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0. Introduction and summary. Traditionally, the

asymptotic-relative efficiency (ARE) of one test of a
statistical hypothesis relative to another can be computed
by holding the significance level fixed, and, as the sample
size increases, comparing the power of the tests along a
sequence of alternatives which will tend to the hypothesis,
This method, proposed by Pitman [?1] s has been extremely
fruitful, and is based on theory allied with the central
limit theorem. There have been other methods suggested by
varoius authors. For example, Hodges and Lehmann [16]
considered a fixed alternative, and compared the rates at
which the type Il error tends to zero when the significance
level is held fixed. Bahadur [2] developed a method of
comparing tests, which is equivalent to holding the power,
at a fixed alternative, bounded away from zero and one, and
comparineg the rates at which the significance levels tend
to zero, How reliable is Pitman efficiency? Dixon [6] , [7]
has emphasized that a comprehensive efficiency comparison
of two tests cannot be made with a single number. Thus the
Bahadur efficiency, which is a curve of values, is more
informative. However, the question arises as to how
comparable the Bahadur limit is to the finite sample values.
For the Wilcoxon two sample rank test, the Bahadur limit
(computed by Hoadley [15] , Woodworth [27] , or Stone [26])

does not compare closely with the finite sample values
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(computed by Milton [20]) and so is somewhat unsatisfactory,
In particular, The Bahadur limit decreases to zero too
rapidly with large alternatives to bé realistic when compared
with the finite sample efficiencies. The Hodges-Lehmann
efficiency may give better comparisons but suffers in its
very definition froﬁ a2 lack of realism in that it keeps the
more serious type I error fixed and permits the less serious

type II error to go to zero with increasing sample size.

Thus it is hoped that the Chernoff efficiency 4 -
which is defined at a fixed alternative by letting both the
tyve I and type II errors go td zero at roughly the same
(exponential) rate, will give more realistic efficiency

comparisons.,

The Bahadur, Hodges-Lehmann, and Chernoff efficiencies
are based on the theory of large deviations which has béen
developed extensively only in the case of statistics which
are sums of independently; identically distributed (i.i.d.)
random variables, Lately, the theory of large_deviationé
has been extended by Sanov [22], Klotz [18], Sethuraman (23],
[24], Hoadly [14], Stone [26], Abrahamson [2], siever [25],
Woodworth [27], and others, to include statistice which are
not sums of i.i.d. random variables. The Sénov-Hoadley—
Woodworth approach is based on a theorem of Hoeffding [1?].
and uses the multinomial distribution with approximations.,

The Chernoff—Feller[9]-Klotz-Stone-Siever approach uses a
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moment generating function argument. In this thesis Hoadley's
result is extended and applied to obtain the asymptotic
relative efficiency of Chernoff for the Wilcoxon statistic,
In addition, methods are outlined for extension to other

linear rank statistics,

In section 1 of this paper, Hoadley's theory is applied
to the Chernoff-Savage linear rank statistics [5], extended
slightly with suitable restrictions to include unbounded
score functions both under the null and alternative
hypotheses. In section 2, theorems are given to estimate the
probavility of a large deviation( information number) of the
Wilcoxon test and Fisher-Yates( normal score) test under the
null and alternative hypotheses, In section 3, the Chernoff
efficiency is discussed; and its relation to information
numbers is established. The information indices, critical
values, and Chernoff efficiencies of the Wilcoxon test
relative to two-sample t-test for various normal shift
alternatives are presented in Tables 3.1,4.3 and Pigure 4.4
respectively. In section 4, a definition of efficiency for
small sample theory that may be used for rough comparison
with the asymptotic relative efficiency is discussed, The
finite sample efficiency of the Wilcoxon, at various normal
shift alternatives, relative to the two-sample t-test is
computed for equal samples of size seven., The efficiencies
are given in Tables 4.1,4.2 and Figure 4.5 respectively.
Comparisons and discussions follow . In section 5, a detailed

computation procedure is described.



1. The probability of large deviations for linear

rank statistics, In order to state the main results of

this section, it will be necessary to first give the basic
notztions, definitions, assumptions and preliminary lemmas.,
let Xl'XZ""'Xm and YI.Y2,Y3.---,YH be random samples of
sizes m and n drawn from populations with cdf's Fy and Gq
respectively., We assume there is a f°>0 suchlthatw3<Pd<FN<
1-f’o where N=m+n, N/’N-—m and fN-;f’ as N-»po . Those notations
will be used throughout the paper. Further, we assume that
Fg and Gy are continuous.

Define

1 if the i-th smallest observation
(£:1)
Wy = in the combined sample is an X

0 otherwise,

We will be concerned with statistics of the following form,

the so called Chernoff-Savage statistics;

(1.2) mT,, = Z E. W

1=1

Where EN' are given constants. Many two-sample statistics
N

occuring in nonparametric inference can be reduced to

this form., Govindara julu, LeCam and Raghavachari [10] use

the followine representation:



Lo
(1530 T Fom*Con’ = JN(NHON(x)/Nﬂ)dFOm(ﬂ
=00 _
wnere Fo (x)=(number of Xy £x)/m, Gy, (x)=(number of Y.<x)/n

Y 4%
and HON(x)=fNFOm(x)+(1-fN)G0m(x). (1.2) and (1.3) are
equivalent when EN1=JN(1/N+1). It will be assumed hereafter

that the sequence JN(.)‘satisfies the following

Property B.

(i) For each N, J is constant over the intervals
[i/N+1, (i+1)/N+1), for i=0,1,---,N.

(ii) There exists a score function J over (0,1) such that

=
=

i ‘JN(i/l\Hl) - J(1/MD)|—> 0 as N0 .
=1

(iii) J(.) is continuous, integrable over (0,1) andIJ(.H

is non-increasing on (0,%2] and non-decreasing on (%,1).
The following result holds for J(.).

Lemma 1.,1. For given ¢ >0, there exist L,U; 0<L<U<]1,

and 04 M<£ow derending on £ such that

L 1
J [T(u)|du + J |J(u)ldu < £
0 U

and |J(u)| = M for ue [L,U].

Definition 1.2, A sequence of statistics {TN} defined in

(1.3) satisfying Property B, will be called a type B




sequence of Chernoff-Savage statistics.

In [22], Sanov shows that if Fon is the empiridal
cdf of a sample of size N drawn from a population with cdf -
B and {2 is a certain well-behaved set of cdf's not
containing FO » then

(1.4) 1im N°1 1n p{ Fyuent= -inf jln(dF/dF' )dF,
N->¢0 t = } Fe Q) B

Hoadley [}4] extended this theory to the c-sample case
where the set of cdf's in question depends on N. More
precisely, if D is the set of cdf's on (-®,%) and with F om
and G the empirical cdf's for F, and GO, then Hoadley's
results (Theorem 1.1 of [14]) restated, for c=2, is the

following

Theorem 1.3. For the two-sample problem, if (2 c DxD is

Qo-regular, then

1.5 Lim -N"1 1n P { (FgpeCo) €42 )
' N0

(;?g)eﬁlﬁf n{dF/dFg)dF+( P)‘f n(dG/dGy)d }

where QO = (FO.GO). For convenience, we give the definitions



(1.6) I(F,Fy) = J1in(dar/ar,)dF
and
(2)
(1.7) 17 (0.85)= inf EHI(F 'Fp)+(1-p)1(G,Gy)}

1(2)(IQ.QO) is called the two-sample information number
when f. l—f are the limiting relative sample size
proportions. For the asymptotic theory, we let m,n — o
in such a way that for N=m+n — 0o, m/N~9f’. For ease of
reference, we restate the definition of Qo-regularity
as follows: A class L2C DXD is said to be Qy-regular

if for each.a; 1>f>0, the following conditions are

satisfied:
(A) I(lf)(ﬂ.ao)‘”

(B) For every 1:-0. there is a product-strip U, such
that UcC 42 and I((Z,)(U.QOM I(;)(-Q.QO) + 7

(&) For every 7>4L there is a finite number, KzK((}.
of product-strips, U;,Up,--=,Uy, such that (2¢&
K 2 2
iL=Jl Us I(P)(Ui.QO)z_po , and I{E,z)(ﬂ,Qo)‘CI(f,)(Ui,QO)

+ ’{ [] for i:1|2|—"'-’r:;

Hoadley investigated conditions under which Theorem 1.3

can be applied to the class

(1.8) 2(c) = { aepxD1 T(Q) Z¢ }



where T; [ixry—a R=(-w,w), Since F and G are absolutely
continuous with respect to HzFF+(1-F)G' by the Radon-Nikodym
theorem, there exist f,g(=0) such that f=dF/dH and g=d4G/dH,
Furthermore, assume there exist fO,H' gO,H (> 0) such that

fo,n = AFg/dH and g, y = dGy/dH. The function

(1.9) I(ciFyiGy)

o
f}(x)ln(f(x)/fO'H(x))dH(x) +

= int {;

© (F,G)eR (e

=00

(2]
(1-p) [ a0 1na(x) /2, (x))ar0x)
—fo

is well-defined by letting

0 if f=0

f ln(f/fO'H) = + Co il i f)O and f 0

0,H
itself if £20 and Ty >0
1]

and similarly for g ln(g/go H)' When .fl(c)z‘f we define I=oo,
] 3

We further assume

£o
1,10 I(csFy.G,) = inf [(f. rJdH(x)
Sl TR0l T (e Benrey

where

(1.11) CP (fyg)= ‘af ln(f/fo'H)+(1-r)g 1n(g/é0.ﬁ).



Let E denote the normed linear space of functions of
bounded variation in (-00,00), with |Fil = sup |F(x)|., for
004 X<&oo

Fe E. Thus for Q=(F,G)e EXE, define

(1.12) fall, = max (sup |F(x)], sup [a(x)] ).
— 0 X< ~pa L XLK

I il is a norm on EXE; hence we can consider ExE as a
metric space with the metric induced by this norm. In [13],

Hoadley proved the following

Theorem 1.4, If T is uniformly continuous, then for every

c >T(QO) at _which I(c3Fy,Gg) is_continuous

{1 1%) lim -n"1

N-=sp0 |

where Qon(FO.GO) and I(c;FO.GO) is defined in (1.9).

We shall prove further that Theorem 1.4 holds for all

), defined in (1.3), that satisfy

On
W
Property B. We first show Theorem 1.4 holds for T(l)(F.G)

statisties TN(FOm.G

defined as follows:

o0

(1.14) ™ (r,0) = S 7™M (H(x))aF (x)
-0
with
- J(u) if |[J(u))e ™
(L15) J(M)(u) ={ M if J(u) > M

-M if J(u) £-M
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for each positive M> |J(3)| + and I(c1Fp,Gy) is replaced by

L (M) g .
(1..156) £ (ciFp,Go) = inf (f,g)dH(x)
o . (F,G)e.(’lm(cj)cf L *

where £2.(c) ={ aeDxD; T(M(Q)xc} and @(f,g) defined
in (1.11). In order to prove that Theorem 1.4 is also true

o (10)

for , the following lemmas are used,

Lemma 1,5. Let Qq = (Fl.Gl) and Q, = (FZ’GZ)' Then T(M)

is uniformly continuous in DX D with respect to the metric

defined by (1.12), and lr(M) (@) - r(@)|—> 0 as

[=+]
M-—soo uniformly in Q when I'(Q)= .f J(H(x))dF(x) « 0O,

Proof': For proving the uniform continuity of T(M). it
suffices to show that for given £ >0 there exists J(E).)'O

independent of Ql' Q2 such that
(1,17) |7 (qy) - 1M (qy))| < €

whenever d= || Q,-Q, ||, < d(g£). Now consider, for a given £>0,
(M) (M)
|2 (q,) - 1M (q,)]

fes)
M (M)
= ‘[;mJ( )(Hl(x))dFl(x)- J, 7 (Hy (x))dF, (x)

o
(M) M
(1:18) ’{m\J' (Hl(x)) - at )(HZ(X)ﬂdFl(x)

+

[ose]
f 5 (1, (x))a{F, (x)-F; (x)]

]
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Since J(M)(.) is continuous and boﬁnded by M over [b.l].

and hence is uniformly continuous over [0,1] so we can make
[J(M)(Hl(x))-J(M)(Hz(x))LC E/2 A¥ we'Select‘mfingl(x)—Hz(xﬂ
{ d(g) for some J(&) >0 indepéndently of Hy,H, over (=00,00) ,
This can be made to hold by making the metric d small enough,
i.es d<d(£). Thus integrating, the first term is less than
&/2. Next, consider the second term, Since F, and F, are
monotonically increasing on (-09,%0), then By, = Py is of
bounded variation on (-#,0). By a theorem in I1I.6.2(see page
38 of [13]). J(M)(Hz(x)) can be expressed as the difference
of two nondecreasing functions. lLet J(M)(Hz(x))=J§M)(H2(x))
-JéM)(Hz(x)) where me)(Hz(x)) and JéM)(HZ(x)) are
nondecreasing functions on (=-m,0d), Then an integration by
parts theorem(see page 93 of [13]) can be applied and we

have

03
[ ganefeytor = eyte
00

| (7 (0-7, @] 70 11, () - [ (0007 ()] 7 (i, (o))

) g (rp (0)=F; G0} afof™ (a1, (x)) 05" (11, (x0))

- 00

-Eit [Fz(mo)-f‘} (x+0)=-F, (x)+F, (x)J[J(M) (Hy{x+o) )-a ) (Hp (x))]

—[Fz(x)—F1(x)sz(x-o)+F1(x-oﬂEJ(M)(Hz(x))-J(M)(Hz(x-o))]}’
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‘ j {F2<x-o)-Fl(x-o)}a{J{M)(H2<x)')-J;SM’(H2(x>)1|

=00

i~

)
J \Fz(x-o)-Fl(x-oﬂ dV{M)(Hz(x))
—00

(2]

+kS le(x-o)-Fl(x-o)‘dVéM)(Hz(X))
) o _

<SPy - M o)) + sy - M )Y .

The summation being taken over all common discontinuity

points of F,(x) - Fy(x), J(M)(HZ(X)) and

X
v (3, (x)) f[_idJ§M)(H2(y))l. 11485 viM)(Hz(ﬂﬂ) is

the total variation of JiM)(HZ(x)). The first inequality

holds using theorem IT.14,2 of [13] (see page 67). The

last inequality holds by using \Fz(x)-Fl(x)L<3h for all

x€ (=00,0) and the fact that J'w]dJém)(Hz(x)ﬂ=|J£M)(1)-J§M)(O‘,
-%

for i=1,2. Thus we have

o

l‘j s (1, (x))afr, (x0) - Fl(x)}\‘: 1M,

2 @]

Taking 4 = £/8M, we have established (1.17)., Finally we
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consider
| r(@) - (M) (q)|
o
=l j{J(H(x)) - T M ((x)) }ar x|

=0

£ 2 I (1(x))] aF (x)
{x1 |7 (H(x) pM} |

£ 2 (u)] a .
?'[{m ey

Thus the finiteness of T(Q) gives IT(Q) - T(M)(Qﬂ —3 0

as M—>e0 uniformly in Q. We have established the lemma.

Lemma 1,6, I(c;F_,G_ ) defined in (1.9) is nonnegative,
v

nondecreasing and convex in ¢ for all cé(co.c*) where

oo
o = j;f(Ho(x))dFo(x) and c*;>co is such that I(csFO,GO)

oo « Hence I(¢cyF,.,G,) is continuous in ¢ for cpc<cH,

Similarly we have I(M)(C:FA,GA) defined in (1.16) is
v

continuous in ¢ for all ce(c,.,c*).

0

Proof: Since I(ciF )<e0 , for all cy c0<'c<_c*. then

0'Co
F and G are respectively absolutely continuous with respect
to Fy and G, and hence the continuity of F and G follows
directly from the assumption that FO and G, are continuous.
Thus I(c:FO.GO) and {2(c) can be rewritten as follows if

we denote u = H(x):
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= f £ (u) In(£*( )/f§(u))d
f*zzl(0§§ F u)ln v/ u

£l
* (-p) | g*(w)in(ex(u)/eg(u))du}

where {1*(c) = { %, Ji J(u)f*(u)du&:c} and f*(u):f(H'l(u))
fg(u)sz(H‘l(u)), g*(u)=g(H"1(u)) , ggzgo(H‘l(u)). Since
5 6 and é%ln(%%) are convex, Jensen's inequality
applies and gives
I(éafg.gg

1 1

inf{[fg(l) f*du:l [ln jo f*duj-!—(l-fJ)U; g*du}[lnjo g*du]

ks

1 1
usings f¥du=1 and S g*du=1. This shows I(c:fs.gs) is
0 0

nonnegative, For any C11Cp3 Cug Cy&cyg c*, we have _{Z*(cz)
c:ij(cl) and I(c :f*.g ):>I(c1;f0.go), since they are the

respective infimums over £0*(c;). Thus we have I(csff,el) is
nondecreasing in ¢ and I(c;fs.gg):fI(c*;fa.g6)<50 for all . cj

coe(c,,c®. Note that _2(c) is nonempty by definition of I.
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Let (f*.g*) be any element of .(Z*(C ) such that for any £>0

I(Ciif6|g6) + £
1
epjo £5(u)In(£F(u)/2(u))du +

1
(1-p) e (w)in(ef(w)/eg(w)au

for i=1,2,., For any « satisfying 0<K{ <1, the convexity of

*
g*ln(f*) and =§-—:1n(§g) yields the following inequality.
0 0 =0

ok{‘r(cl:fougo) +E_} + (1-4){I(c2;f0,g0) s E_}

1
£F,  £¥ L . N
Fjo{q?fgln(?%) +(1—o()?§1n(-§§)} £adu +

(1-(9)[ o(—%ln(j) + (1- o{)—-gln(—g)}g*du
PJ- —f_r,._d‘f +(1-«) 5 21n (D{—i—(}qi)u L3 ) fEdu +

1
(1_(,)j0 0(gif+éé-o()g§1n(o(gf+é%-0()g2)g6du .

Setting f**:ot.fiw(l-(*) fg and g**=o(gi*+(1-o()g§ . Thus we have

XI(cy1fg,g8) + (1-)I(cosfg,28) + €

1 1
P Io FErin(fed/£8)du 4+ (l-f)Jo g**1n(g**/gd)du
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P " *
= Iey+(1-)c, i, gf),
. Lot
Thus convexity follows letting £ » 0. The last inequality

holds because (f**,g**)ej]#GXC1+(1-u)cz). Since

1 1
50 _J(u)f**(u)du:jo I () [ £3(a)+ (1-2) £ (u)] au

E dcl * (1"0032!

using ffsjjf(ci). Thus we have established lemma 1.6, By
Theorem 1.4, Lemma 1.5 and Lemma 1,6, we conclude the

following

Theorem 1.7, Let T(M) be defined as in (1.14) and I(M) as

in (1.15) and let I(M)(c*;FO,GO)<Im_ for some c*> c,, where

Co i85 defined as in Lemma 1.6. Then for every ce(co.c*). we

J

have

: 4 M .. = ()
%iZm-N 1n P{.T( )(FOm,GOm)z.c} = T (c;FO.GO).

Before proving the main theorem, we prove the following

(M)

Lemma 1.8, Let I,I be defined as in (1.9),(1.15)

respectively, Then for given E>0 there exists a positive

integer Mo(ﬁ) such that
Hee1FyiGo) =M (c1P,60) = Toterr,,cp)

for all M EMO(&).
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Proof: By lemma 1.5, |T(Q) - T(M)(Q)l——) 0 as M— oo uniformly
in Q, Thus for given &£>0, there exists a positive integer

Mg(t) such that for all Mx My(e)

x & ko
(1.19) S J(H-(x))dF(x)-g(fJ(M)(H(x))dF< jJ(H(x))dF-&-&.
- -00 -2
Since | I(M)(CiFolGo)

{1

infi L:f’(f.g)dH(x); JE(M)(H(X))dF(x):c} .

t

bo po
inf{j ({’(f.g)d}{(x)n JJ(H(x))dF(xHa:c}
-0 ~Po

I(C‘&HFO'Go)o

The inequality holds by using the right inequality in (1.19).
A similar procedure yields I(M)(c;FO.GO) £ I(c+£1FpeGg) e

Combining the two results, we have the required inequality.

Lemma 1.9. For given £>0, there exist two positive integers

NO(E),MO(E,) such that for all N2N,(g£) and MQ,MO((-,)

£ & .

%)
l‘I'(M)(FOm.GOn) - LJ(NHON(x)/Nn)dFOm(x)

Proof: Consider

L{J(NHON(x)/wu) = 5™ (nH () /N41) FaF, (x)

£ 2 5A|J(NHON(X)/N+1)|dFOm(x)
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IN

2(11+1) L IJ(NHON(x)/N+1)|d{NHON(x)/Nu}

2(N+1) lsGi/vn)| o
m is (JI>M N+1

i 2(N+1)f |7 (u)] du
. m 1J)>M

where A —{x: \T(NHON(x)/N-f-l)l?M} The last inequality holds
by part (iii) of property B. Since J.\J(u)] du ¢ %0 we have
for given £>0, there exists My(£) such that

Jﬁ [g(u)] du < €
l71>M

for all M MO(e'). By m/(N+1)—>p as N—>#0, and for this

particular g£70, there exists an integer N,(€) such that

,0- £<m/(N+1)<p+ &

for all N 2 No(ﬁ). Therefore we have for all N =2 No(f,) and
all M 2 M,(g)

[45]
(1.20) \j {3 gy 00 /we1) -0 M (g G e Yar g o0 |

< 2&/(p-¢).
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Again using m/(N+1) —,F as N—>co then for some g£>0, there
exists an integer NO(E) such that for all N =2 Notg) and for

all x; - @< x<00 ,
‘f?FOmfX)+(1-,ﬂ)G0n(X)-mFOnIX)/(NH)-nGOn(x)/(NH)|<'6 .
Thus the uniform continuity of JM) over [0,1] gives

0o
(1.21) l SJ(M)(NHON(x)/N+1)dFOm(x)-T(M)(FOm,GOH)‘ &EH
-t0

Combining (1.20) and (1.21) we have the required result.

Theorem 1.10. If Ty is a type B sequence of Chernoff-Savage

89
statisties and I(c*:FO,GO)<a?for some c%»co=:Lg(Ho(x))dF0(x)..

Then for everv c; c*>-c>—co. we have

-1
éiw -N 1n P'{TN(FOm.GOn) > c} = I(csFO,GO)
—> 00 ;

Proof: Consider

00
J LN (NHg (%) /N+1) =0 (NHgy, (x) /41 )}.dFOm(x)l
-00

-0
< _N_%l_J P (NHgy () /N41) = (NHG  (x) /841 )| gy y (%)
-0

- N+1 }N“ |JN(1/N+1) - J(i/N+1)Lﬁ%r .

m o A4=T

The sum approaches zero as N—o by part(ii) of Property B.

Therefore for given £20 there exists an integer No(a) such
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that for all N=Ne(§&)

oo

(1.22) j_DOJ(NHON(x)/Nﬂ)dFOm(x) - &/2

¢ Ty (FopmeCop) < JmJ(NHON(x)/mﬂ)dFOm(x) + &2,

By Lemma 1.,9,for given £>0 there exist NO(E),rﬂO(é) such that
for all N2 Ny(g) and M2M,(g)

(1.23) o e

<5 J (NHgy (x) /N+1)dF,_(x) < (M) (B iy ) + &2,

=02

Combining (1.22) and (1.23) we have for all N>Ny(g), MzM,(€)

’ |
(1.24) P p G )-EC By (8o ) < PR, e Je e

Thus (1.24) gives for all N 2N,(£) and all M?_MO(E,)

P {T(M) (FomsGon) =€ 2¢ }

EP{TN(FOm'GOn)?‘;C}-‘- P{_T(M)(FOm'GOn)*EEC}
and
~lane {T(M) (FomsGon)Z ©- £ §
< -nlanep {TN(FOm,GOn)éc}

& -l an p{rM (g 6o yzere .
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Theorem 1.7 applies and gives upon taking the limit
M

-1
< ﬁ_i_}mm—N 1n P{TN(FOm'GOn)zc}

2 1M (cagyr,.0,)
for all M=M,(&). Combining (1.25) and Lemma 1.8, we have
£ lim Nl anp {? (F G ) > c}
= N 0Om*“0On’ =
N-oo
é I(C+2élF0gG0)o
Since £ is arbitrary and I(c;FO.Go) is continuous at ¢, then
1im =N=1 1n Py Ty (FpvGan) 2 e}t = I(CciFn,Gn).
floa i {_ N' Om*“0On } 070
Thus we have established the theorem,
Remark: If Fy=G, then I(c;FO.GO) will be called the null
large deviation probability of the linear rank statistics

with score function J. For notational convenience, we set

IH(c1J) = I(c:FO,GO). Let

(1.26) _O**(c) = { (F,6)eDxDs T(F,G)<c }
and
(1.27) O*(e) =] (F,G)eD XDy (M (F,0)< c}

where T(F,G) and T(M)(F,G) are respectively defined as in
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Lemma 1.5 and (1.14), Then define

(1.28)  I**(c3F.,Ga)= inf (f,e)dH(x)
o0 (F?G)dﬁ*(c)j?g |

and

(1.29)  If*(ciFyiGy)= <§?§)enﬁ*(c)J (£, 8)aH(x)

where (@(f.g) ig defined in (1.,11). The approach applied to
prove lemma 1.6 can be used to show that I**(c;FO.GO).
I*H(C‘FO'GO) are nonnegative, nonincreasing and convex in
]
c for all ce(c**,c.) where ¢ =_JJ(H (x))dF,(x) and c** ig
0 g Bl 0
such that I**(c;FO.GO)<£0 and hence they are continuous in

e 3 c**<c:<c0. Furthermore we have
(1 030) I**(C+£‘F00Go) SI*E(C'FO'GO) ﬁI**(C-E'FO.GO).

- This fact can be proved by using same procedure which is

applied to show Lemma. 1,8, Thus

Tim =N~L 1n p{a M (p_ a. ) ze
N300 { Om'~0On’ = }

N-oo

N-oo

M
where T(T) = - T(M) and ¢y = -C. By Lemma 1.5, Ti ) is

uniformly continuous, Define
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(M) _ J
I (c{1Fn,CGna) = inf (f,g)dH(x)
e 000 (F.G)Eﬂh(cl (? 3
where _OM(cl) = {(F,G)erD : T{M)zcl} « Since
1{™) (cy1F54Gy) = I%*(ciF(,Gy), by Theoreml,? we have

(1451} ;iEQ:N‘l In P {¢(M)(F0m,GOn)5 ¢ = I**(ciFp,Gy) .

Combining (1.30) and (1.31), the procedure used to show

Theorem 1.10 can be applied to prove the following

Theorem 1,11, If Ty is a type B sequence of Chernoff-Savage

statistics and I**(c*;FO,GO)<:&)for some c¥¢ ¢, where

o0
coF JfJ(HO(x))dFO(x). Then for every c; c*g« c<LcO,JgLJuuuL
-0

1im -N-1 1n P {T (F 4G )2c} = I**(ciF,,0,).
0'" 0
N> 00 N Om On
Remark: I**(c;FO.GO) will be called the information number
of linear rank statistics with score function J under the
alternative F, # G, . For notational convenience, we set
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2. Evaluation of IHiclJ) and IA(C;J). In this section

we give expressions for the probability of a large deviation
for linear rank statistics under the null and alternative
hypotheses, and then derive useful formulae of IH(c;J) and
IA(c;J) for the Wilcoxon and Fisher-Yates(normal scores)
statistics. A more explicit expression for Iz(esd) is given
in the following(see [15] p.376 and [27] p.259)

Theorem 2.1, If J satisfies Property B then for every ¢ >

2]
_{ J(Ho(x))fo(x)dH(x) there exist h and v such that

(2.1) Iy(csd)

1 |
= 2he - 2hv - SO ln{(l—ﬁ)+€exp[@h(J(x)-v)/ﬁ]}dx

where (h,v) is the unique solution of

(23] 1= r siliilenl
: g (1~ P)+€exp[2h(J(x)-V)/ta]
and
L J(x)exp [2n(3(x)-
s . K _J(x)exp [2n(I(x)-v)fp] i
0 (I-P)+Pexp[2h(J(x)-v)4ﬂ

Proofs The linear rank statistics are distribution free
under the null hypothesis so that we ecan, without loss of

generality, assume Fo(x)zGO(x)zU(x)=x where U is the cdf
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of the uniform distribution on [0,1] . Thus fo(x)=gy(x)=1
for all x€[0,1] . Define

-1 1
(2.4) FI(c;J)=fsof(x)lnf(x)dx + (l-f)Jog(x)lng(x)dx.

Then the Lagrange multiplier method can be applied to seek
the infimum of FI(c3J) subject tqfé J(x)f(x)dx ® ¢, Now for

h>0, we have

- FI(esJ)

13N

1 1
Pgof(x)ln(l/f(x))dx + (1-F) gog(x)ln(l/g(x))dx

+ h{j:J(x)f(x)dx - ¢}

i~

1 e
Fgoln{(l/f(X))BXp[hJ(x)4ﬂ}f(x)dx i

1
+ (1-p) gog(x)ln(l/g(x))dx

IN

1 1
fln{[o exp[hJ(x)4ﬂdx -he +(1-F)So g(x)1In(1/g(x))dx.,

The last inequality follows by using Jensen's inequality,

Notice that the last expression does not depend on f; hence



for a fixed g, FI(c3J) is minimized by any f satisfying

1
(2.5) (1) fo J(x)£(x)dx = o

(i1) f%ijexp[hJ(x)/ﬁ]= 1/s, constant,

Using the identity ff(x) + (1—F)g(x) = & for all %3
0<x<1 , we can equivalently seek the infimum of

: : 1 2 L 3
FI(ec3;J) subject to (1-F)f0 J(x)g(x)dx £ IO J(x)dx pce
A similar argument can be applied interchanging the role

of f and g, to obtain the solution

1
(2e6) (1) [0 J(x)f(x)dx = ¢

{11) g}(;-)exp[}hJ(x)/P]= 1/s2 constant.

Combining (2.5)'and (2.,6), we have

4 .
(247) c = S J(x)f(x)dx
- Jo :
f(x) = slexp[hJ(x)/PJ
gix) = saexp[-hJ(x)/fo] .

Thus the infimum of FI(ciJ) is attained by these f(x) and

g(x) satisfying (2.7). Substitution gives

(2.8) IH(c:J) = 2ch + fln(sl) + (l-f)ln(sz)—-£{; J(x)dx

26



where (h.sl.sz) is the solution of

1
(2,9) c = [0 J(x)f(x)dx

1
/8y = Jo exp[hJ(x)/h]dx

il
1/s, = So exp [-hJ(x)/f:] dx.

Sincelff(x)+(1-fﬁg(x) 1 for all xe[0,1], then (2.,9)

can be rewritten as

(2.10) 1 = X

Jl slexp[hJ(X)4{J "
o pS1exp[hd(x)/p] +(1-P)s,exp[-hd(x) ]

¢ = dx

Jl le(x)exp[hJ(xL?j
0 fslexp[hJ(x)4ﬂ +(1-f)829xP[-hJ(X)4ﬂ

Further simplifications reduce (2.10) to

(2011) 1 =

8.1 exp{?,h[J(X)-V]/f} .
X
o (1-p+pexpf2n[3(x)-v1s)
and
1
(2.12) c =j iy SRl 3 dx
0 (I-F)+Pexp{2h[J(x)-v]4}

where 2hv = -Fln(sl/sz). Finally we simplify IH(c:J)

27



as follows:

IH(c:J)

]

2ch = 2hv

il

2ch - 2hv

2he = 2hv

where (h,v) is

The urigueness
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1
2ch + Fln(sl/sz) + ln(sz) -.%&O J(x)dx

1
+ JO ln{szexp[}hJ(x)4ﬂ}dx

1 ,
. 5 ln{ szexp[-hJ(x)/F] ;
0 -Fslexp[hJ(x)4ﬂ +(1—E)szexpl}hJ(x)4i

- S(l) ln{(1-(o)+fexp[2h(J(x)—v)/€J} dx

the unique solution of (2.,11) and (2.12).

of (h,v) has been proved in the Theorem 4

of [27]. Thus we complete the proof of Theorem 2.1.

Remark:

(i) This result was first reported by Woodworth [27]. The

correspondence between the present notation and

Woodworth's is as follows: h = rp/z. c = r4>. v = 8,
( see (3.13),(3.14) and (3.15) of [27]).
(ii) In [27], Woodworth proved( see Lemmas 4,5 >f the

appendix) that c(h) is a strictly increasing and

continuous function of h ® 0, This property was

employed in the computation.
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A similar approach used to prove Theorem 2,1 can be
applied to derive an explicit expression for IA(c:J). We
have the following expression provided J(.) satisfies

Property B and C<<_SmJ(HO(x))fO(x)dH(x).
-
. 1
(2.13) IA(c;J) = fln(s3) + (l-F)ln(su) + %4- J(x)dx - 2ac
0

where (a,s ) is the unique solution of

i

o0

(2,14) c = S—sjfo(x)J(H(x))exp[}aJ(H(x))/P]dH(x)
~00
and
&
(2.15) 1 = S stO(x)exp[-aJ(H(x))/F]dH(x)
-00
0
(2.16) 1 = S sugo(x)exp[éJ(H(XJ)/P]dH(x).
-00
Remarks

(i) IA(ch) is attained by

(2.17)  f(x) = F'(x) sjfo(x)exp[-aJ(H(x))/F_]

and

(2.18) g{x) = 82{x)

[}

sugo(x)exp[aJ(H(x))/P] .

(i1) c(a) can be proved to be a strictly decreasing and
continuous function of a 2 0 by using the methods

of Woodworth [2?].( see Lemmas 4,5 of his appendix).
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The following theorem makes Property B more specific.

Theorem 2,2. If Jy satisfies part(i) of Property B and

‘converges in the first mean to J which satisfies part(iii)

of Property B then part(ii) of Property B is satisfied.

The detailed proof will be presented in the appendix.

Following are two examples of rank statistics for testing
shift alternatives. We consider normal shift alternatives
Fo = @(x-e) and Gy = ®(x) where § is the standard normal

cumulative distribution function,

Example 2.3+ The Wilcoxon test is based on the two-sample

scores statistic J(u) = u - %, and JN(u) = i/(N+1) - %
ue[}/(N+1).(i+1)/(N+1)). i=0,1,--=,N. It is easy to verify
that Jy and J satisfy the part (i) and (iii) of Property

B respectively and that JN converges to J in the first
mean. Thus Theorem 2,2 yields Property B. From (2.1),(2.2)

and (2.3) we obtain after a little manipulation
(2.19) IH(C:Wilcoxon)
= heh+pln(K(P)) -
1n { P+(1-)%K° (p)+p(1-p)K(P) [exp (n/p)+exp (-n/p }/2

where h is the unique solution of
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‘ 1 (u-3)K(p)exp [2h(u-3) /7]
(2.20) c(h) =J du
0 (1-p)+pK(p)exp[2h(u-4)/]
with
(1-p) [1-exp(2n)]
f2i21) K(f)) =

f[exp(2h-h/€)-exp(h/F)] 3

This result was reported by Stone [26], Hoadley (1],
and Woodworth [27]in a slightly different form. Again
from (2.13) through (2.16) we have after a routine

czalculation
(2.22) IA(c;Wilcoxon) = Fln(sB) + (1-fﬂln(sa) - 2ac

where (3'33'5u) is the unique solution of

0
g _ Pl
(2.23) o = | Z30(x)-3)exp {-(x-0)"/2-a (H(x)-}) fax
_r.ooao .
_ 8 2
(2.24) 1'fJJ§? exp{:(x-@) /2-a(H(x)-%L?}dx

~-60

(6]
(2.25) 1 =J J—%u exp{-x2/2+a(}{(x)-%)/(s}dx

~ D0

with H(x)

n

FF(x) + (1-f)G(x) and

(2.26) F'(x) ‘J%? exp{f(X-G)Z/Z-a(H(X)*%)/F}

(2.27) G'(x) = b expl-x%/2+a(H(x)-3)/p} .
= oot 3
o
Remark: If we take TN(FOm.GOn) = S GOn(x)dFOm(x) as
-00
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Hoadley does in page 374 of [15], then the equivalent forms

of (2.22) through (2.27) can be expressed as follows:
(2522)*, IA(c:Wilcoxon) = Fln(aj) + (1ff)ln(54) - 2ac + a

where (a,s ,54) is the unique solution of

2
Do

(2.23)* c = Séé? G(x) expif(x-e)z/Z aaG(x)ﬁ{}dx

EﬂL?

[r9]
(2.,24)% 1 .-.J exp{—(x—s)zﬂe —aG(x)/‘o}dx

-9

(2.25)% -1 =Iag%? exp{fxz/z + aF(x)/(l-F)}dx
with Hix) = FF(x) + (1-F)G(x) and

(2.26)* Br(R) = ;%# exp{-(x-s)a/Z - aG(x)%?}

(2.27)*% G'(x) = exp{7x2/2-+ aF(x)/(l-f)} »

5
=
Az

Example 2.4, The Fisher-Yates(normal scores) test is based

on the two-sample scores statistic with J(u) = ifl(u). the
inverse of the standard normal distribution function, and
Jy(u) defined as the expected value of the i-th smallest
order gtatistic from a standard normal sample of size N,
Theorem a of [11] V.1.4 shows that Jy converges to J in
quadratic mean. Thus Theorem 2.2 gives Property B. From

(241) through (2.3) we obtain

o
(2.,28) IH(c:ns) = 2hc-2hv-~£in{ﬁ1-f)+fexp[}h(x—v)é{”f%x)dx
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where t{)(x) = d@(x)/dx, and (h,v) is the unique solution of

2h =V

(2.29) <(7(.x)dx
o9 (1-‘9)+€exp[2h(x-v)/‘9]
and Y
¥ [2h(x-v)/p]
X ex X=V
(2.30) c = g . £ ce(x)dx |
) (1= )+ exp[2n(x-v) /] '

This result is given by Woodworth [27]. Again from (2.13)
through (2.16) we obtain

{2 «31) IA(cms) = ‘oln(sa) + (1—(’)ln(su_) -2ac‘

where (a.sa.su) is the unique solution of

(2592) ox  blie L._%; & (H(x))exp{-(x-0)%/2-2 1 ((x)) f/} ax

and .00

2 -1
1 =J ‘—1%3 exp{-(x-&) /2-a $ (H(x))/‘a}dx

(2.33) -00
1 = S ;J%? exp{-x2/2+a §-1(H(x))/f)}dx.

As before H(x) = F)F(x) + (1-‘0)G(x) and here

i - LSSl -1
(2.34)  Fr(x) = 23 exp{-(x-0)%/2-2 &7 (H(0)/p}

(2+39) G'(x) = —n exp {-x2/2+a @'1(H(X))/ .
R ¢
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3. The Chernoff efficiency of the Wilcoxon test

relative to the two-sample t-test. Before going further,

we give some geheral remarks on the reiationship of
Chernoff efficiency and the information numbers IH and
I, as defined in section 2, Let{Ty}, N=1,2,--- be a
sequence of test statistices for testing H against A. Let
Py and P, be the probability measures associated with H

and A and such that

(3.1) P imedoy =1 P { mo sy =t

where Ug< [, + We further assume that for Yy<c 4’/(/(1.

{3.2) O<N = PH{TN>C}= exp{-N[IH(c) + 0(1)]} ag N—0

and

(3:3) 5N = PA{TNfc }= exp{—N]:IA(c) + O(I)J} as N—=co

where IH(c) and IA(C) are respectively the information
numbers under Py and P,, and 0< IH(c),IA(c)<Do « That
is, the error probabilities for the test, based on TN
and using an approximate large sample cut-off point

cegﬂo.f&). converges to zero exponentially. Let

(3.4) I =}{0ng min [T, (e),Ip(e)]}.
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“I" will be called the information index determined by TN‘
Thus if we achieve the same level of significance and same
power at a fixed alternative, for the statistic T; (with
information index I(l)) at sample size N, that the statistic
T2 (with information index 1(2)). requires with sample size
N5 then Chernoff defines the asymptotic relative efficiency
of T1 relative T2 to be

(e)

(3.5) e = 1lim N,/N, = I,44/1

provided for any fixed s; 0<8<00 ,

(3.6) 1nf {pN + sy } = exp{N[I(l) + 0(1):]}

Lc.‘.

ag N—»o , i=1,2. In order to calculate the information index
determined by the type B sequence of Chernoff-Savage
statistics TN(FOm'GOn) defined as in (1.3) we must show

(3.1) holds for TN(Fom'Gon)' More generally, we prove

o<
Theorem 3.1. TN(FOm'GOn) —er'fifﬂo(x))dFo(x) almost surely

as N-oo for J(.) satisfying Property B where

Hy(x) = pFo(x) + (1-p)Go(x).

00 00
Proof: I_[iN(NHON(x)/N+1)dFOm(x) - S;S(Ho(x))dFo(x)I

m “
=U {JN(NHON(X)/N+1) - J(NHy_(x)/M+1)}dFy (x)
~00



m %
+'J}?(NHON(X)/N+1)'J(M)(FFOm(x)+(1'P)GOn(x))}dFOm(x).
. -0 . :

_ 0o
+fm{J‘M’ (PFom XV +(1=p)Go (x))-0M (1 (x))Yar, (x)
+ f 7™M (1, (x))afF, (x)-F, (x)}
-00

w
+I{J(M)(H0(x)) - J(HO(X))}GF()(X)I
-

N
N#dic— ; 1
T 2:1 ln(i/me1) = /e | Ll

oo

IJ(NHON(x)/N+1)dFOm(x) " T(M)(FOm.GOn)l
-

+

2y
+j |79 (pPom )41 g (1)) = 3™ (g ()] aF gy, ()

(]
+lng”’mo‘XHd{Fom(x)-Fo(*)}’+ | 2 M agr=zea]

By part (ii) of Property B, the first term goes to zero
as N—» o, By lemma 1.9, for given £>0 there exist No(s)
and My(g) such that the second term is bounded by £ for
all Nz N (g) and all MzMy(€). By the Glivenko-Cantelli
(M)

theorem and the uniform continuity of J

there exists an integer NO(&)'such that

| (pPop ()4 (1-p)0 (x)) - 5™ g0 < £

almost surely for all N=N,(g) and all xe(-t, o). Thus
the third term will be almost surely bounded by & for

y for glwen £>0

36
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sufficiently large N, The fourth term is a.s. less than £ ,
using the Helly-Bray lemma (p.180 of [19]) for sufficiently
large N, By lemma 1.5, the fifth term will be less than £ ,
for sufficiently large M. Put everything together, we

complete the proof of Theorem 3.1.

Theorem 1.10 and Theorem 1.11 show that (3.,2) and (3.3)
will be satisfied for the type B sequence of Chernoff-
Savage statistics. In order to verify (3.6) we need the

following modification of Chernoff [4](Theorem 2).

Theorem 3.2, LetcxN.ﬂN. IH and IA be defined as in (3.2)

and (3.3) for a type B sequence of Chernoff-Savage

statistics with information index 1. Then for given ¢ >0

and s3 0482,

(3.10) inf (‘QN + so{y)/exp(-NI +£) — 0 as N—o
[#]

and

(3.11) iréf (ﬁN + so(N)/epr(-—NI ~E)—> 00 28 N—oo.

Proof: For giveng>0, by the definition of supremum there

exists a value c* of ¢ such that I(c*) = I - £/N where

I(ec) = min[IH(c).IA(c)J . Thus

igf (PN + scxN)/exp(-NI +£)
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]

ircqf (ﬁN + so(N)/ eXp(_-NI(C*))

exp{—N[svélp IA(C) - L(e*) % 0(1)]}

+ 8 exp{-N[sgp Igle) = I(c*) + 0(1)]}

IN

exp{-N[I,(c*) - T(c*) + o(1)]}
+ 8 exp{-N[IH(c*) - I(c*) + o(l)]}

~—30 ag N—»oc0o ,

Thus (3,10) is established. Since IH(g{O) = 0, IA(/.(O) = o9
and IH('/tl) =00, IA(ﬂl) = 0, and I, , I, are respectively
non-decreasing and non-increasing continuous over %'#l]
then there exists c** in [/AD./.{I] such that I = I (c**) =

I,(c**), Suppose that the infimum of ng + s falls in

D’LO'/'{‘IJ then

Ho.ig‘iw‘ Py + s/ exp(-NI-€)

> inf s PH{TN(FOm.GOn) 2 c}/ exp(=-NI-NE)

/L[Oécéc 3

8 PH{TN(FOm'GOn) o c**}/ exP{'NIH(C**)“NE}

14

s exp{-N [IH(c**) + 0(1)]}/ exp{-NIH(c**)-NE}
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= s exp{N(&+ 0(1))}5m as N— o ,

Similarly we can prove (3.11) for the case of infimum of /SN

+ scXN falling in [e**, 4,7 . Thus we established this theorem,

This theorem says that the minimum of 1n({5N + s:XN) is
roughly about -NI. Equating (2.8) and (2.13), we obtain the

information index determined by TN(FOm'GOn) as follows:
w *
I = IH(C 1J)

where c¢* is the unique solution of IH(c;J) = IA(c;J). and

simple calculations give

1
(3.12) o* =‘2%Jz J(u)du +§Tﬂ:§j{rln(s3/sl)+(1-F)ln(s“/82)}

and

(3.413) I =-TH%;T&{h ln(53)4a ln(slﬂ'+(1-f)[h In(sy)+a ln(szﬂ}
--gﬁfl J(u)du
o

where (h,sl,sz) and (a.sj.su) satisfy (2.9) and (2,14), (2.15)
and (2.16) respectively. By equating (2.19) and (2.22), the
information index of the Wilcoxon test can be presented as

follows:
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(3.14) I(Wilcoxon)
= {arRy4h P In(s4) #4n(1-p)In(s,)+2a £ In(K(p) }

- gramml e P -7 (p)+ pl1-pIx () Ko (0]

where K*(f) = exp(h/F) + exp(-h/(1-p)) and (h,a.sB.su) satisfy
(2.20) and (2.23),(2.24),(2.25) but replacing ¢ by

{3.18) o = —T%;Hy{éf’ln(33)+2(1—f)ln(su)- fln(K(p))}

+ rramin i+ (1- P 2K (p)+p(1-p)K(p)K* (P

The information indices and critical values are tabulated in
Tabe 3.1 for (9= 0.5,0.25 and & = 0.1,0.25,0.5.0.?5.1.0.1;5,
2.0.205|360|



Table !ol .

Information index and critical value of the two-sample

Wilcoxon test under normal shift alternative:s Fo(x)

and Go(x) =® (x).

}

0 e
c.10 0.514
0.25 | 0.535
050 0.570
0.75 | 0.604
1,00 0.638
1.50 0.701
2,00 0.759

. 50 0.810
3.00 0.853

0,5 !
I
10| 0.00029
22| 0,00186
15| 0.00741
53| 0.01655
10| 0.02912
85| 0.06355
72| 0.10827
45| 0.16015
48| 0.21580

c*
0.51411
053521
0.57013
0.60449
0.63799
0.70146
0.75871
0.80845
0.84969

0.25

S S _-f; .

1
0.00022
0.00139
0.00556
0.01241
0.02183
0.04763
0.08102
0.11952

0.16009

$ (x~6)
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In order to calculate the Chernoff efficiency of the Wilcoxon

relative to the two-sample t-test, we compute an explicit

expression for the information index of the two-sample t-test.

Consider

" Student”

(2)
N~ =

statistice

(mn/NSN)%(f‘-

Y )



two sample means. In [1] , Abrahamson derived following result

(3.16) 1im -t P {15 vt} = 21n(1402),
N—eo

Consider ﬂ
N

PA{T]gz)z_icN% y

]

il

' B {TIEIZ) 2n? [c-G-(mn/SNNz )%]}.

By a convergence theorem of Cramer(p. 254 of [6]), for every

£>0 there exists an integer Ny(g) such that for all N zNy(€)
(2) 2ok 2%
P, {212) £ [e-0(mn/(1- v ]}
2 3 2, %
<P {TIEI ) 2 W [e-0(m/s v°) 7}
£ p {1{2) 2 [e-e(m/(1+)N2) 2 1}

The proverty of symmetry of the central t gives, for all

N 2N, (€)

- 8 an {182 ¥ Bt/ (1 N®) P e}
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<. n1ap PH{TIgz)z N%[G(mn/SNNQ)% - c]}
¢ - Ntan e {1 20 [p(mn/(1-)v2) - T}
Thus (3.16) yields

(3:17)  1im - N1 1n( By) = 4 1n{1+ [o(p(1-p))P-c]?}
where m/N—-),a and n/N—>1-(’ as N—>o20 , Equating (3.16)
and (3.17) we obtain c* = %G(F(l-f))% and

(3.18) Trpy =4 Inf1 + (’(1‘(’)92/’*} ;

Thus the Chernoff efficiency of the Wilcoxon test relative

to the two-sample t-test is

(3.19) e(c) = ZI(Wilcoxon)/ln{l + f(1-p)9?/u:}
w,t

where I(Wilcoxon) is given in (3.14). The values of e(c)
w,t
corresponding to various normal shift alternatives are

given in Table 4,3 and Figure 4.4,



Wi

4, Small sample comparisons, The Hodges-ILehmann

small sample efficiency defined in [;6] has been further
discussed by Milton for the Wilcoxon and other rank tests

( ps29 of [20]). Values are given on page 37 of [20] for

the Wilcoxon test under various normal shift alternatives
relative to the two-sample t-test at sample size m =n = 7,
Table 4,1 reproduces these values'for ease in reference.,

We note the nearly constant values. An additional set of
finite sample(m = n = 7) Hodges-Lehmann efficiency values
were computed using Milton's tables of rank order
probabilities(table c-1, pp.273-274)., Comparisons are given
in Table 4,2 with type I and type II errors chosen to be
roughly equal as in the Chernoff limit. Again the flat shape
of the finite sample curve is in agreement with the Chernoff
curve and the efficiency values appear to increase toward

the limiting value ' as the error probabilities get small,



Table 4.1,

Hodges=-Lehmann efficiency of the one-sided Wilcoxon

test relative to the two-sample t-test.

& type I erron power efficiency
0.20 0.01 0.022801 0.9657
0.40 0.01 0.047134 0.9637
0.60 0,01 0.,088646 0.9618
0.80 0.01 0,152294 0.9602
1.00 0.01 0.,240128 0.9587
1.50 0,01 0.535000 0.9558
2.00 0,01 0.807526 0.9544
3.00 0,01 0.991453 00,9552
0.20 0.05 0.096541 0.9508
0.40 0.05 0.168787 0.9495
0.60 0.05 0.268527 0.9484
0.80 0.05 0.391083 0.9476
1.00 0.05 0.525236 0.9470
1.50 0.05 0.81805u4 0.9466
2,00 0.05 0.959479 0.9476
3,00 0.05 0.999646 0.9528

L5



Table 4.2 »

Hodges-Lehmann efficiency of the one-sided Wilcoxon test

relative to the two-sample t-test with type I and tyvpe 11

errors chosen to be roughly equal.

Lé

test
Wilcoxon
£

*
Wilcoxon
;7

g
Wilcoxon
%

t
Wilcoxon
t

t
Wilcoxon
t

t
Wilcoxon
t

t

i

m

=25 el - G SR )l TR T o T~ T G S T =, T TR, |

N N9 N

~J

type 1 error

0.450760
0.450760
0.450760
0.355189
0.355189
0.355189
0.310026
0.310026

. 0.310026

0.267485
0.267485
0.267485
0.191436
0.191436
0.191436
0.104314
0.104314
0.104314

type II error

0.407194
0.411949
0.401177
0.365334
0.374854
0.353909
0.,282588
0.295671
0.267353
0.210797
0.226187
0.,193820
0.185279
0.204583
0.166609
0.088269
0.108686
0.073151

efficiency

0.9203

0.9221

0.9236

0.9251

0.9298

0.9392




b7

%wilcoxon 7 2,00 0.,048661 0.041630 0.9494
| t 6 2,00 0.048661 0.059969
t 7| 2.00 0.,048661 0.031581
Wilcoxon| 7 3.00 0.,008741 0.,009914 0.9601
t 6 3,00 0.008741 0.020928
t 7 3.00 0.008741 0.005764
Table 4,3.

Chernoff efficiency of the Wilcoxon one-sided test of

fit relative to the two-sample t-test under normal shift

alternatives: Fo(x) = ®(x-6) and Go(x) = @ (x).

ol

0.5 0.25
0.10 0.955 0.957
0.25 0.955 0.954
0.50 0.956 0.954
0.75 0.958 0.954
1.00 0.960 0,953
1.50 0,965 0.950
2.00 0.970 0,943
2,50 0.971 0,930
3.00 0,967 0.909
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It is conjectured in the absence of a proof that lim e(c)(e)
>0 w,t

= 3/7t as it is for the Bahadur efficiency. Comparing Tables
4,1, 4.2 and 4,3, we note that Chernoff efficiency is in
reasonable agreement with the finite sample results. The
shave of the bold curves presented in Figure 4.4 are nearly
flat as in the finite sample comparisons in contrast to the
Bahadur efficiency curves( faint curves in the same figure,
see Fizure 8.1 of [15] ) which decreases more rapidly. We
note also that the performance of the Wilcoxon test decreases
with unequal sample size for the Chernoff efficiency

criterion as it does in the Bahadur efficiency.
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Fig. 4.4, Chernoff Efficiency ( bold curve)

Bahadur Efficiency ( faint curve).



S« Computations. As the Chernoff efficiency

computations were nontrivial, a detailed description
may be of interest, Values and curves for h, a, 53 §
5y corresponding to various altefnatives and p= 0.5,
0.25 are presented in Tables 5.1 and 5.2 and Figures
-5.3. S.4, 5.5 and 5.6, 5.7, 5.8 with simi-log scale.
It is of use in finding "starting values” of h, a, 53.
s, for initial values in iteratively computing the

Chernoff efficiency.

A series of FORTRAN V programs for the University
of Wisconsin Univac 1108 have been written to carry out
the computations of IH(csWilcoxon) and IA(c;Wilcoxon)
defined respectively as in (2.19) and (2.22)*, For a
given value a, the unique root of (2.,24)* and (2.25)*%
was obtained with |F(eo) ~ 1|« and |G(ﬁw) - 1|ed .,
(d= 10"6 for most of the computation). Iteration
techniques will be found in the main program in the
appendix. For a set of (a'SB'Sh)' c(a.sB.sh) was found
by using (2,23)%*, Substituting c(a.sB,sa) in (2.20) 8
half-interval method of searching was used to find the
unique root h of (2,20) employing strict monotonicity of
e¢f{h), It IH # I, for this set of (h.a.sa.su) then by
monotonicity of Iy(c(h)) and IA(c(a)) we can suitably

change a and obtain a different set of (h.a.sB.su);

50



51

repeating the procedure until |IH - IA|£EIt (€= 0,0005)
where It is the information index determined by the‘two-.
sample t-test. Integrals were evaluated by Gauss-Legendre
integration( NIQUAD subroutine). Errors in this subroutine
were detected and a corrected version was checked for
accuracy using a known integral and by comparing results
using 25,50, and 100 points in the integrations. Differences
were detected in the sixth digit only of ¢ using 25 points
and 100 points in the integration. Numerical solutions of
the coupled differential equations (2,26)* and (2.27)* were
computed by repeated applications of a fifth-order predictor
-corrector scheme developed by Hamming [12] using the DEPC
subroutine. The method requires the approximate solution at
points x-34 , x-2A, x-A, and x to compute an approximation
to the solution at the x+4 . The required starting points
were computed using an error-controlled fourth-order Runge-
Kutta scheme. The accuracy of the completed solution using

5 « With efficiency

the DEPC subroutine is at least 10~
values presented in Table 4,3 believed accurate to one unit

in the third decimal place,



Table éolo

Values of h, a , 83 » 8 for pe i
2 A . a 53 8),
0.10 | 0.042338 | 0,042323 1.044790 | 0.959992
0.25 | 0.105898 | 0.106178 | 1.122457 0.907704 | -
0.50 | 0.212357 | 0.214841 1,287111 | 0.837543
0.75 0.319982 0,328516 1.512490 0.784056
1,00 | 0.429359 | 0.449930 1.828194 | 0.743392
1.50 | 0.655878 | 0,728325 2,962126 | 0,690220
2,00 0.897148 | 1.079062 | 5,741553 | 0.663512
2,50 1.157656 | 1.5434%00 | 14.323060 | 0.653815
3.00 1.444089 2.,176562 50.964966 0.655735




Table 5.2.

Values of h, a, 53 v Sy for /°= %

53

h

0.021186
0.052945
0.106226
0.160195
0.,215150
0.329578
0.452261
0,585930
0.731770

a

0,031720
0,079650
0.161111
0.246233
0.337063
0.544506
0.803750
1.139375
1.579181

By
1.068122
1.190902

1.4683273 |

1.882705
2.,524250
5.323727
14.702151
57.954823
361.178593

e

Sy

0.979734
0.952281
0.913481
0.881849
0.855988
0.817618
0.791803
0.773562
0.758027

B S ]
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APPENDIX:

Theorem 2.2, 1f J satisfies part (1) of Property B and

converges in the first mean to J which satisfies part (iii)

of Property B then part (ii) of Property B is satisfied.

Proof: By Lemma 1.1, for given £>0, there exist L,U;

0<L<UL], and 0 < M<oo depending on g such that

L 1
(A1) [ plalau + [ Pl <€
0 U

and |J(u)] £ M for ue[L,U] and hence J(.) is uniformly
continuous over [L,U]. Since Jy(u) converges to J(u) in
the first mean, then for this particular £ there exists an

integer NO(E) such that for all N = No(s)
1
(A.2) j 7 (w) = J(u)]du <£ .
0
And (A.1) and (A.2) give
L 1
(4.3) [ o] au + J [Fy(w))du < £ .
0 U
We choose a,b; 0<a<LgU«<b<1 with min(L-a,b-U)> 2/(N1+1)
for some N; > NO(E). For N 2 No(e), there exist integer jy»

ky such that jn/(N+1) & L <(jyt+1)/(N+1) and kN/(N+1)>-U 2
(ky-1)/(N+1). Then min(L-a,b-U) >2/(N;+1) implies



(A L)
and
(A.5)

Thus

a € (Jy/(N+1) < §p/(N+1) 2 L

U £ kN/(N+1)-<(kN+1)/(N+1) £ W

R . A
ey }ﬁ’aw(i/mu) - J(1/N1)|
1=

1 J
- E—I-E;,JN(;:/NH) - J(i/N+1)|

k
1
oo P +1,JN(1/N+1) - J(i/N+1)|
1 N

1 [v+1)1) :
N+1 iHJN“/N*”l + /)l
i=

1 k
Boitts _Z | (i/M+1) = J(i/n+1)]

1 5
R e A A
[(N+1) 1)/ (N+1) (N+1) 1)/ (N+1)
“ Pl au + | 19 (w)] du

64
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k
1
¢ ) | o (i/M1) = a(i/nen))|
=Ty

1 1
J(u)|a 19 (w)l 4
" .j1+KN+1)QV(N+1)| N I i _J1+KN+1)G/(;11)U
L L 1 1
¢ IO |7y ()] du +;0‘J(u)|du +.JU ol au +f frw)] au

1 k
i e 1E= N+1|JN(1/N+1) - J(i/N+1)|

i ky
LB 152 : 1lJN(i/N+1) - J(i/N+1)|,

The last strict inequality follows from (A.1), (A.3). Next

we show the second term of last inequality is less than ¢

for N 2 Nj(g). Define JNi(u) = JN(i/N+1) on I,. and
o%i = min,JNi(u) - J(u)l . = maleNi(u) - J(u),
ueINi uc’-INi
and

Mo = max J{(u) v My. = min J(u)
Ni Ni

where Ty =[i/(N+1).(i+1)/(N+1)] for i=j -1,---,ky-1. It is



66

easy to see that

(Aif) dﬂi £ lJN£u) - J(u)‘duéémj__
N+1 INi — N4+1

and

thy7) - BN«

1 : , :
AL £y [ (r0)/001)) - a0 K

Summing on each side of (A.6) and (A.7) from jy-1 to ky=1s
then subtracting the one of resulting inequalities from the

other we have

k _/(N+1) ,
(4.8) |5 Ziﬁ oy (i) - J(i/N+1)]-S'N |7y () =3 ()] du
. (3y-1)/(N+1)
s _ky-1
fam L (P Ay
_JN [
ko
1
- iiJN_l{]sN(i/N+1)-J(yNi)\- o (/1) -3 (wy Y
; k -1
L W) = T0ny) )
) gl
< —0 ( My: = my:)e
N+1 i;“‘;l Ni Ni
Where YnitWny 2T chosen such that \JN(i/N+1) - J(yNi)Iz

max JNi(u) - J(u)‘ and IJN(i/N+1) - J(wNijzmin lJNi(u)-J(uﬂ
Ing Ing
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respectively. The last equality holds if J(wNi)iéJN(i/N+1)$
J(yNi).Similar argument can be applied to the another three

cases, Thus we have by using (A.8)

=

(A.9) 'N%‘i \J (1/N+1) - J(1/N+1)l

c_.
=

=
]
[

1

N+1, (Myi=myg) + [ |7y () -3 (W) du.
i=jy~1

-

Since J(u) is uniformly continuous over [a.b], there exists

an integer Nz(E) such that for all N =2 Nz(a)

(A.lo) P"INi - mNi<£' i= JN-l'--—'kN-l.

Thus for all N =2 N3(£)=max(N0(£),N2(g)), (ha2).and (A10)

give

k
1 N i :
Nl ?: N‘JN(:L/NH) - Sl L 28,

Hence we have establied Theorem 2.2,
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CALCULATE THE CHERNOFF EFFICIENCY OF THE WILCOXON
TEST RELATIVF TO THE TWO-SAMPLE T-TEST

'ASGsA NIQUAD*DATATABLE.sF?2
'USE 8+NIQUAD*DATATABLE

'FOR

222

2472

202

[S HWANG

COMMON A4S3+549SsRHOSTHI 3PP

DIMENSION R(150)sW(150)

DIMENSION YINIT(2)sYFINAL(3) +sSAVE(20043)

EXTERNAL DERIVS
FXTERNAL H1sH3
D==T7«N

B=8.0
F==0.000001
FE=0.000001
N=25

M=25

RHO=0e5

THI IS THE MEAN
THI=2e5
CONTINUE
AL=1.5432
AlU=1a543¢
A=1.5434
CONTINUE
ALD=A-AL
AUD=AU-A

IF(AUDeLTeEE) GO TO 450
IFTALD«LT+EE) GO TO 450

S3L=14.319781
S3U=14326437
$3=144323062
CONTINUE
S4L=0.652705
S4U=0e653924
S4=0.653814
CONT1INUE
S4LN=S4-54
S4UD=54U-54
S3UD=S3U-573
S53LN=S3-53L
IF{S4UD el ToEED
IF{S4LD oL TEED
TELS2UD e TR EED
IF(US2LDelLTeEF)
YINIT(1)=0,0
YINIT(21=0.,0

CALL DEPC(29=7e0sYINITs7403YFINALSDERIVSs1e0E=6551e00
#14e0E~5440594029291e09!'SOLVE TWO DIFFERENTIAL
*EQUATIONS e o' s SAVE 920053 yNOPTSsNOTIFY,$110)

FFE=YFINAL(2)
GG=YFINAL(1)

GO
GO
GO
GO

TO 904
TO 208
0. Q0L
TO 908

68



901

801

112

113

133

607

617

600

408

114

FD=FF-1. 69
GD=GG-1.

IF(FDsGT4EE) GO TO 112
IF(FNeLT4E) GO TO 113
GO TO 133

S4L=54

S4=(S4L+S4U) /2,

GO TC 202

S4U=54

S4=(S4L+S4U) /2.

GO TO 202

CONT INUE

IF(FDsGT4EE) GO TO 607
GO TO 801

CONTINUE

IF(FDeLTWE) GO TO 617
GO TO 901

CONTINUE

IF(FDesGT4EE) GO TO 607
IF(FDeLTW4E) GO TO 801

GO TO 600
S3U=53
S3=(S3L+53U) /2.
GO TO 202
S3L=S3
S3=(S3L+S3U) /2,
GO TO 202

L.=1

CALL NIQUAD(DsBsH3sNsRsWslL sCs$100)

C IS THE CRITICAL POINT OF THE WILCOXON TEST UNDER
ALTERNATIVE HYPOTHESIS

PRINT 4089A+53,544CsFF GG

FORMAT(3X s 'A=13F124693Xs"S3=143F12e693X9'S4='3F12e693Xs

HIC=V gL 1T 693X s 'FF=tyE17 463X e'GG='9sF17e6//)

IF{CeLT«DaB) GO TO 904

FIA IS THE INFORMATION NUMBER OF THE WILCOXON TEST UNDER
THE ALTERNATIVE HYPOTHESIS
FIA=RHO#LOG(S3)+(1e—-RHO)*LOG(S4) =2 ¥A%C+A
FITT=0e25%RHO%*(1e—RHO)*THI %2

FIT IS INFORMATION INDEX OF Tw)-SAMPLE T-TEST
FIT=0e5%LOG(1+FITT)

CEOWT=FIA/FIT

FIATT=CEOWT-1.

IF(FIATT.GT«EE) GO TO 904

IF(FIATT.LTe-043) GO TO 908

514155

SL=1.14

SU=1.160075

L=1

CONTINUE

SLD=5=-5L

sSUD=sU-5§

IF(SLD«LT«EE) GO TO 904

IF(SUDeLT<EE) GO TO 908
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PP1=RHO* (EXP(2%5)~1,)

PP2=EXP(2%#S=2%S/(1+-RHO})
PP3=(1e~RHO)*(PP2=14)%¥EXP(S5/(1e~RHO)}
OP=—pPP1/pP3
RBB=0
CALL NIQUAD(RBBslesHlsMsRoWsLsCCs$100)
CC IS THE CRITICAL POINT OF THE WILCOXON TEST UNDER
THE NULL HYPOTHESIS
CCC=RHO* (C~0,45)-CC
IFICCCAGTEEY 6O TO 50
TEACECGTaE) GO TO B850
sU=5§
S=LSL+5UY /2.
60 TO 114
650 SL=§
S=(SL+SU) /2.
60 T011%
550 CONTINUFE
RUH=RHO* (14—RHO) #PP* (EXP(S/{1e=RHO) }+EXP(~S/(1e~RHO) ) )
PPP=FP#*#)
RHU=KHO*#2 +RUH+PPP#* (14 ~RHO ) # %2
RU=L0G (RHU)
FIH IS THE INFORMATION NUMBER OF THE WILCOXON TEST UNDER
THE NULL HYPOTHESIS
FIH=4e#CC*S+(14-RHO)%¥LOG(PP)=045%RU
CEOWTH=FIH/ETT :
PRINT 509,A953s543SsFIASFIH
509 FORMAT(1X9'A='9F12.692X9'53='gFlZ-G!ZX;'54='9F12o69
¥2Xo 151 3F12e6 92X 'FIA=1 4E1Te692Xs'FIH='4E17e6//)
RR=CFOWT~CEOWTH
IF(RRsGT.0.0005) GO TO 904
IF{RReGT+~0.0005}) GO TO 990
GO TO 908
904 AU=A
A=(AL+AU) /2.
GO TO 242
908 AL=A
AELAL AALS 254
G070 242
990 PRINT 2089A9S39S4sTHI sCEOWTHsCTOWT
208 FORMAT(1Xs'A=1,F124632X9'53=1'4F12e692Xs'S4="!4F12e6,
X2X 9 VTHI=13F124692X s '"CEOWTH=14E174632Xs"'CEOWT=1 sE17e6//)
GO TO 450
110 PRINT 1224NOTIFY
122 FORMATI(5Xs 'NOTIFY=1415)
GO TO 450
100 PRINT 1072
102 FORMAT(20X ' INTEGRATION DIVERGES!')
45C END



'FOR»IS YUEH

FUNCTION H1(Z)

COMMON A34S5335493S9sRHOs THI sPP
PP4=EXP{2%S5¥%(Z2=e5)/(1e=RHO))

PS=RHO+(1+¢=RHO)*PP*PP4
Hl=(Z=e5)*PP*PP4/PS
RETURN

FND

'*FORs IS TYUAN

FUNCTION H3(7)

COMMON A43S539549S9RHOs THI9PP
DIMENSION YINIT(2)sYFINAL(3)+SAVE(20043)

EXTERNAL DERIVS
=2z

2272=T7
PPP=7227+7.0
YINIT(1)=040
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CALL DEPC(29=740sYINIT9s7e0sYFINALYDERIVSs1e0E=691e0>

#14e0FE~550e29401929sPPPs'SOLVE TWO DIFFERENTIAL
*¥EQUATIONSe o' s SAVE 20033 sNOPTSsNOTIFY,$110)
SSI=FEXP(=(T=THI)#%2/2,.)

S$S2=—A*¥YFINAL (1) /RHO

H3=039894228%53*YFINAL (1) *SS1I*¥EXP(S52)

RETURN

110 PRINT 122sNOTIFY

122 FORMATI(5Xs tNOTIFY=1,15)

45 END
'FORs1S TEAY

1XaT
TFIN

SUBROQUTINE DERIVS(XsYsDYsSTORESITEST)
COMMON A4S53+sS44SsRHOsTHI»PP
DIMEMSION DY(1)sY(1)sSTORE(1)

P2==X*%2/2,
P22==(X-THI)*%2/2,
P3=A*¥Y(2)/(1e-RHO)
P4=EXP(P2+P3)
P33==A%Y(1)/RHO
PS=EXP(P22+P33)
DY(1)=e39894228%S4%P4
DY(2)=.39894228%S53%P5
STORE (1) =X
STORE(2)=Y(1)
STORE(3)=Y(2)

RETURN

END
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