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D-OPTIMAL DESIGNS FOR DYNAMIC MODELS

The problem considered here is directly related to the
development of realistic dynamic models made possible by the methods
of Box and Jenkins [3]. This report tries to provide some partial
answer to one of the questions raised in their book (see [3], pp

416-420):

rGiven a dynamic system:

w(B)

y = x- +e t= .-._,“],0’13w-n (])
(P) 1 6 t-b t

Supposé that one can choose the input {xt}..

1
(_What is the best choice for '{xt}?

Except for the completely solved simple example used by Box
and Jenkins to illustrate their point and for the work of Minnich [17],
there seems to exist no statistical Titerature directly related to
this problem. Some remarks on the subject may be found in the
engineering literature (see annich's.bib1iography fér references, as
well as Dhrymes, Klein and Steiglitz [6]) but none of them can be
considered as a starting point for a satisfying answer.

The approach presented here is in some sense the result of
scattered observations in Courrege and Philoche [5]1, Durbin [7],

Fishman [9], Grenander and Rosenblatt [10], Hannan [11], Kruskal [15],

1
What is meant by best will be discussed below.



2
Parzen [18], Wahba [22] and Watson [23], observations which led to
Viort [21] and will hopefully be discussed elsewhere.

The result of [21], namely the dispersion matrix of the
maximum 1ikelihood estimators of the w- and §-parameters in (1), is
used to relate the probiem under consideration to a special case of
the "classical" theory of experimental designs as developed by, among
others Kiefer (and) Wolfowitz, Karlin and Studden ... Complete
references on this subject can be found in St. John [20] and will
therefore not be discussed here. Many important results and methods
are presented and updated in Fedorov [8]; this book can be considered
as the basic reference on the subject.

The question of "optimality" is, and will remain, an open
question--if only because it is related to too many different aspects
of the problem under consideration, from the assumptions underlying
the model to the cost of the experimentation. Optimality is to be
taken here in its narrow meaning of optimal for a given problem, a
given situation, under well specified assumptions.

Correspbnding to these remarks, the situation in the problem
(P) is complex:

- Dealing with time series models and using the methodology of Box
and Jenkins, one thinks immediately of three possible goals of
optimality: optimal for identification, for estimation (all or
part of the parameters) and/or diagnostic checking.

- If one is interested in the best estimation of some parameters,
there are many different estimates and many notions of optimality |
each with advantages and disadvantages, and not equivalent as soon

as one is dealing with multi-parameter problems.



- The model (1) is non-linear.

I. Problem, Model and Assumptions

This report is limited to the following situation:

- One is only interested in the optimal estimation of the w~ and
d-parameters.

- The method of estimation to be used is maximum 1ikelihood
estimation.

- The notion of optimality to be used is D-optimality, i.e. a
design is D-optimal if the determinant of the dispersion matrix
of the estimators is minimal. This criterion is related to the
HPD (highest posterior density) criterion which consists in
minimizing the area of the Bayesian HPD region for the parameters.
As pointed out in Box and Tiao [4], one of its disadvantages is
that it reflects only one aspect of the covariance matrix: the
product of the eigenvalues.

- Since the problem is non linear, only D-optimal designs at a
given point .(w .5032 will be considered. This has the
advantage to make the results presented here useful in two ways
1) To develop an iterative method in order to find the optimal

input for an unknown model (Box and Hunter [2]),
2) For a given model, to find how good (or robust) is a given

input.

2
For notational convenience, the subscript 0 will be omitted in
the following way: (w,8) 1is to be considered as known.
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For a practical use of the results to be derived here, the
above points imply that the model (1) has been completely identified,
estimated and checked, using an ad-hoc procedure. Note that this
implies a choice for the input {xt}, making the results of this
report also useful for this preliminary stage. Since the error
process will have some importance, one could in addition consider an
input such that {xt=0} and the methods of the first part of Box
and Jenkins [3] to identify it separately.

Now in the model (1):

w(B) = Wy + m]B SRR RE, AT gP

p
(2)
e E 55 > q
§(B) = 1 61B sty GqB
where w = (wo,...,wp), § = (6],...,6q), p,q are known.
Let
m=p+aq+]1 (3)

be the total number of parameters to be estimated.
The other assumptions are those of [21]:
Al1. A1l the roots of w(z) =0, &(z) =0 are outside the unit
circle |z| =1 1in the complex plane C;
A2. There exists no common root z,eC: m(zo) = G(zo) = 0;
A4. {et} is a stationary stochastic process with mean 0 and known

spectral density 02f (6) bounded away from zero.
ee



The solution {x.} will be looked for in the class of
stationary stochastic processes with mean 0 and spectral density3
Uifx(e)' {xt} will be independent of {et}. Since {xt} and
{e,} are real, f (2n-8) = fx(e), f.(21-0) = fe(e), but the
results derived here could be applied to non-real processes. Finally
note that the forms of the spectral densities imply that fx and fe
are normalized.

At the eﬁd of this introduction it is worth noting that,
despite the many 1imitations and assumptions, not only are none of
them completely unrealistic but most of the actual situations where a

dynamic model can be used fit into this frame.

3
fx(e) is to be considered as a generalized function. To avoid

mathematical difficulties, fx will be considered as the sum of two
functions:

fx-T which is a.e [dx] continuous,
fx-z which is a finite linear combination of & functions:
 } r. ]
] as, where a_ > 0.
0=1 P Bp 0

By definition, and with some abuse of notation, for g: [0,2n] + R,

2m
r
j g(e)fx;](e)de - pZ1apg(ep) wil]lbe represented by

0
2m

! a(6)f, (6)do

[A rigourous treatment would necessitate the introduction of the
spectral distribution function, which is not exactly relevant to the
design problem.]
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II. The Relationship with the Standard Experimental Design Problem

With some variation in the notations, the model
Yo ™ Q]¢1(9) Filwa™® um¢m(8) + 4 (4)

where 6 is a real "control" variable (8¢[0,2n])
Ye is the real observation at 6
a = (a1,...,am) is a real vector of unknown parameters

¢.(6), j=1,...,m are known real independent functions

J
e, are real independent (for different 6) random variables
o
with mean 0 and variance —E'fe(e) >0
g
X

is the starting point of the now classical literature on experimental
designs.

If one takes n measurements (corresponding to 81""’en
not necessarily all different) the information“ matrix of the parameter
o« s '

a2
Ic(xn)={ Zq),](e\))qbk )—2-—-(-7 j,k=1,...,m} (5)

and, if there are N different 6's, with nu measurements at eu’

N

u=]nu = (6)

4

From now on the inverse of the dispersion matrix will be used, and
called the information matrix. The criterion of D-optimality is then
to maximize the determinant of the information matrix.



let
nU
S (7)
then
(n) N 0'32( p
I, ={n2¢j(e Mgle }aget s g j,k=1,...,m} (8)
p=1 H W6t f (8)
e e

The solution consisting in increasing n, the number of
measurement, clearly presents no interest and what one is interested
in is maximizing the information "per observation", i.e. the

determinant of

2
N o] p
= X : %
1, = { L 650000,00) F—2— s gk =1..m} (9)
u=1 9§ (8.)
: e' u
The form of IOl suggests the identification of a design
with a (discrete) probability measure on [0,2n]. It is very convenient,
and justified, to drop the requirement of the measure being discrete
and identify a design with a probability measure (to be represented
by fx(e)) on [0,2n]. Under some mild regularity conditions on the

5
¢j's and with the extended definition of the integral, I = 1s then

I { T ¢.(8)4, (6) “‘2"‘"—-""05 i 46 3 3.k =1 } (10)
= : 5 > = P ||
i 0 ; ; Ue fe(e)

Consider, now, the result of [21]: the information matrix

of the m.1. estimators of P = (w,8) in the model (1) is

5
Integrable in the sense of §I and bounded on [0,2r].



-2 2%
= f (8) :
1 % aG 3G X .
I =4 5—— (8) (8) day .k = Y.....m (11)
p {Z'rr Uz i Bpj Bpk fe(e)
where
_ wle
G(e) = 56 (12)
and
w(e) = wy * wy t-:'-ie ¥y P wy e-p'iB (13)
sef =1 - &L o 8 g~16 (14)

The analogy with the standard set-up presented above (4)

suggests that one considers the model

S0 3G
% = gy (0) Py + we ¥ 50 (8) By * (15)
where 24, €y are complex r.v.,

g = Ee ¥ % Ng > ge, Ng being independent real r.v.
with mean 0 and variances
d2

Var(g,) = Var(ng) = 2n —g f,(6)  (16)
a
X

and such that the £'s are independent for different 6's.



Proof:

let z =x+ iy, G=06 + iGy, then (15) splits into two parts:

ke, 55;‘(9) Pyt -t (6) b, * &4 (17)
- m
3G, 36,

W= 35? (0) py * ... # 35; () p, * ng (18)

From (17) the information matrix for the p's is

2 2%
i 9y [ aG] aG1 1 (e)
I, 1 = { = 5 (8) (6) (1%)
P,1 n 02 Bpj 3Py f (e)
; e 0
and from (18).
2 2w
- 1 Ux BGZ an f (6)
IP,?_ *Yiow 3 I 'é“ﬁ'- (8) apk (0) f (9) (20)
N

i.e., using the additivity of the information matrices and (16)

2 . 2n
o 3G, 2G 3G, 9G, f (e)
IP = 1W ; ] ap] ap1 i ap? ap2 f (e) (21)
0g J k J k

and, since (13) is real (fx and f, are symmetric)

2 e .
] o = f (6)
Ip =1 2¢ _% [ (e) apk () f O (22)
% 0

which is the desired result.

This provides the proof of the following:
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Theorem I: A design fx(e) is D-optimal for the model (1) iff it is
D-optimal for the model (15).

The main advantage of Th. I is that it provides powerful
methods and results for the solution of the original problem. The
characterization of thé solution to be used now is completely
different from the approach of Box and Jenkins : part of Minnich's
work [17] seems to prove that the consideration of the autocorrelations
of the X;-process, which was very useful, rapid and elegant in a
simple example, leads to hopelessly complex computations as soon as
one considers more than 2 parameters.

A summary of the results on D-optimality to be used later,
will be given in the next section.r

At this point it is important to make some comments concern-
ing the specific aspects of the design for dynamic models problem:

1) For dynamic models, the design problem has some favorable aspects
- The "control” variable 6 1is one-dimensional,
- Its range is well defined ([0,2%]),
- The solution is symmetric f(2n-8) = f(9).

2) This is a little compensation to the main difficulty, carefully

avoided until now, namely the factor oi. The introduction of oi

2
X

consequence of the initial problem (find an optimal input for the

in (4) was completely artificial: the importance of o 1is a

model (1)). An obvious solution to "improve" a design would be to
increase °§: this is of course completely unrealistic since, in
most real life situations, the model (1) can be considered as a good

representation of the system under study only in a neighborhood of
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the mean values (taken here for convenience and without loss of
generality, equal to zero) of X4 and Y- It is therefore necessary
to impose some constraint on the ranges of X¢ and/or Y this is
done by limiting the corresponding variances. Three types of

constraints were considered by Box and Jenkins [3]:

i 2
€t o ot (23)
Cot 0 < ¢ (24)
2 e
C3: ciog < Cq (25)

It turns out that C] and C2 are special cases of the so-called
linear constraint:

s 2 2
C: ag, *bhao g a,b >0 (26)

considered by McGregor [16] in relation to some control theory
problems. The quantity one is interested in maximizing is now better

written as

(ci)m Det(I (27)

ED)

where in general both IED (the information matrix of the experimental

design theory) and ci ~are functions of fx(e) since

V4§
& 2 2
8™ &y J [G(8)] fx(e)de +0
0

2

. (28)
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where

6(8) = w(e 10)/8(e79) (29)

[See Jenkins and Watts [12] for a proof of (28)]. Under the constraint
C;» the two parts of (28) are independent: the maximum is reached by
taking oi = ¢ and maximizing Det(IED) without constraint, i.e.
the results of the classical theory of experimental design apply
directly. In the other cases, it is apparent that the optimum implies
that the inequality in C2’ C3 or CL is in fact an equality.

This section will now be concluded with a point of
terminology.

In order to avoid some confusion with the terminology
"discrete" and "continuous" used in the literature of experimental
designs in relation with the possible values of the control variable
6, a solution (i.e. a design) will be called "stochastic" if

6
f 0 , "deterministic" if fx-? =0 and mixed in all other cases.

Xug .
The justification for this comes from the spectral decomposition of a
stationary stochastic process which shows that a jump in the spectral
distribution function at 80 (i.e. with the convention here a

ogd (Dirac) in the density) corresponds to a deterministic sine-

0
0
wave with random amplitude

z cosét (30)

6
Recail f_ = f f

a.e. i di .
% ) e. continuous, fx;2 iscrete

X:2°

3

%31
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with

2

E(z) = 0 Var(z) = I,

(31)
In the problem under consideration here, since ¢t 1is determined once
and for all, it seems realistic to use for ¢ the distribution assign-
ing the same probability to the two points +o, -0, and 0 elsewhere,
since the stochastic process (30) is not ergodic. The solution
corresponding to a discrete mass is then truly "deterministic". On

the other hand, when fx = fx-]’ the spectral decomposition
2m
X, = j et dg(o) (32)
0

where &£()X) 1is a stochastic process with orthogonal increments and

such that
Var(g(e)) = fx(e)de (33)

shows that xt

orthogonal harmonic oscillations

is the "sum" of many elementary and mutually

' g (o) (34)

i.e. corresponds really to the idea of a stochastic process. Of
course, the stochastic solutions in which one is primarily interested
here are the ARMA (autoregressive-moving average) processes 1i.e.
stochastic processes with rational spectral densities and a small

number of parameters.
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II1. Some Important Results on D-Optimality

IIT.1. Properties of information matrices.

The following theorem, proved in Fedorov [8] summarizes the
properties of information matrices:
P1) For any design fx’ the information matrix I(fx) is symmetric,
semi-definite and positive,
P2) The information matrix is singular if the number of different
points of the design is less than the number m 6f parameters,
P3) The family of matrices I(fx) corresponding to all possible
normalized7 designs is convex,

P4) For any design fx’ the matrix I(fx) can be represented as

2 -
1 G B oqp 3G v
I(f ) = B 9 R (8 ) (e ) ’ Jsk ]s sM (35)
X { 2n Ug vZ] apj v’ 3p v feievi
with n <m(m1)/2 + 1
i (36)
dsgip <1 Z By =1

4 is certainly the most useful property here: it shows
that one can restrict the research for D-optimal designs to
deterministic designs with a finite number of points. This property
will be widely used for the characterization and construction of

optimal designs.

7
i.e., here, with the same ci.
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I11.2. The Equivalence Theorem and its consequences.

It is a common practice in the theory of experimental

designs to consider the quantity

dfx(e) . Var(ze)/Var(ae) (37)

where 28 represent the predicted value at © when the parameters of
(15) have been estimated using the design fx(e)' In the general
case this is a real function of a multi-dimensional variable and the

situation here is very favorable since & is real. One has

varzy) = 28 0] 1,5, 8 0] (30
Bo]-Bro- %o

with

Defining now

2
o e =
Ip(8y) = { %—;——;—{B% (ej —gg (e)J * [ (2m- 8)”}}5 (zn e] }f(ﬁ}
* (39)
one has
2m
L(f,) = j 1,(5,) f,(8)do (40)
0
and, as soon as fx is not a degenerate design
dg (0} = Tr {L1,(F )T 1505,) | (a1)

X

Now, considering the explicit form of the partial derivatives of G(8),

it is possible to derive the expression:
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1 "
)!4 fe(B) Qm(cose, sing) (42)

d. (8) =
fx |s(8

where Qm(cose, sin®) 1is a polynomial of degree (m-1) in cos6, sins.
This implies that df (6) 1is continuous iff fe(e) is continuous.

X
Using (40) and (41) it is easy to check that

pall
j d (0) £ (8)do = m (43)
0 X

for all fx(e) such that the design is not degenerate. Note that,
because of the presence of fx(e), the integral over [0,27] in (43)
is in fact the sum over the points of the design.
The Equivalence Theorem (Karlin and Studden [13]) says that
the three conditions are equivalent:
i) The design f: is D-optimal,

ii) £ minimizes max d ()
2 g Ty

ii1) d.*(6) <m for all ee[0,2n].
X
It is not difficult to check, using (43) and condition iii),

*
that for an optimal design fx’ df*(e) = m at the points of the
: X
design.
The characterization of an optimal design as a design such

that for all 6e[0,27]

Al (8) = d; (8) -m<0 (44)

X X

will be extensively used (after suitable modification) in the

following: Al (8) 1is not only one mean to express the optimality of
X

a design, but is also a pivotal quantity in the derivation of an

iterative method of construction of optimal designs.
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Given fx non degenerate, consider the design

fx;a = (l—a)fx + o 66 ae[0,1) (45)
then Ip(fx;a) = (1-a)Ip(fx) +a Ip(ée) (46)
and & Ip(f.g) = 1p(85) = 1,(F) (47)

Now it is well known (Fedorov [8]), that
& Log Det(M(a)) = Tr {M“ gg—} (48)

giving here

d o,
i Log Detllp (£, )| =T {01, ) - 1,060} (49)
=d. (8) - (50)
i m
1
= A (0) (51)
fx
In addition:
¢ Log Det(I.(f ) » -Tr {[I.(f )J"[I (8.1 = Lot )]
Ao og Det(1,(f, . ) o - { P x P*-o P x

(£ 17 0,(65) - L,(£01}  (52)
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Let
A= [I(f )17 [1p(8,) - ()] (53)

there exists an orthogonal matrix B such that
A = BAB' ' (54)

where A is a diagonal matrix. Now, using a property of the Trace

operator
TP(ATAZ) = Tr(AzA]) (55)
Tr(AA) = Tr(AB'BAB'B) = Tr(BAB'BAB') (56)
= Tr(AA) > 0 (57)
so that
¢’ (f. ) 0 (58)
Log Det I(f,_. <
5;7 X300 lomy ~

An iterative method of construction of D-optimal designs now
proceeds as follows:
Step 1. Using f,, derive Al (6) and find By such that
0

1 :
Ag (60) is maximum,

0 .
[If Al (eo) <0, then f, is an optimal solution].
: <
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Step 2. Define f = ('I-a)fO + a6 and find oy such that

0sa 80

DEt(Im(fO;aO))- is maximum,
Step 3. Take f1 = (1—a0)f0 + o 580 , replace fo by f.I
and go to step 1.

This procedure is completely discussed in Fedorov [8], where
its convergence is proved: some elements of this proof, like the
recurrence formula relating Det(Ip(fn+])) to Det(IP(fn)) will be
used later. Improvements of the rate of convergence are discussed in
Atwood [1]. It is to be noted that this procedure (or similar ones to
be introduced later) is one of the main reasons for considering mixed
designs. (Another reason being, of course, the property P4 of the

information matrix.)

II1.3. Kiefer's inequality.

Using (51) and (58) for f: D-optimal and © fixed, Kiefer

[14] derived the lower bound

Uat (IP(fi)) > exp (- max A} (o)) (59)
Det (IP(fx)) 8 X

This inequality, expressing how close a design fx 15 Lo

D-optimality using A} (6), 1s another advantage of A} {6). It is
X X
very useful for iterative methods, in order to stop the computations

when a desired accuracy is reached.

II1.4. Conclusions concerning the dynamic model designs.

At this point it may be useful, in the 1ight of the results
just presented, to underline the advantages as well as the limits of

the relationship established in the preceding sections.
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The main advantage is in the function_ A} (6), which
gives not only a convenient characterization of thexD-optimaT designs,
but also the starting point for the improvement of a given design.
The 1imits are of two kinds:

- As previously mentioned, the situation of the classical theory
of experimental design corresponds to the constraint C1
(oi < CT) for the dynamic model problem: it is necessary to
extend the methods to other useful situations of constrained:
D-optimality.

- Many results of the classical theory are not available for
dynamic models because of the form of the model (15) (special
form of polynomial regression) or, when (15) is split into two
trigonometric regressions, because of the form of
the error variance (« 15(e)|4 fe(e)). More work in this

direction is certainly needed (see Karlin and Studden [13]).

IV. Constrained D-Optimality

It was mentioned at the end of Section II that the notion of
D-optimality for the design problem corresponding to the dynamic model
(1) was more involved than the corresponding notion in experimental
design situations, since there are some constraints on the input
and/or output variances to be taken into account. The influence of
these constraints will be investigated now.

The quantity to be maximized is

Det(I,(f,)) = ()" D(f,) (60)
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where, by definition

D(f.) = Det ———71 T 55 _ (s} 2 (0) £ do (61)
X 8 2t ot apj Bpk fe(ei

2

(60) shows clearly that, under the constraint C] (ci < c1), 8.

should be chosen as large as possible and independently D(fx) made

as large as possible: this is exactly the situation of Section III.
Since all the other realistic constraints use the output

variance 02, it is now necessary to consider the general model.

4
Recalling the condition of independence between {xt} and {et}.

one has
2m
2r g 2 2
o2 = o j 16(0) (% £ (6)do + of (62)
0
where

8

-i6
6(o) = ule ) (63)

s(e” ')

As a consequence of the constraints CZ’ C3, ci is to be

considered as a function of the solution fx(e).

8

Because of the assumptions made concerning the roots of w(z) and
6§(z), |G(8)| which is a continuous function of 6, is bounded not
only above, but also away from O.
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. b
IV.7. Constraint C,: gy < Cp-

It is first obvious that an optimal design will have

o, = Cyt for this reason, Uﬁ will be consistently used instead of
Consider then the equivalent problem:

. = £
( maximize L(fx) = m Log oy + Log D(fx)

g° e g
subject to oo = 5 Y g (64)

X m )
6’ |G(B)|“ f(B)de

2

(of course it is assumed that Gy 2 cg 1)

Take any. non-degenerate design f1, and any fz # f] and

consider the (non-degenerate)
fa = (l—a)fT +taf, ae[0,1) (65)

then

2

L{a) = L(fa) = m Log ay

+ Log D(fa) (66)

and, because of (47),(48) and (64)

2m 2
é |G(6)|“(f,(0)-,(6))de
d
EE'L(G) e o 2m
2
g |G(8)] fa(e)da

e (HCRERRCARICNN)
(67)

and



[2m 5 -2
2 [ 16(8)1%(f,(8)-f,(6))do

d )

-d“z' L(a) =m B :

2 [ 16(0)1* 1, (0)de

A necessary condition for f] to be optimal is

%E L(a) o <0 for all f2
1.6e.
: 2m 2
i [ 16(6)1%(f,(6)-F, (6))de
=1 0
R (STCRN R CABICN R <0
[ 16(8)|% f,(8)do
0
or
2w o
[ 16(8)|° f,(6)de
1 0 ¢
e {UeTT 101} - m g <0

[ |6(8)1% £, (0)de

In order to prove that f] satisfying (69) is in fact

optimal, it is sufficient to show that

d2 '
'd—z‘ L(G.) <0
a
a=0
for all f2 such that
d "
E L(G‘.) o =0
a=0

23

- e LT L)1)
SRR ACARITAN

(68)

(69)

(70)

(71)

(72)

(73)
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Let A, v=T1,...,m be the eigenvalues of [I(f])]'][l(fz)].
Then (71) and (73) imply that

2m o m
6 |6(6) |~ f,(6)do Z A

=N P o
2n x m it (74)

[ 1606017 7 (6)de

and with this notation, and using an argument similar to (53)-(57)
< 0 (75)

[The only possible case of equality in (75) is when all the A's are

equal. This implies that
-1 ¥
Gl M) & kL, (76)

(IIm is the mxm identity matrix), or since k=1 the designs being

normalized,
I(f]) = I(f2) (77)

i.e. one has equality in (75) iff f, is D-optimal.]

These results are summarized in the'fo]1owing Theorem:
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*
Theorem II. The design fx is D-optimal iff, for all fx

2w 2
{ l&(e)|” f,(e)ds

Ve Tr {[I(f:)]“‘ I(fx)]} < m 3% (78)

[ |6(0)|% £, (6)do

Recalling now the property P4 of the information matrix, the
design f: is equivalent to a discrete design. To express the fact
that it can not be improved, it is sufficient to take for fx any
design "on one point"gz 8q for instance.

Defining (see (37) and (41))

2
ai (8) = de (8] =~ m 5o |6(6) (79)
5 2 [16(6)1° f,(0)do

it is possible to give the modified version of the equivalence theorem.

Theorem III. The three conditions are equivalent:

i) The design f: is D-optimal for the constrained problem (62)

ii) f* minimizes max A2 1
A : 3] fx

i11) a2*(e) <0 for all oe[0,2n].
X
Proof.

i) and ii1) have already been shown to be equivalent. Now one has

2m
J A? (e) fx(e)de = () (80)
0 X

9
"On one point" means in fact "on two points symmetric with respect to

m.
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for all non degenerate design f . This implies, since fx(e) 5 1

that

max Ai (8) >0 (81)
8 X
Say if f; is D-optimal, iii) implies that (81) is minimum. Con-
versely, if (81) is minimum, then iii) is verified and the design is
D-optimal.

It will now be shown how an iterative method of construction
of a sequence of designs, converging to a D-optimal design, proceeds
along the same lines as in the classical theory, with suitable

modifications. Consider the particular case of (65):

fx;a = (1-a)fx tad, (82)
then (67) gives:
E L@ =4 (o) (83)
o=0 X

i.e., if one wants to improve the design fx by addition of one

point, the "best" choice is 6 such that
6 maximizes 4% (0) (84)
X

(If f, s not D-optimal, max Ai () is positive, see (80).] The
: X
best value of a is da such that
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a maximizes L(a) acl0,1) (85)

The iterative method is as follows:

Step 1. Using f,, derive Aio(e), and find 6, such that A%O(BO)
is maximum.
[If AE (60) is equal to zero, then f,; 1s an optimal
so]utiog for the constrained problem.]

Step 2. Define fO

= (1-a)f, + a & such that
0

%

s

and find
BO _
L(ao) is maximum.
Step 3. Take fy = (1-05)fy + ay &, » replace fy by f; and
' 0
return to step 1.

The convergence of this procedure is stated as

Theorem IV: The above procedure is convergent.
The proof of the convergence is somewhat more involved than
in the preceding case (see Fedorov [8]). It rests on the fact that

since f0 is non-degenerate
*
0 < Det (Ip(fo)) < Det (Ip(fn)) < Det(Ip(f )) < = (86)

the sequence {Det (Ip(fn))} being by construction strictly increasing.

Lemma: The function df (6) 1s uniformly bounded
n

> 0: V¥n, Ve 0 < dg (0) <M (87)
. n
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Let A%"),...,Aén) be the eigenvalues of IP(fn). A11 the elements

of IP(fn) are uniformly bounded in modulus by the quantity

2 2 : '

o - ¢ Q_(sin6,cos8)

Q=1{ max X g 1 5 | max U Z < oo (89)
8 |G(8)| 2m oy 6 |§(e)| fo(6)

(n)

and then the eigenvalues Av

are uniformly bounded above by A = mQ
1&") <A< o . (90)

As a consequence of (86) and (90) there exists a uniform lower bound

A (<A™ such that
0 <3 % XS") - for all n (91)

Now Q, defined in (89) is also a bound for the modulus of the
elements of IP(de).
In addition, there exists an orthogonal matrix Pn diagonalizing

[Ip(fn)] then

dfa(e) - Te . P, Ip(8,) P (92)

S
li!‘l’

m
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and, since the elements of Pn are uniformly bounded by 1,
de (8) <m A" Q=M < 4o (93)
2 s

Note that this lemma proves an intuitive fact, and excludes the

existence of pathological sequences of designs where

max dg (8) + 4o as Det (Im(f )) increases.
R o

It is now possible to proceed to the proof of the theorem:
Proof of Theorem IV.

It was shown in Fedorov [8] that

g el iy (94)
imp]ies
O(Fpsq) = (1= {1+ o dr (e 2} i) (95)

in addition, corresponding to fn_Ol one has
x s

= . (96)

2m 5
LI L R

and then
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1+ y2d (6)
Det (1p(f,..)) = lG’(‘e T = Det (I,(f))
L 1?a 2 ; :} (97)
6 |6(8) |~ f (e)de :

= R (a) Det (Ip(f )) (98)

The iterative method outlined above consists in choosing a so that

Rn(a) is as large as possible, i.e. ag is solution of

% Rale) =0 39}
asa
giving.
B (6,)
0 = n F )|2 . (100)
A% (en) & (m"])df (en) 2m ;
b g é |6(e) |~ £, (6)de

: ' &

If ,Ai (en) +0 as n -+, then by Theorem III, f_ - s
n ) : *

The assumption that the method does not converge to f is

equivalent to the assumption that there exists K»0 such that

Ai (6,) > K for infinitely many n (101)
n :

Because of the lemma and the assumptions on w(z) and &(z), there

exists K' < += such that for all n
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|6(0,)12 g
dfn(en) o= : % K (102)
é |G(e)|® f,(6)de
and one has then
o 3 ?_¥EET for infinitely many n (103)
i.e.
a #0 n -+ o (104)

n

The fact that the sequence Det (Ip(fn)) is increasing
*
(strictly) and bounded by Det (Ip(f )) will now be used to show
that the assumption A% (en) # 0 leads to a contradiction.
n

For all n, choose Bn

0<8 <a (105)

B, small enough to justify the approximation:

Bn
e

2
. 16(6,,)]

1t

B8
1 4ol (0.)-n
2 1-B_| f 2
IBn IG(en)l ‘-Im n n 4 {n[G(BHan(B)de
=k

2m
| n é IG(e)[zfn(e)qgl (106)

1t

1+ B A2 fa.) (107)
TTE;' . n



since for infinitely many n

S R

there exists B>0 such that, for those n,

B

n
0<B<.1-_B;<an

and then
Rolas) 2 B.(B) > 1 + gK
Now for all n
Rn(an) > ]
and because of (110) the infinite product

- Ria.) 1s d1vergént
oy

Det (I (f)) +e n -+

in opposition with the fact that Det (Im(fn))r is bounded.
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(108)

(109)

(110)

(111)

(112)

(113)
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In practical applications the iterative procedure will be
stopped as soon as

16(s.) |2
Ai (6.) =de (6) - m 5 n < (114)

i n T |a(e) |2 f (e)do
0

where ¢ is determined by the modified version of Kiefer's inequality,

valid in the neighborhood of an optimal design:

*
Lemma: Let fx be in the neighborhood of an optimal design fx’

then
Det (Ip(fx)) 5
T > exp {- max Ag (e)} (115)
Det (Ip(f )) (3] X
X
Proof:
Consider
3 116
fa = q fx + (1—a)fx (116)
Then
2n

2 *
% g |G(8) | fx(e)de

& Log det (1,(7,))| = (e 17 1060} - m 5 2
o g |G(e)|” £, (e)de

(117)

*
and, since Is, is equivalent to a discrete design
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d . 2 :
- Log Det (I.(f.)) < max Ay (8) (118)
da P a u=0 - e fx

Now for max Ag (8) small enough, the proof of (75) shows that
X

5]
d? |
QL
1.e.
9 Log Det (I.(f )) < max A% (8) sl (120)
do =99 p\la’? 2 £, ’
and

Det (I (f :
et (I( i_)) b {_
Det (Ip(fx))

v

2
AZ (6 (121
s fx( )} )

IV.2. Linear constraint C : a 02

2
L x tho g (a,b > 0).

C], C2 are clearly special cases of the linear constraint

on oi, 05. Only the general form of the equivalence theorem will be

given here, the proofs being exactly as in IV.1.

CL is to be expressed as

2m
Z{arb [ 1661?0000} + b o2 = ¢ (122)
0
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Considering any two designs f], f2 (f1 non degenerate)

and
fO'- = (]"G.)f.l + q f2 (]23)
one has:
2m 2
e
& Log (o), = T (124)
b [ 16(6)1% £_(6)do + a
0
= o 2 -2
2 b 6 16(8)|° (f,(6) - f;(6))ds
d O
;_2.L09 (Ux)a & 7T > (128)
: b [ |6(6)[% f (e)do + a
0 —_—
and

2m
b g 16(6)|% (f,(6) - F,(8))ds
ga-Log Det (IP(fa))

~m 5
=0 4 2
o b 6 |6(8)|“ f,(6)de + a

+ e {1 T p(5) - 11} (125)
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[ 2n 9 .
2 b [ |6(e)|(fy(0) - f;(6))de
d i 0
E;?—Log Det (Ip(fa)) = m 5 ”
a=0 b 6 |G(6)|" fy(e)de + a
e {[Ip(f])]_][lp(fz) - 1,(f;)]
-1
(T, (F) - 1,001} (126)
Defining:
A1L, (8) = dg (6) - m — —JG(BH (127)
X a b [ |G(e)| fx(e)de +a

it is possible to state directly the

Theorem V. The three conditions are equivalent:

*
i) The design fx is D-optimal for C
ii) f* minimizes max AL (G} -
X 5 T
ii1) ok (6) <0 for all oef0,2n].
X

The generalization of the iterative method for construction of CL—
constrained D-optimal designs, the proof of its convergence and the

proof of the validity of Kiefer's inequality are straightforward.

V.3. Constraint C3: 02 2 c

X y

The method used here is the same as in the preceding cases,
and leads to the same type of results, but with more involved

computations to prove that the necessary condition for a maximum is



also sufficient.

3

The convergence of the corresponding iterative

method for construction of C3~constrained D-optimal designs is not

non
(128)
(129)
(130)
02
e

proved.
As usual, consider any two designs f,, f, (f,
degenerate) and take
1 PR (1-a)f1 taf, ae[0,1)
The constraint C4 implies:
2m
AV 2 22
(62) i 16(0)|2 £_(0)de + o o? = c,
and
g of 2
o [ [6(8)]° (f,(8) - f,(6))de
d - 0
da 0y & , om > s
20x é |G(8)] fu(e)de t o,
oy " et
2 o [ 16(8)]"(f,(8)-f,(6))de
i 5 af > > s 2
(6]
o, é |G(8) |“f (B)detoy 20, g

leading to:

4 2
|G(8)| f (0)dot+o

(131)

2
e
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2 2n 2
o) [ 16(6)[“(f,(6)-f,(6))de
ga-Log Det (I,(f ) s -m 0

a=0

2

o 2 P
20, é |6(8)|“f;(6)de + o

+ e {U T Iyte) - i1} o)

2 2m 2
o, + [ 16(6)|%,(0)do :
o i + T L1177 [1,(6,))
2 2
oy + [ 16(6)[F, (6)do
5 (133)
and
. 2m e
2 ok 1160177y 0)-f, (o))
E Log Det (Ip(fa)) =m v 2 -
a=0 20, é |G(e)|“f, (6)de + o
B 2
2 + 5 i
2% [ 16(0)1%F, (e)do + o
S - e

- e {1 L (6 (7))

..]'
(T L, (61,601} (134)
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A necessary condition for a maximum at f.| is

d

o Log Det (Ip(fa)) o <0 for all f2 (135)
Using again the property P4 of the information matrix, it is possible
to restrict f, to designs on one point, and (133), (135) give the

necessary condition

o + 0§|G(9)|2
de (6) <m P (136)
Bid v ?ﬂm(e)l? £.(6)do
Gy Ix 0 ! 1
i.e., with
3 o2 + o416(0)|°
Af(e) = df(e) =i 5 5 (137)
- o Aae [ 16(e) |~ f(o)de
the condition
83 (8) < 0 0e[0,27] (138)
1
Note that, as in the preceding cases
2n :
J Aﬁ(e) f(e)de = 0 f non degenerate (139)
0

In order to show that f] satisfying (138) is really a maximum, it is

sufficient to show that

2
i—?-Log et (I_(f ) <0 (140)
o] G=0
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for all f, such that

<
d i
-dE Log Det (IP(fa)) =0 (]41)

Consider now (134), for f1 satisfying (136).

= 3 "]
Let Ay v 1,...,m be the eigenvalues of [Ip(f1)] IP(GB). Then

i 5 <l el =50 san (142)
Fon { AR8 p'°p } 5 % el

v

and, from (141)

02 + UilG(G)lz -
Y = A (143)
2. g ¢v 2
q g g |6(e)|" ,(e)de
1.8.
2 2 &m 2
o, (|G(8)]" - [ |6(8)| f1(e)de) .
0 ey (144)
2 &m 2 2
207 é l6(e) |~ f,(6)de + o
and (134) can be transformed into:
2
2 a m
d e e 2
;;f Log Det (Ip(fu)) = m(A-1) !2 + > ) : } - vz](AU~1)
a=0 20, [ |6(8)|°f,(e)de + of
0 (145)

In order to discuss the sign of (145), it is necessary now to consider

more closely the A's [this is different than the linear constraint,
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where the 2"¢ derivative is easily shown to be negative at the

extremum].

(:) The case of m=1 or 2.

If m=1, an optimal design corresponds to two (symmetric)
points where IG(B)I4 fe(e) is minimum. Any other design on two
(symmetric) points is either optimal, or worse than the given designlu
in this case the first derivative is negative and it is not necessary
to check for Z"d derivatives.

The same remark applies for m=2 since, because of the

symmetry, all the so-called "one-point" designs are in fact two point

designs, i.e., non degenerate.

(:) The case of m > 3.

Since

1,(85) E%(e{”%%(eﬂ* (146)

it is clear that all the eigenvalues Av but one are equal to zero,

and that the remaining one is equal to the trace, i.e. (145) can be

written as
2
& {TaF. e e .
——E-Log Det Ip =m = - 5
de = st 262 [ 16(8)|2 £,(e)do + o
0

- (dg_(8) = 1)% = (m-1) (147)
1

10
This comes from the fact that one point designs are not degenerate.
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or

o
2 + g
oy * oy é |6(8) |~ f,(e)de

(d. (6) - m)? 2
f1 L

: (di}(e) - 2dg (6) + m) | (148)

hence the second derivative is negative iff

.
g8 dfl(e) - de](e) + m
2+ = <m . (149)
oy + oy [ 16(0)1% £y(e)eo (R e~
Let
A= A(B) = df (8) = m Ae[-m,=) (150)
1 _
di (6) - 2d, (8) +m :
1 1 m-1 m-
R=m = m{l+2 —+m (151)
(dg (5) - m)* a2y F)
then
dR o _Zm(m_-I)(] 4 m )
it A

Since m > 3, the minimum of R(A) is obtained for A = -m and

its value is
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e i

"
s
R

The function R(A).

Figure 1.
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Since

2
%

g% < 3 (152)

2

2 27 2
207 é |G(6) | fy(6)de + o

in order to have the inequality (149) it is necessary and sufficient

to have
A> Ay > -m (153)

where AO is such that

2
a
e o m-1 m-1
2 ¥ : B ; ; = m(1+2-ﬂ-—+m—72-) (]54)
20, [ 16(8)| f1(8)de + 0 0
0 e

0 A

*
Now it is important to check that there exists a design f

such that

2 2 2
o, ¥a, [G(8)|

df*(B) =m
%y
{ and (155)

2 =
24 o2 '£“|e(e)|2 £* (6)do

L df*(s) > AO +m

The first condition can be written as
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: .
o2 (1)1 - ['1666)1° '(e)do)

df*(e) -m
m ) g 2% 2 2 i
20, (j) |G(e)|“ f (e)de g
the second condition being then
2 *
202 £W|e(e)|2 £"(0)do + o
m+ 2(m-1) == :
o> (|6(0)|° - [ 16(6) % £ (0)de)
= 2 2m 5 % 2 _72
20 g |6(8)|° £ (8)de + o o
+ (m-1) 5 . 5 2% - e*
o2 (160)? - £"|G(e)|2 £*(0)de) 202 [ |6(0) 12" (6)do + o
(157)
or
i 2 2m 2 ol
20, [ 16(8)|" f (8)de + o
bty 02 - -
a, (|G(e)|° - 6 |G(e)|“ f (e)de)
L .
2
o

B 2 (158)

_2'"' * 2
207 f 16(6) | £ (0)do + o

which is automatically verified for m > 3.
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It is now possible to summarize these results in the

Theorem VI. The three conditions are equivalent:
i) The design f* is D-optimal for the C3-constrained problem,
*

ii) f minimizes max Ai(e),
6

1i1) a2*(e) <0 for all eef0,2n].

Proof. Because of (139), the proof is exactly as in Theorem III.
An iterative method of construction of C3—constrained
D-optimal designs proceeds exactly as in the preceding case. Its

convergence--verified on numerical examples--has not been proved yet:

since
2
9.2 2 Bsrg
(o) Z |G(8)| f (8)de + 9e.n % " €3 (159)
2n
-of + V/ég_; 4c, [ |6(6)|% f (0)de
e g ) (160)
S 2m e
2 é’ [G(8)] f(6)de
and for

fnﬂ = (1-a)fn +q Gen (161)
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2 4
2 -g; + V//o + 4c {(1—a) [ |G(e)| (8)de + a [G(e )| }
LI 5 - e 3
i
X,n & 4 2
~gg + ///?e + 4cq é |G(8) | fn(e)de

2n 2
g |G(8)|" f (a)de

) f 16(6)|% £ (6)do + a |6(s, )|

And one has, after some computations:

Det (Io(f 1)) = R'(a) Det (Ip(f))

(162)

(163)

with
P /// 2 2.2 g &m 2 ) 2 |
20} -05)" + duc,(|G(e )| - g |G(8) | f,(6)do) - of
R'(a) = R(a) —
2(0y - Ge)
e =
(164)
and
R(a) = 1 + v>—d, (8.)
t 1_'3 fn n . |G(9n)|2
RS (165)

2 2
6 |6(p, )" f, (8)de
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making an explicit determination of the value o such that R'(an)
11
maximum extremely difficult .
The proof of the generalization of Kiefer's inequality

presented in IV.1. is valid in the present situation, giving the

*
Lemma: Let fx be in the neighborhood of an optimal design fx’

then

et (IP(fx))
et (I,(f)))

> exp {- mgx Ai (B)} (166)
X

V. Existence of Stochastic and Mixed Solutions

The different versions of the equivalence theorem all
express the fact that a necessary and sufficient condition for a

design to be optimal is that

Af*(e) <0 . pe[0,27] (167)

on the other hand, one has

11
One has the equivalent expression of R'(a):

3
T ¢/< K £w|e(e)|2 f (8)de

2

27 9 2 T p
1% 7] % 4K £ |G(e)|“f (6)do + 4aK(|G(e.) | - 6 [6(6)|“f, (6)de)

(165')
with K =

mql\;yl wn
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2m
[ 8¢*(0) £ (6)de = 0 (168)
0

*
implying that, at the points of the design (f (6) > 0), one has
bg*(8) = 0 (169)
Now when one considers stochastic and mixed designs the
continuous component of the spectral density is not a.e. equal to
zero. For the sake of simplicity, assume that fx(e) >0 for &ll @,
this implies the very strong condition that

Af*(e) =0 8e[0,2n] (170)

Consider now the detailed form of df*(e):

1 *ya-1
d.*(8) = C Te +E1:0f J1°° [M(e)] (171)
A AT oM (e }

where

M(8) = (Qm°u v(cose, siff). 3 e T,. .ual) (172)

3 k]

where Qm, 'Q are polynomials of degree m-1 1in cos6, sin®

Mmiu,v
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C Qm(cose,sine)

6(0)|* £ (o)

de*(6) = (173)

The existence of stochastic and mixed designs will now be discussed in
the simplest case of the constraint C1.

Using (173), A}*(e) =0 implies that:
C Q; (cose,sine) = m |s(e)]* £, (0) (174)

i.e., a necessary condition for the existence of a stochastic or mixed
solution is that |5(e)|4 fe(e) is a "polynomial" in cos®, sinf of
degree at most (m-1).

In the case of constraint Cos (175) turns out to be:
. ' 2 2
€ Q. _q,(6) =mcC'lw(e)|” [s(6)]" f,(6) (175)

and for the constraint C3

C Q. (8) =mc cﬁ la(e)IZ + oi |w(8)|%]]5(8) | f (6) (176)

[Note that, since the error process is real and usually is modelled as
an ARMA process, fe(e) is the ratio of two polynomials in cos6. In
addition, ]m(e)|2, ]6(8)|2 are polynomials in cos6: the problem
of optimal design is the problem of finding a function £ such that
the coefficients of the matrix [Ip(fﬂr)]"1 satisfy the identity
relations implicit in (174, 175, or 176).]
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The above results are summarized in the

Theorem VII. A necessary condition for the existence of a stochastic
or mixed D-optimal solution is that the following
quantities are polynomials of degree at most (m-1)
in cos8, sind
i) For constraint Cy: |6(6)14 fe(e)
i1) For constraint C,: |u(e)|® [6(8)|* f,(6)
iii) For constraint Cg: [o§ |6(e)|2 + ci Iw(e)fz] |5(8)12 fo(6)

VI. Conclusion

Except for the proof of the convergence of the iterative
method for the construction of C3-constrained D-optimal designs this
report gives a complete answer to the first step of what could be a
theory of optimal designs for dynamic models: under realistic
assumptions it is shown that a design fx is equivalent to a real
function of one variable Af , which is in turn very helpful not

X

only in characterizing optimal designs, but also in constructing them,
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