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TOPICS IN MODEL BUILDING

PART 11 ON NONLINEAR LEAST SQUARES

Gauss suggested that, when the model is a nonlinear
function of parameters, least square parameter estimates
might be obtained by iterative linearization. To prevent
difficulties in convergence, Levenberg, and later Marquardt,
proposed a constrained minimization procedure. On critically
examining this method with a linearly invariant metric for
the parameters, we find this to be equivalent to a simple
modification of the Gauss method which had been proposed
earlier. Procedures to decide how far one should go along
the Gauss solution vector are introduced which utilize only

quantities already computed.



2.1 Least squares

Suppose an observation Yor is described by the model

Yog ™ f(gu,g) tey u=l,2,...,n (2.0

where §u = (Elu’gZu""’gku) are the levels of k independent
variables, 8 = (81,92,...,8p) are p unknown parameters,

f(gu,g) is a known function of Eu

~

and 6, and €4 is a randonm
error. Then the method of least squares obtains values 8 of

the parameters 6 which minimize the sum of squares

n T
5(0) = B 0y, (5,,0) (2.1.2)

Using vector notation (2.1.2) may be written

S(8) = (y-fy) (y-£,) (2.1.3)

where y is the nx1 vector of Yy v=1,2,...,n and fe is the
nxl vector whose u th element is f(%u,g).

We shall say that the function f(g,?) is linear in the
parameters if the derivatives af(g,g)/aej are independent of 6 for
all j. Otherwise it is said to be nonlinear in the parameters.

In the linear case, it is easily shown that the least

-~

squares estimates 6 are the solutions of the normal equations



X X0 = Xy (2.1.4)

where X is the nxp matrix of derivatives af(gu,e)/aej. Also,

i
if X X is non-singular

1

~ 1 _
6= (Xx0 Xy, (2.1.5)

If the random elements €y u=1,2,...,n of the nxl vector
of errors e are such that E(e) = 0 and E(EE') = Io?, then
the Gauss theorem tells us that S'g is a minimum variance
unbiased linear estimator of S'Q, where ¢ is any p dimensional
vector of constants. Furthermore, if the errors &'s are
normally distributed, h(é) is the maximum likelihood estimator

of any one to one function h(6) of 0.

2.2 Gauss method and "overshooting"

More specifically local approximations to nonlinear
functions f(g ,0) (u=1,2,...,n) may be obtained by expanding
0 0
around the current best estimates 9( . (e{ ),e£°),...,e£°))
of 6 in a Taylor expansion and truncating after the first

order terms. Then,

p [ortt)

£5,00) = £(g,, 00"y v 3]
i

0
(ei-e£ )y w=1,2,...,n,
.

o=0 ()



or,in vector notation,

0
£,2 £+ X (0-00")), (2.2.2)

where fo is the nx1 vector of f(gu,e(O)); usl, 2, .0, and

X, is the nxp matrix whose (u,j) element is {af(au,e)/ae;] .
T 7 ()
0=0

Using this approximation,the approximate sum of squares

corresponding to a particular choice 6 of the parameters is

8(0) = (y-£,-%,8-00))) "(y-£_-x_(8-0 ("))

1

L}

£0-285% (21 + (0-00))'x, "x,co-0 ()
(2:2:3)

€
~0

where e = y-f . Setting the derivative 85(8)/88j to zero gives

the normal equations

x X (e-6(")y = X e, - (2.2.4)

1
Provided that X X is nonsingular, as is usually the case,

00
1 ; "
new estimates e( ) of the parameters are given by

x'e (2.2.5)

0t -0 - xgx) T

Figure 2.2.1 gives the parameter space representation of

this procedure in case of two parameter model. True and



approximate sum of squares contours could in principle be

obtained by plotting points (OJ,EZ) which satisfy
§(0) = c and §(8) = ¢ (2:.2.6)

respectively for various values of the constant c. The
approximate contours are necessarily elliptical while the

true ones will typically have the appearance of distorted
ellipses. Thus we move from the initial point 9(0) = (GEDJ,Ogoh
to the new point 9(]) = (Gfl),eglh, the minimum point of

the approximate sum of squares. Around the new estimates
NE
5 (2)

, the model is again linearized and new estimates
are obtained, and so on.

This procedure, which we call the Gauss iteration
procedure, does not always lead to convergence. In fact, when
the initial estimates of parameters O(OJ are poor and/or the
model is severely nonlinear, it has sometimes been found
that wild oscilation occurs from iteration to iteration.
Figure 2.2.1 shows a typical case of divergence, where the
Gauss solution vector (2.2.5) "overshoots'" and the sum of
squares given by the new estimates Q(l) is larger than that
given by the initial estimates Q(O). Repetition of this
process could lead further and further away from the minimum

point. A frequent cause of divergence is that the adjustments

A (0)
01-97

tion (2.2.1).

are too large and so invalidate the linear approxima-
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.Figure 2.2.1 Parameter space representation of the Gauss iteration.



2.3 Modified Gauss Iteration

One way to overcome the difficulty of overshooting in
the Gauss iteration is to go only part of the way along the

1

5 (g) _q(?) 'y -1y
Gauss solution vector 0 -8 =-(XOX0) XoEo' Thus

the adjustment vector 8—8(0) is given by

1

0-6(°) = vox'x ) 1x' (2.3.1
o Hiluly oS0 «3.1)

where v is a certain positive quantity less than unity.

This modified Gauss iteration was suggested by Box [4] and

incorporated into a computer program described by Booth,

Box, Muller and Peterson [1]. In order to determine the

value of v that approximately minimizes the sum of squares
along the Gauss solution vector, they used what may be

called the "halving and doubling' method in which, starting
from v=1, the value of v is successively halved (or doubled)
until the sum of squares finally starts to increase and then a

quadratic curve is fitted to the last three points to locate an

approximate local minimum. Hartley [10] later proved that,
under a set of mild'regularity conditions, the modified Gauss
iteration as described abave converges to the solution of
35(0)/aej =0; j=1,2,...,p and also proposed a similar
method to determine the value of v. This method suffers from
the disadvantage that extensive further calculations may be

reeded to decide the best point on the Gauss vector,



In particular the function f(gu,g) must be evaluated
for u = 1,2,...,n to calculate S(6) at each new "test point"

in the parameter space,

2.4 Application of response surface methods

In an earlier paper,Box and Coutie [6] had suggested
application of response surface techniques ([9], [2]) to the
problem of nonlinear least squares. If the initial parameter
values are remote from the minimum,the sum of squares surface
S(0) could be locally approximated by a polynomial in 6 of
first degree. Sums of squares were therefore determined at
a series of points in the parameter space which formed a
first order design,making it possible to calculate a direction
of steepest descent. This direction was followed
until an increase in the sum of squares was encountered.

The whole process was repeated until the need for a second
degree approximation became manifest. Then,what we may call
the"second order procedure''was used in which the sum of
squares was determined at a series'of points in the parameter
space arranged in a second order design, from which the second
degree polynomial could be fitted and the approximate minimum
and a confidence region degermined.

It is easy to show that this method which makes use

only of the sums of squares of the residuals and not of the
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individual residuals themselves makes only partial use of

available information and further that when this missing

information is included,we are brought back to the method
suggested by Gauss. (See Appendix A2.1).

There are many versions of the steepest decent method
which could be applied to the nonlinear least squares
problem. However, they all suffer from the difficulties of
this kind and the rate of convergence could be extremely

slowfor a ridgy minimum as is illustrated in Figure 2.4.1.

2.5 Levenberg-Marquardt's constrained iteration
2.5.1 Levenberg's damped least squares

Levenberg [11] tried to overcome the difficulty of
"overshooting'" in the Gauss iteration by introducing
constraints into the minimization of the sum of squares.
Instead of minimizing the approximate sum of squares S(g)

itself he proposed to minimize

v & p (0)2
(6) = 5(0) + A T . (6,-0."") (2.5.1)

i=1

where Awl,lwz,...,xwp are weighting factors expressing the
relative importance of damping the different increments.

Substituting (2.2.3) into (2.5.1),



G T

1

FQ) - g,

' (9 g0y "' (0
S07250%o (8787 M (8-07 1) X X, (8-67 )
+ 288"y "age-0 (%), (2.5.2)

where @ is a pxp diagonal matrix whose i th diagonal element
is @ . Setting the derivatives aP(e)/aei to zero

1

Xgeo + X X (0-80")y + aace-0(")y =0 . (2.5.3)

Solving for 6

Lalt) o J o P

Geometrically, in the parameter space representation,
this amounts to minimizing the approximate sum of squares
S(g) on the elliptical constraint whose principal’axes are
parallel to the axes of 81,82,...,6p. This is illustrated
in Figure 2.5.1. Levenberg proved that, provided the true
sum of squares S(Q) does not have stationary values at the
current estimate g(o), the sum of squares initially decreases
as we move off the initial point 8(03 changing the value of 2.

He also recommended using
Q=1 {(245,5)

which corresponds to the use of a spherical constraint.
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APPROXIMATE SUM OF
SQUARES CONTOURS

ELLIPTICAL
CONSTRAINTS

Figure 2.5.1 Parameter space representation of

Levenberg's constrained minimization,
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Another proposal Levenberg made was that Q be set equal to
a pxp diagonal matrix D whose (j,j) element was the i th

diagonal element of X;XO so that

amgr—

[11]
=D = [22]

193]

— —t

As will be seen in the next section, this has the effect of

making the problem invariant under scale changes.

2,5.2 Constrained minimization in the transformed space

Now usually there are many ways in which a problem
could be parameterized. Instead of considering 61,82,.{.,6p
we could with equal reason consider,say,wl,wz,...,%jwhere
wj = wj(g) in some 1:1 transformation of 6. Clearly the
nature of constraints applied (for example in Levenberg's

procedure) would differ depending on which parameterization

is considered. In particular,consider a linear transformation
Y = T6 (2.5.7)

with T a pxp nonsingular matrix. The linearized model in

the new parameters ¢ will be

£, 2 £+ 2 (p-y (")) (2.5.8)
where f¢ is the nx1l vector of f(gu,e(y)); u=1,2,...,n,
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w(o) = TQ(D),and ZO is the nxp matrix whose (u,j) element is
[0f(E _,0(¥))/3¢.] . Notice that Z_ is related to X by
Fu’~ i j (0) 0 0

v=y
z =x T L (2.5.9)

If in the space of y¥,we minimize the approximate sum

of squares on the spherical constraint, we will obtain

v-p(®) = 2’z a1y 1z (2.5.10)
b8 0’0o p o~o’ U
in exactly the same manner as in Section 2.5.1. Transforming

this result back into the original space of ¢ gives

1 1.'-1

R A T .
0-6 = T 7(T " "X X, T L) T X e

1

i t i '

3 : -
(XOXO AT T) Xo€6 (2o 1)
From this it follows that minimization of the approximate
sum of squares with a spherical constraint in the new metric
Y is equivalent to minimization in the original metric 6

with some elliptical constraint
LI 0
(9-6(0))  § T(e-e( )) = constant. (2.5.12)

Marquardt [12] did not consider this general trans-
formation but considered only a special case by which the

problem was made invariant under scale changes. This amounted
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to using the constraint matrix Q=D in (2.5.4), or alternatively,
as he described it, to using spﬁerical constraints with
scaled parameters

1 . .
xpj = [3‘3‘]2‘9j i=1,2,...,p (2.5.13)

In this parametization then the parameters Y were scaled

so that the contours of the approximate sum of squares were
contained .in squares, cubes or hypercubes,as illustrated

in Figure 2.5.2 for the case p=2. Marquardt also pointed out
that (i) when A=0 the equation (2.5.10) gives the Gauss
solution and (ii) when X is very large

-y () w2

-y " (2.5.14)

€
~0

which is the steepest descent vector on the approximate sum
of squares surface in the matrics Y. Thus by choosing an
intermediate value for A, a compromise between the Gauss
method and the steepest descent method is obtained. Based
on this observation, Marquardt proposed what we call the
(A,v) algorithm in which A is decreased gradually by a
factor v from a relatively large initial valve A, as the
iteration proceeds. Thus in successive iterations he would

ot ! -2

choose Levenberg's matrix AQ to be AoDs AoV "Dy A v D etc.

This method would then possess the apparent virtue of each



= s

APPROXIATE SUM OF

TRUE SUM N_
OF SQUARES <
CONTOURS S

SQUARES CONTOURS

Figure 2.5.2 Constrained minimization of sum of

squares in Marquardt's scale invariant metric.



5] 7=

method in the circumstances where it is most effective,

Marquardt's recommendations were followed by
q

Meeter [13] in writing the program GAUSHAUS (later UWHAUS)

at the University of Wisconsin and similar programs have

been available elsewhere.

In Marquardt's method then the constrained minimization

is carried out in parameter metrics which are scale invariant.

However, it is easy to see that we can go further and conduct

the minimization in metrics which are not only scale
invariant but which are also linearly invariant. Such a

transformation y = H6 is provided by any H for which

~

HH=XX. (2:5:15}

O 0

To see this suppose we make the arbitrary non-singular

transformation

5=L6;
then XO will be transformed into
R =1
XO = XOL

(2.5.16)

(2.5.17)

The transformation of 9 corresponding to the one given by the

equation (2.5.15) will be
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§ = G with i1 = X X_ (2.5.18)
However, the requirement on fI will be satisfied by H = HL !
since
BE= o Yoy - g x 1 s X R o (2u5.10)
Therefore
@ = Hg = (HL'I)(LQ) = Ho =y, (2.5.20)

establishing that y is invariant under linear transformation.

In such a metric y,the sum of squares contours for the

linearized model

(0020 (72, -3 1))) = constant

(2.5.21)
will be spherical because
Z = XOT‘l = x 5! (2.5.22)
and so
Z.Z, = x i (x T - B R x g™ (2.5.23)
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The representation would now be that illustrated for p=2

in Figure 2.5.3 in which the coﬂstraining contours are
circles, spheres,or hyperspheres when the approximate sum
of squares contours are circles, spheres or hyperplanes,
However, if we carry out the constrained minimization in
this linearly invariant metric, on transforming the result
back into the original metric © by setting T'T = HH = X;XO

in (2.5.11) we obtain

1

i

_ (0) 1 1 _1
g-9 (XX XX "Xgg,

1 ' -
T+ (XOXO) XOEO . (2.5.24)

Thus by setting v = 1/(1+X) in (2.3.1) we see, somewhat
surprisingly that the Levenberg-Marquardt constrained
minimization in the more reasonable linearly invariant
metric is exactly the modified Gauss method already discussed.
It should be noted also that,in the linearly invariant metric
there is no question of a compromise between the Gauss method
and the steepest descent method. In fact, in this metric,
because of the property of ZO given in (2.5.23), the Gauss
solution vector and the steepest descent vector are identical.
It is noted that, in Figure 2.5.2, the solution given by the
constrained minimization, as the constraint is relaxed,

follows the curved path starting into the direction of
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steepest descent and ending up with the Gauss solution
while, in Figure 2.5.3, the path taken by the solution is a
straight line which is the Gauss solution vector. In the
latter figure, the path which the Marquardt method would
take in these linearly invariant metrics is indicated by a
bold connected curve.

So far as the problem of speedy convergence is concerned,
there does not thercfore seem to exist any concrete
theoretical basis for Marquardt's interpolation between the
two classical methods.

Ore incidental advantage of the Levenberg-Marquardt
procedure is that the matrix (X;XO+AQ) can be inverted
even when the matrix X;XO is singular or nearly singular,

thus always giving a "solution'". DPractical experience,
however, leads us to believe that the possibility of not
having a singularity or near-singularity brought to one's
attention is a disadvantage rather than an advantage.

It has often been pointed out (for example [2]) that the
minimum is often better envisicned as being approximated

by a line, plane or hyperplane rather than by a point.

When this happens, it is important that it be brought to
the investigator's notice. One method for doing this is

by means of a canonical analysis as has been suggested, for

exampie, in [5].
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2.6 Methods to determine how far one should go along the
Gauss solution vector

In the preceding section, we have given theoretical
support to the idea that we should explore the straight line
given by the Gauss vector itself rather than the curved
path followed by Marquardt. We have done this by demon-
strating that the Gauss vector may be arrived at by applying
Levenberg-Marquardt constrained minimization in the linearly
invariant parameter metrics.

An important fact to bear in mind is that, provided
the current best estimateQ(O) is not the stationary point,
it follows from Levenberg's result mentioned in the section
2.5.1 that the true sum of squares initially decreases
when we start off the point 9(0) along the Gauss solution
vector Q(g)—g(o) so that this direction is certainly worth
investigating.

It still remains to be decided how far one should go
along the Gauss vector. The "halving and doubling' method
already mentioned could be used at the expense of further
calculation. We also could use the (A,v) algorithm by
Marquardt. Although no compromise between the original
Gauss method and the steepest descent method is here involved,
it might still make sense to gradually decrease A so as to

constrain the iteration less and less as the minimum is
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approached in successive iterations. Again, however, because
there is no way to know in advance how best to choose X and v,
the method 1is inefficient,and does not make use of information

already available from previous computation.

Modification A To obtain the Gauss solution vector it is

necessary to compute the matrix XO of the partial derivatives

[af(gu,e)/aej] + Using this matrix,it is clearly
T (0)
e:

D

possible to obtain the initial rate of change of the true

sum of squares along the Gauss solution vector, In fact,

R (2]
& o B v
v=0 17

T v=0 v=0
1
[as [dﬂ
90 dv
T ov=0 v=0 (2.6.1)
[2S i . (38 1 =
where LBQ} 0 is the px1 vector of Laeij v=0, L N SR
il O
and [éél is the px1 vector of [—33 i =L 3@ yin a5
V= V'_:O

] 0 1 _1 1
However, since S = (ane) (X—fe) and g(g}—g( ) . (XOXO) Xofo’
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we obtain

l‘ ds 1
dv |

1 i o 1
~2§0k0(X0X0) X0€0

i

-2(0(8)-0 00y 'x (2.6.2)

& o
Incidentally, equation (2.6.2) gives—a-direct—m——
proof of a corollary of Levenberg's result mentioned above
that the true sum of squares initially decreases as we
1
start moving from G(U) to e(g), because provided that X XO

- :
is positive definite (as is usually the case), r&% will
LE% v=0

ot : ! _ 1138 .
be negative except when XOEO = 2[59 . is 0.

To locate a point along the Gauss solution vector at
which the true sum of squares is approximately minimized, we
first suppose that the true sum of squares follows ,along

this vector, the form of a quadratic function

S = atbv+cv?, (2.6.3)

We can determine the constants a, b and ¢ in (2.6.3) by

setting S = S0 for v=0, S = Sg for v=1 and

E T R R R
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Figure 2.6.1 Various quadratic curves approximating

the sum of squares along Gauss vector,



=2 G~

1 1
Consequently, provided c = Sg—so+2(e(g)-e(°)) XO€0>O, the
value of v for which the true sum of squares is approximately

minimized is given by

(Q(g)_g(o)) 'X;E'O
Viin © @ e, ¢ (e
Sg_so+2(§ -0 ) X84

Thus, we may take our next estimate as

(1) = (0 () 4 (0 |
T CE N B B c X RO

If c<0, we have that the actual sum of squares Sg at distance

v=1l is already smaller than that predicted by the initial

slope since in this case ngso+[d8/dv]v=0' Therefore we may
settle at v=1, or double,or redouble the distance checking at each
point to see if the decreasing trend is continuing. Figure

2.6.1 illustrates various situations that could occur.

Modification B A procedure developed following a suggestion

1
by Jack Draffen is another method that makes use of the
existing information in an interesting manner. The quantities
So and Sg are obtained by computing, squaring, and summing
the elements of the two residual vectors

1
Personal communication (1972).
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[}

(r,-£51,80°0),y,-£05,,0 )y, Ly -£2_,0(%)y)

and

(r1-F (51,08 1y, 58,080y, Ly —£(r_,0(8)y)
(2.6.7)
Consider a point along the Gauss solution vector with the

distance V]!g(g)—e(0)|[ away from the origin o (), By

linear interpolation we can estimate the residuals at this

point by

€ = (l—v)go + vgg (2:6:8)
which may be written

By * v(go—ggj t € R (2.6.9)

Thus the value v of v for which the sum of squares of the
estimated residuals will be as small as possible can be

obtained by regressing € on € _-e_ so that

0 ~0 ~g
( )
~ £ - £
v = 20 2B =0 (2.6.10)

= : ’
(B8t (8,5
whence our next estimate of parameters is obtained by

0) = g(®) 4 (8o (*y (2.6.11)

~
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~

Again, computing v is very simple and makes use of information
already available.
The relationship of this procedure to modification A

can be seen as follows. Equation (2.6.9) can be written

y - fo = v(fg-fo) * B, (2.6.12)

where fg is the nx1 vector of f(gu,ﬁ(g)), urlsdyinsstis The
sum of squares of the estimated residuals is thus

1
B = Wfs i, 1)) (efywiE, £0) (2.6.13)

which is a quadratic in v and passing through the points
i !
(O,SO) and (1,89), and v obtained by (2.6.10) minimizes € E.

¢l

Furthermore, differentiating equation (2.6.13), the initial

slope of the sum of squares of the estimated residuals is given

de € 1
o = .7 _ _
dv ‘(gg go) E}: fo)
v=0
1
= —2(£g~§0) EO (2.6.14)

which is identical to the initial slope used in the previous

method provided that fg = fo + Xo[g(g)-g(el),

~

In the sample space, modification B amounts to

~

dropping a perpendicular line from y to fg~£0 whose foot gives
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the vector (1-v]£0 + vfg. This is illustrated in Figure 2.6.2

for a model with only one parameter.

2.7 Example

In testing mumerical methods, little in the way of general conclusions
can be based on the behavior of particular examples. Never-
theless it is worthwhile to illustrate the performance of
the procedures we have described above. We do so using a
simple example which Box and Hunter [7] employed previously.

The results for this example are certainly not discouraging.

The model2 is

£(E,0) = it 5| (2.7.1)
22 = T Tvo00E; 7

and the data is

™y

NN

y

0.1165
0.2114
0.0684
0:1159

I N

The sum of squares surface, which of course one would

2
In the original problem there was the third parameter 6 which

was estimated. We set it to 5000 for ease of illustration.
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not usually know, is plotted in Figure 2.7.1 and is seen to be
very curved and ridgy. The values (81,82) = (300,6)
corresponding to the point P0 in the figure were chosen for
the initial estimates of parameters. The numbers of times
ne, that the function f(g,g} had to be evaluated before

the iteration reached the minimunm point Pm (at which the

sum of squares was 3.827SOX10"5) was employed as a measure

of the effectiveness of different methods.

The métﬂodénstﬁdied'weref
(1) The Levenberg-Marquardt's constrained iteration with
the (A,v) procedure.
(2) The modified Gauss iteration with the (A,v) procedure.
(3) The modified Gauss method with the ""halving and doubling"
procedure.
(4) The modified Gauss method with the modification A
described in the section 2.6,
(5) The modified Gauss method with the modification B
described in the section 2.6.
The values for AO and v have to be specified in using the
methods (1) and (2), so these two methods were compared for
many different choices of A, and v. Figure 2.7.2 presents
the result. The performance of the methods (3), (4) and (5)
is indicated by three horizontal lines since these methods

are "unique", not depending on the choice of Ao and v.

i
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6 r " P, = (300,6)
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Figure 2.7.1 Sum of squares contours for the example.
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Figure 2.7.2 Comparison of the Levenberg-Marquardt constrained

iteration and the modified Gauss methods.
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For this particular example, the following conclusions
can be drawn:
a) With the (A,v) procedure used in common, the modified
Gauss method is far more stable than the Levenberg-Marquardt's
constrained iteration in a sense that at each value of v the
range of Ao for which the former converges with a reasonable
amount of calculation is much wider (notice that the log
scdle 15 wsed for J, in Pigure 2.7.2).
b) The modified Gauss method with the modification A turns
out to be remarkably effective. The amount of necessary
computation (nf = 116) is even less than the best the (A,v)
procedure can attain for the best choice of A, and v(nf = 148
for AO = 1 and v = 10).
c) The modified Gauss method with the modification B also
performs well, its ne being 164 which is slightly greater than

the best ne for the methods (1) and (2).

2.8 Conclusion

Because of its practical effectiveness and apparent
justification as a compromise between the steepest descent
method and the Gauss method, the Levenberg-Marquardt's
constrained iteration has been widely used since the publication

of Marquardt's paper in 1963.
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However, if the parameters are transformed into the linearly
invariant metric, the steepest descent vector and the Gauss
solution vector are found to be identical and thus there
does not exist any need to compromise between directions
given by the two different methods. We have also shown that
the constrained minimization in this metric is merely
equivalent to using the modified Gauss method in the original
metrics which was proposed earlier.

Modifications A and B, to determine how far one
should go along the Gauss solution vector, are also
proposed. These have the virtue that their computations
involve only information that already exists. A numerical
illustration for a particular set of data illustrates the

advantages of the new procedures.
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Appendix A2.1 Partial use of available information in the

first and second order steepest descent methods.

It has been pointed out ([3]) that all the available
information concerning the sum of squares surface will not
be used when the first or second order steepest descent
procedures are applied to the problem of least squares.

The first-ordeér steepest descent procedure regquires
determination of at least (p+1) values of S to which a first

degree polynomial

S = ao+alel+a282+...+a 6 (A2.1.1)

PP
will be fitted and the direction of steepest descent will
be given by (-al,—az,...,—up). However this does not tell
us how far one should move.

The second order procedure used near the stationery
region determines the sum of squares at at least %(p+l)(p+2]
points. The fitted second degree polynomial
rE) ) IZ) g 0.0 (A2.1.2

0.0, + G..0.0. A
= i=1 j=i ¥ *+J )
can then be used to locate approximately the parameter point

yielding the minimum sum of squares.



.

In these procedures only the sums of squares are
used. To examine whether there .is any information that
remains unused, we consider the problem in the sample space.

Suppose, for example, we are fitting a functional relation
iy = f(gu; 61,82) (AZ2.:1.3)

where Ny is the expected value of the u th observation Yu
When there are n observations, the locus of the point
(nl,nz,...,nu) in the n dimensional space for all possible
values of (81,62) will be defined by equation (A2.1.3) and
generate a "parameter surface'. For example, if n=3 the

parameter surface in 3 dimensional sample space might look

like that shown below.

(3) A




=il =
Geometrically the least square estimates of parameters
64 and'92 are the values of ©q and 8, given by the point
on the parameter surface that is closest to the point Y-

Suppose that, in applyiné the steepest descent method, we
have computed the sum of squares at three points (8(0) e( )),
(6(1) e( )] and (8( ) e( )) to determine the direction of
steepest descent. These sums of squares are,in fact,the
squared distances between the point y and the points Dk(k=0’l’2)
on the locus. However, we also know how far apart the points
n's are from each other. Clearly if the locus can be taken
to be locally planar, this knowledge is sufficient to determine
the position of y relative to the solution locus, and thus
to locate the point 6 on the locus that is nearest to Y-

Such point can be located by projecting the vector y-n

~

onto the plane spanned by the vectors ny-n, and Ny-Nge




=l b

For the general p parameter case, this projection is a

linear combination of N5-To (3=1,2,.44,p)
NNy = ¢1(Dlnno)+"'+¢p(np-go) (A2.1.4)
where ¢'s are obtained from the "normal" equations
e i "
(y-n) (Qj-go) =0 j=1,2,...,p (A2.1.5)

or more specifically,

(A2.1.6)

where ¢ is the vector of ¢j; j=1,2,...,p and D is the nxp
matrix whose j th column is nj-no. " The coordinate of the

solution 6 will then be given by

o = a2 (1) _o(0)y .. ;
ej-ej +¢j(ej —ej°) j=1,2,...,p. (A2.1.7)

Thus, when all the available information is used,determination
of the sums of squares at only (p+1) points is sufficient to
locate the approximate minimum, while the sum of squares at
%(p+1)(p+2) points must be computed if we are using the sums
of squares only.

Furthermore, let X be the nxp matrix whose j th

column 1is (nj—go)/(8§1)-e§°)), Then we have

D = XB (A2.1.8)



s Js

where B is a p»p diagonal matrix with the j th diagonal
element 6§1)—8§0). Substituting (A2.1.8) into (A2.1.6)

and noticing B¢ = 8-8(0) from (A2.1.7), we obtain
i el (0) 1
X X(0-6 ) = X (y—no) (A2.1.9)

It is then easy to see that the method described above
is equivalent to the Gauss method assuming that the numerical

estimates for derivatives are used

3E(E 0 .
(gu ~) = n]u nOU (AZ 1 10)



