close to
-zero, practically identical probabilitiées are obtained for
both proced;res. -

.It is not difficult to imagine that this effect, when
‘6oup1ed with an even moderately under-estimated error variance,
will be large enoqg&fﬁgﬂcause instability in the posterior
probabilities. This is because, in formula (4.2.2), the

contribution of the derivatives comes through the term

2 ol Bt e o
o (lfbi) where by §n+1(xi’nxi’n) Xoels
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Appendix A4.1  Wentzheimer's models for methanation

reaction £
Model 1
0.33
. k(PHZ (PP Peo¥eq) ")
T =
0.3 016 i
(1 + “u, (PwPu/Pcokpe) * KeoPeo * KwPw * Ky
Model 2
0.33
Ry, = CyPy/Pogieg) )
s : 0.33
1+ Ky o PWE/Poo¥pg) 7T * KooPoo * KiPy + KyPyy)
Model 3
KB By M/PH K Q)
T
05,005 :
e i Hy T GOR Byl 2 BQ * KwPw * KaPy
Model 4
r t |

(1+ KHZPHZ * KegPyPy /B0 KEQ * KyPw * KBy

48
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Model 5
k(P> P K_ /P, - P,)
H, COEQ/ W T
r=
+ P 3
S i T s N KMPHZPCOKEQ/PW)
Model 6
K(F P.X. b - B
H, co"eQ’Pw = Py
r=
"l + X B s B P s D % BB D ¥ I
H, TH, co'co * *ww " ", co¥eq/ P
, Model 7
T S I
S, C0EQ N W
Tr = :
3
p
CE By * footes T NTR Poolpe/Py * Kb
Model 8
7 O R
H, co"EQ/ Py~ Pu
I = :
X+ B P & KuaBor # KuDY BoXe Jb v B3
) TH, co'co * *w'n,"coee’Pu * Ky
Model 9

kP P.. « D 7% p? )
H, CO M W' TEQ H,

(1 + KHZPHZ * KeoPoo * KyPyw * KyPyy)

R g
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Model 10
2
k(Py Peo ~PuPw/Ph, po)
T =
Tins 3
1+ KH2 pHZ * KeoPoo * KyPy * KfPw)
Model 11
e ATERE Sk
k(PHZ Peo PMPW/PHZ XEQ)
r=
0.5.0.5 7
1+ KH2 PHz * KeoPeo * XuPy * Kfy

The output response was taken to be the reaction rate
r and the partial pressures of the reactants PH 5 PCO’ P
: 2
PM were the input variables. The unknown parameters were K,

» Kags K
H2 Co

K and X,,. K., was the known equilibrium constant.

W’ M EQ
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