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SOME RECENT ADVANCES IN FORECASTING AND CONTROL

Part II

G. E. P. Box, G. M. Jenkins and J. F. MacGregor

1. Introduction

In Part I of this paper [6] (we apologize for the delay
in presenting this final part) we presented a class of discrete time
series and dynamic models together with the theory for identifying,
fitting, and checking them. The principal application which was
discussed there was to forecasting. In this second part we shall rely
heavily on these models. We shall outline briefly an approach to control
which is discussed in much more generality and detail in the papers
[2, 3, 4, 5, 6] and a book [7]. Opportunity is also taken to correct
a mistake which occurred in references [5,7] concerning optimal
feedforward control.

In the past, the word "control" has usually meant to
the statistician the quality control techniques developed originally
by Shewhart [14] in the United States and by Dudding and Jennet [8]
in Great Britain. Recently, the sequential aspects of quality control
have been emphasised, leading to the introduction of cumulative sum
charts by Page [11,12] and Barnard [1] and the geometric moving average
charts by Roberts [13].

The word control has a different meaning to the

control engineer. He thinks in terms of feedforward and feedback control,



of the dynamics and stability of the system, and usually of particular

types of hardware to carry out the control action. The control devices
are automatic in the sense that information is fed to them automatically
from instruments on the process and from them to adjust automatically
the inputs to the process.

The control techniques discussed here are, at least from
the point of view of motivation, closer to those of the control engineer
than the standard quality control procedures developed by statisticians.
This does not mean we believe that the traditional quality control
chart is unimportant but rather that it usually performs a different
function from that which we are here concerned. However, becuase there
are certain analogies between the two ideas and because of some rather
dubious justifications of control charts we start with a discussion

of these.

2. Quality Control Charts

Suppose that observations on an industrial process are being
made at equispaced intervals of time to produce a time series {zt}.
Then as Shewhart [14] pointed out, it is an excellent idea to plot the
data as it comes to hand on a chart which shows the target value T. Such
a plotting procedure (i) can provide timely warning of a deviation from

target and of possible need for corrective action (ii) can provide clues

as to possible assignable causes of variation which may subsequently

be eliminated or compensated for. The first is a form of feedback control

and the second a form of process improvement.



To assist judgment Shewhart introduced control lines at
20 and 30 1imits. On the assumption that the time series {zt} was
generated by a stochastic process in which successive deviations from

the fixed mean u were Normally and independently distributed with
2

fixed known variance o¢“ then, when the mean u was in fact equal to

the target value T, the probability would be small that a value would

1ie outside the 1imit lines. If, however, the mean deviated from T

then the probability of a point 1ying outside the 1imit lines would

be Targer and could readily be calculated. If the referral of a point

to such Timit Tines is thought of as a test of the hypothesis that

u =T then, given the above assumptions, such a test would not be very

powerful. Indeed, since the introduction of sequential tests by Wald

and Barnard during the second World War, it has been known that, again

on theassumptions outlined above, a procedure of much greater power

uses the cumulative sum of the deviations _E (zj-T). Following proposals

by Page [11, 12] and by Barnard [1] in theJ;;BO's charts which used this

cumulative sum have been introduced with considerable success into industry.
An important assumption in the above is that the observations

are independently distributed. Now industrial data occurring serially

are very likely not independent but serially correlated. Suppose, for

example, the observations were generated by a first order autoregressive

process defined by
i = 0 =

where yt =yg-u and -1 <¢ <1 and {at} is a sequence of independent



random Normal variables having mean zero and variance 02. The appropriate
sequential 1ikelihood ratio statistics is

t
dlyg-yot + (1-0) I (y4-T)3
J=

1
If ¢ 1is not too close to one, and for moderate t, this expression

is dominated by the cumulative sum in the second bracket. One might
expect, therefore, that cumulative sum techniques would be robust to
serial correlations of this kind as has been specifically demonstrated
for instance by Goldsmith and Whitfield [9]. However, it is also true
that if ¢ were equal to unity (the disturbance was a random walk), the
first term would dominate, and assuming the initial value Yo close to

target one would essentially be back to plotting
‘yt—T

the "Shewhart statistic."”

However, an alternative approach is not to start from a
procedure at all, a cusum or Shewhart chart or whatever, but start by
identifying (i) a stochastic process which represents the actual
behavior of the industrial series and (ii) the objectives which we
desire our control or forecasting scheme to achieve. We shall then be
led to whatever procedure is appropirate for the relevant circumstances.

Quality control charts have been used for a wide variety
of purposes. It has been occasionally suggested [15] that they can be

used to control a process in the feedback sense, and more specifically



that adjustment only be made if a "significant" deviation is observed.
Such a use implies important assumptions for the desired objectives.

For optimal process control we should not need to be convinced of the
"reality" of the difference to persuade us to action. It is enough that
a policy will lead to a desirable objective such as minimization of

costs or in some instances of the mean square deviation from target.

To justify a "test 1ike" procedure one normally needs the requirement
that some cost is involved in making an adjustment. Which test procedure
is then appropriate would depend upon our assumptions as to other costs
involved and stochastic process followed by the actual industrial series.
For example Roberts [13] proposed a geometric moving average chart but
assumed that the observed variable Y was a stationary white noise
process centered about some mean and used this assumption to calculate
the standard deviation of the geometric mean. In fact, if the process
were of the kind Roberts assumes the geometric mean would be inappropriate.
As we shall see later a chart like that which Roberts found intuitively
sensible can be justified on a list of assumptions involving the type of
stochastic process being controlled, the loss due to off-target material,

and the cost of adjustment.

3. Process Control

The process control schemes we shall now discuss are
appropriate for the periodic, optimal adjustment of a manipulated variable,
whose effect on some quality characteristic is already known. They are
designed to minimize the variation of that quality characteristic about

some target value. We assume that data is available at discrete equispaced



time intervals when opportunity can also be taken to make adjustments.

It is assumed also that the situation commonly met, for example in the
chemical and process industries, is where surveillance (by an operator or
a computer) is needed in any case and so no appreciable cost is associated
with corrective action.

The reason control is necessary at all is that there are
inherent disturbances or noise in the system. When we can measure these
disturbances directly the making of appropriate compensatory changes in
some other variable to undo their effect is referred to as feedforward
control. Alternatively or in addition making use of the deviation from
target or "error signal" of the output (quality) characteristic itself
to calculate appropriate compensatory changes is referred to as

feedback control. Feedback control can be employed even when the

source of the disturbances is not accurately known or their magnitude
measured. More generally feedforward control can be used to compensate
for those disturbances that can be measured and feedback control to
compensate for the remainder.

The approach adopted is to typify the disturbances by a
suitable time series or stochastic model and the inertial characteristics
of the system by a suitable transfer function model. It is then possible
to calculate a control equation which produces the smallest mean square
error at the output possibly subject to a constraint on the variance
of the manipulated variable. Execution of the control action can then be
accomplished at various levels of technical sophistication - by a digital
computer linked directly to the process, by a pneumatic or electronic

automatic controller, or by manual manipulation by an operator using a



suitable chart or nomogram.

3.1 Feedback Control

We introduce the ideas of feedback control in terms of
a simple yet real example from the chemical industry. In a scheme to
control the viscosity Y of a polymer employed in the manufacture of a
synthetic fiber, the controlled variable, viscosity, was checked every
hour and adjusted by manipulating the catalyst formulation X. The
desired target value for viscosity was 47 units. It was found that the
dynamic characteristics relating Y and X were such that essentially
all the effect of X on Y occurred within the one hour sampling
interval. The transfer function model (see Part I [6] for a discussion

of discrete dynamic and stochastic models) was therefore of the form
Yo = e (1)

where Qt and it are deviations from equilibrium values. The catalyst
formulation changes were, by custom, scaled in terms of the effect they
were expected to produce. Thus one unit of formulation increase was

such as would decrease viscosity by one unit. Hence g = -1.0.

In order to design a feedback controller, it is also
necessary to identify and fit by a suitable stochastic model the disturbance
Nt in the output. Here Nt represents the joint effect in the viscosity
measurement of all unobserved disturbances occurring in the process and
is defined as the deviation from target viscosity that would occur at

time t 1if no control action were taken. This was found to be adequately



described by a time series model of order (0,1,1)
W, = (1-6B)a, (2)

where 6 = 0.53 and a; is a sequence of random shocks with mean zero

and variance cg (see Part T [6]). This stochastic model is non-stationary
in its level (it has a tendency to drift) and its minimum mean square

error forecast 2-steps ahead is the well known exponentially weighted
moving-average of previous observations

o

Ne(2) = oll,_1(2) + (1-0)N, = (1-0) T

o, _. (3)

J
The aim of a feedback controller is to compensate for this

disturbance in the output viscosity by making suitable changes in Xt.

The total effect on the output viscosity at time t of the disturbance

is Nt and of any compensatory action is gxt_]. Thus the effect of the

_ 1
t §Nt+1'

Since Nt+1 has not yet been observed, this is not possible, but we can

disturbance would be cancelled if it were possible to set X

obtain the minimum mean square control error by replacing Nt+1 by its

forecast Nt(l), that is, by taking control action

O [
Xy = - g t(])

or in terms of the adjustment to be made (xt = VX, = xt'xt-l)

X, = - a{ﬁt(n-ﬁt_](])} (4)



Using the forecasting theory in Part I [6] it can easily be shown that
for this disturbance model (2) the updating expression for the forecasts

is given by
N, (1) - N4 (1) = (1-0)a, (5)

and therefore the optimal control action becomes

Xt g %t

With this adjustment the error in the output viscosity e, will simply

t
be equal to the one step ahead forecast error Ays and so we can write

the optimal adjustment as

1-8)

Xy = = g5t " 0.47 €4 (6)

This controller is worthy of further discussion. As each
new observation ¢

t
input which corrects for our change in the forecast of the disturbance.

becomes available we are making an adjustment to the

Recalling that a, 1is the one step ahead forecast error, we can see

t
that the updating equation (5) implies that having seen that our previous
forecast ﬁt_1(1) falls short of the realized value Ni by a,, we
adjust it by an amount (l-e)at which the model says from past experience
is the amount of any shock which is permanently absorbed into the "level"

of the process. By adding only (1-8)at to the new forecast we are

getting the correct balance between a control action which is too
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conservative and adds too 1ittle correction at each stage and one which

is too quick and overcorrects by adding the full discrepancy a, at

t
each stage. The value of 6 1is indicating the correct state of conservatism
between these two extremes. It can also be noted from the exponentially
weighted average form for the forecast (3) that the new forecast is a
linear interpolation at argument (1-8) between the old forecast and the
new observation. If (1-6) is equal to one the evidence from past data
is completely ignored and the forecast for all future time is the current
value (ﬁt(z) = Nt)’ in which case the control action is simply Xy = - %Et‘
But if (1-8) 1is less than one the control action (6) discounts the
present shock by an amount (1-6).

The efficiency of control action of this kind is insensitive

to moderate changes in parameter values and to a sufficient approximation

we can take (6) to be

A convenient chart for use when, as in this example, manual control
action is employed, is shown in Figure 1. On this chart the output
(viscosity) scale and the action scale are arranged so that the output
target is aligned with zero action, and so that one unit of output is
matched by - Llégl- units of action. To employ the chart, the plant
operator simply plots the latest odtput (viscosity) value and reads off

the appropriate adjustment on the action scale.
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In terms of the actual catalyst level *t at the input

the control equation (6) becomes

(7)

This simple result is also worthy of further discussion. For many years
continuous time controllers have been used which base the control action
empirically on a mixture of proportion, integral, and derivative control.
For instance if e(t) were the continuous deviation of the output from
target, the Tevel of the input X(t) would be calculated by

X(t) = k, 95(t) 4 kpe(t) + k fe(t)dt

where kD’ kP’ and kI are constants. In some situations only one or
two of these three modes of action are used. The discrete analogue of

this continuous control equation is
Xy = kpVey + kpey + kIZet

It will therefore be seen that the above control action (7) which we have
just derived is simply the discrete analogue of integral control action.
This appears similar to a cummulative sum procedure although it is
important to notice that it is not accummulating the deviations from

target when no control action is being taken but rather it is accummulating
the deviations from target when action is being taken at every interval.

This it can be shown is equivalent to taking an exponentially weighted
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moving-average of the past disturbance effects Nt’ Nt-]’ Nt-Z’ -

At the same time it should also be noted that this is not the same type
of control chart recommended by Roberts [13] again because control action
is being taken at every interval.

Although the feedback control chart of Figure1 is extremely
simple it is capable of further simplication. On this particular process,
control had previously been carried out using a chart based somewhat
arbitrarily on a sequential significance testing scheme. It had turned out
in this connection that it was convenient to add or subtract from the
catalyst formulation in standard steps. Possible actions were: no action,
tone step, or +two steps of catalyst formulation.

Significance testing procedures have 1ittle relevance in
the present context. However, the previous scheme did have the advantages
(i) that it had not been necessary to make changes every time and
(i) when changes were called for they were of one of five definite types,
making the procedure easy to apply and supervise. However, these features
can easily be included in the present control scheme, with very little
increase in the error, by using a "rounded" action chart.

A rounded chart is easily constructed from the original
chart by dividing the action scale into bands. The adjustment made when
an observation falls within the band is that appropriate to the middle
point of the band on an ordinary chart. Figure 2 shows a rounded chart
in which possible action is limited to -2, -1, 0, 1, or 2 catalyst
formulation changes. Figures 1 and 2 have been constructed by back
calculating the values of a from a set of operating data and reconstructing

the charts that would have resulted from using an unrounded and a rounded
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scheme. The increase in mean square error (less than 5% for this example),
which results from using the rounded scheme, is often outweighed by the
convenience of working with a small number of standard adjustments.

Consider now the case of some higher order dynamic models
(see Part I [6]). A first order dynamic transfer function model is of

the form
(1 + EV)Yt = g)(t_.l

where V is the difference operator (V‘;t = it'*t-1)' If we were to
again let the disturbance model at the output be represented by the in-

tegrated-moving-average (0,1,1) model
VNt = (1-eB)at

then we would find that the optimal feedback controller (that which
minimizes the mean square error at the output) is

Xe

t
= -0 e 4 T e
g t °='|J
J
which is the discrete analogue of proportional-integral control with the
ratio of the amount of proportional to integral action being given by the
dynamic parameter &. Similarly with the same disturbance model but
second order dynamics we would find that the optimal controller is the
discrete analogue of proportional-integral-derivative control. However,

these are by no means the only kind of control that this procedure can
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give and a general development of the above type of minimum mean square
error control theory has been given elsewhere [7].

Now there are situations particularly when the dynamics
are slow compared with the sampling rate where the minimum mean square

error control gives impossibly large variations in the input X It is

tl
then possible to introduce a constrained controller in which the mean

square error of the output deviation from target e, 1is minimized subject

t
to a constraint on the variance of the input. The remarkable feature of
these constrained controllers is that by allowing only a very small
increase in the mean square error of the output a very large reduction
can usually be made in the variance of the input. An example of this,
the details of which are described more fully in [7], is as follows. In
a scheme to control the viscosity of the product of a chemical reaction

by varying the ipput gas rate the minimum mean square error control action

was found to be given by

Xt = -10.(Et = 0.5Et_-|) (8)

If the variations in Xy as a result of this scheme were unacceptably
large then a constrained scheme could be used. In particular for a 10%
increase in the standard deviation of the output, the standard deviation

of the input can be halved by using the control action
Xt = 0.]5Xt_-| ~ 5-5(€t - O.BEt_-I) (9)

Figure 3 illustrates this point. A set of twenty-four
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successive observations showing the values of inputs (gas rate) and
outputs (viscosity) are reproduced in the left-hand diagrams as they
were actually recorded using the optimal unrestricted scheme (8). Also
shown is the reconstructed noise. Supposing the scheme to be initially
on target, this reconstructed noise is the computed drift away from
target that would have occurred if no control action had been taken.
The right-hand diagrams show the calculated behavior that would have
occurred with the same noise if the constrained scheme of equation (9)
had been used. Further information on the design of these optimal

constrained schemes is given elsewhere [7,10,16].
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rate example
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3.2 Feedforward Control

Sometimes one or more major sources of disturbance can be
located and measured. In feedforward control these measurements are
used to calculate compensatory action which forestalls the effect of
these disturbances on the output.

A situation arising in the manufacture of a polymer is

illustrated in Figure 4.

|

Deviation from Target Viscosity =
&/=N,+67'(B) @ (B) .-
Where X is Held Fixed at Value Zero

o
zUnobse rved
Disturbance

5 (B)w (B) B L' (@) L.(8) B/

&

Observed Compensating
. = Vi
Disturbance ( </ Variable > 4

(feed concentration) (steam pressure)

Fig. 4. A system at time t subject to an observed disturbance z, and unobserved
disturbance N,, with potential compensating variable X, held fixed at
X, =0

The viscosity Yt of product is known to vary in part due to fluctuations
in the feed concentration Zy which can be observed but not adjusted. The
steam pressure Xt is a control variable which is measured, can be
manipulated, and is potentially available to alter the viscosity by

any desired amount and hence compensate potential deviations from target.
The total effect in the output of all other sources of disturbance at

time t s denoted by Nt'
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We shall first consider the general solution. The
transfer function model which connects the observed disturbance zZ,

(feed concentration) and the output Y (viscosity) is assumed to be

= a=1 b
Yt 8§ (B)w(B)B zy
Changes will be made in X at times t, t-1, t-2,... immediately after

the observations z,, z, ;, Z;_,,... and then held constant over the interval
as in the feedback case. It is assumed that the transfer function model
which connects the compensating variable Xt (steam pressure) and the

output (viscosity) is

Y, = L;‘(B)L2(3)3f+1x

t t

where f 1is the number of whole periods of pure delay. Then if no control
is exerted (Xt is held fixed at X¢ = 0), the total error in the output
viscosity will be

= N+ 67 (B)u(B)z,

" g
Clearly, it ought to be possible to compensate the effect

of the measured parts of the overall disturbance by manipulating Xt' Now

at time t and at point P in Figure 4:

(1) The total effect of the disturbance (z) is 67 (B)u(B)z,

(2) The total effect of the compensation (X) is L{](B)LZ(B)Xt_f_1

Then the effect of the observed disturbance will be cancelled if we set
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L3 (B)L,(B)X, g = = 87 (B)u(B)z,

t-f-1

Thus the control action at time t should be such that
-1 _ -1
L1 (B)LZ(B)Xt = - § (B)w(B)zt_(b_f_]) (10)

Case 1: b > f+1. At time t, the values z are unknown. The

t41° Zge20 e
control action (10) is directly realizable then only if (b-f-1) > 0 in
which case the desired control action at time t 1is to set the manipulated

variable Xt to the level

L, (B)u(B)
Ky . L,(B)8(BY “t-(b-f-1)

With this control action the component at the output (point P in Figure4)
of the deviation from target due to z, is (theoretically at least) exactly
eliminated at the observation times, and only the component Nt due to
unobserved disturbances remains.

Case 2: b < £41.° It can happen that f+1 > b. This means that an observed
disturbance reaches the output before it is possible for compensating

action to become effective. In this case the action of equation (10) is not
realizable because at time t, when action is to be taken, the relevant
value Zi_(b-f-1) of the disturbance is not yet available. One would

usually avoid this situation 4if one could (if for example some quicker

*
The solution given for this case was incorrect in the first two printings
of Box and Jenkins book Time Series Analysis, Forecasting and Control [7].
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acting compensating variable could be used), but sometimes such an alter-
native is not available.

If the disturbance 1z, can be represented by the linear

t
stochastic model

(IJ(B)zt = e(B)at (11)

then we can express z; = G-X(B)w(B)zt as the stochastic model

t

¢'(B)zy = 8'(B)a,

where @'(B) = ®(B)s(B) and 6'(B) = 8(B)w(B) and {at} is the same
white noise sequence as in (11). This can be equivalently expressed in

the form

N
or
n

1+ 3 w.Bi}a
=1t

Then

]

] Al ]
Ziofa1p = 24(F¥1-b) + el (f+1-b)

where in this expression

eé(f+1—b) = A b Y V%%ep T oot T Ve

is the (f+1-b)-step ahead forecast error and zé(f+1—b) is the forecast.
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Then we can write equation (10) in the form
"] . Al 1
L (B)LZ(B)xt = - zt(ffl-b) - et(f+1—b)

Now eé(f+1-b) is a function of the uncorrelated random
deviates a, . (h > 1) which have not yet occurred at time t and which
are uncorrelated with any variable known at time t (and are therefore
unforecastable). It follows that the optimal action is achieved by

setting

Lyte) o
Xt = - rz—(g)— Zt(f"‘]-b) (12)

or by making a change in the compensating variable at time t equal to

L‘I(B) & ~
Xt = - L—ZT-B—)- {Zé(f‘ﬂ-b) = Z‘E:—'I(f-!-]-b)}

The needed forecast zé(f+1-b), obtained as in Part I of this paper [6],
can then be written conveniently in terms of the previous zt's (viscosity
measurements) and at's. (Recall that these at's are common to both the
' -
z; and z, series).
This control scheme results in an additional component in

the deviation €4 from the target, which now becomes
€, = Ny + et_f_](f+]—b)

Note that in both cases of feedforward control the output
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deviation €t from target still includes the disturbance Nt representing
the effect in the output at time t of all other disturbances in the
system. These can often be substantial and in particular can result in
uncontrolled drift and so feedback control will often have to be applied
simultaneously to the output.

An example: In the manufacture of an intermediate product
used for the production of a synthetic resin, the specific gravity Yt
of the product had to be maintained as close as possible to the value

1.260. The feed concentration 2z, was observable but contained an

t
uncontrollable disturbance and so was to be fed forward. The dynamic
relationship between specific gravity and feed concentration over the

range of normal operation is
(1 - O.ZB)Yt = 0.00162t
In our general notation &(B) = (1 - .2B), w(B) = 0.0016, and b = 0.

Control is achieved by varying pressure Xt. The transfer model relating

specific gravity and pressure was estimated as

(1 - 0.7B)Yt 0.0024X

t-1

so that L](B) = (1 - 0.7B), L2(B) 0.0024, and f = 0. So far as could
be ascertained the effects of pressure and feed concentration were
approximately additive in the region of normal operation. Therefore

equation (12) is used, since (b-f-1) < 0, yielding as the optimal action
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. (1-0.78) %,
Xt = = “ooar %1

Study of the feed concentration showed that it could be represented by

the Tinear stochastic model of order (0,1,1)
vz, = (1 - eB)at (13)

with 6 = 0.5. Therefore z!,, = G'](B)w(B)z

t+1 is given by

t+1
. mo('l-BB)
Zt+1 = (T-8B)(T-BY 2t+1

This can be rearranged into the form

wo[(1+6-e) - 6B]

B [ (14)

Zt41 T Yo%t

et(1) + 2(1)

Combining equations (13) and (14) the one-step ahead forecast can be

expressed in terms of the observable feed concentration measurements
(zt) as

" ) wy[(1+8-8) - &B]

2 (1) = —yosEyrroeRy— %t

Hence the optimal feedforward control is given by
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y o (1-0.78) 0.0016(0.3-0.28) ,
t = " "0.0028 T(71-0.28)(7-0.58) “t

cr

Xt = 0‘7Xt-l - 0.1Xt_2 - 0.2{2t - 1.37zt_] + .47zt_2}

This control action requires the storage of the three most recent
measurements of feed concentration (z) and the past two settings of
the manipulated pressure level (X). It is easily handled by a mini-
computer if direct digital control is being used or by the use of a
nomogram or a small programable desk calculator in the case of manual

control.

Further aspects of this approach to feedback and feedforward
control are discussed in [7,10]. Among the topics considered there are
combined feedforward-feedback control, schemes in which the variance of
the manipulated variable is constrained, the choice of sampling interval,
and the fitting of transfer function-disturbance models from closed-loop

operating data.

4. Control in the Parts Manufacturina Industry

We now would like to consider a control problem more
typical of situations arising in the mass producing industries where
typically a machine may be mass producing components (such as ball-bearings)
and some quality characteristic (such as weight or diameter) is measured
at discrete intervals of time. In problems of this kind the Shewhart

chart and other control chart procedures have been traditionally used
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quite successfully. This leads us to wonder whether these type of charts
might not be justified on more plausible assumptions than those usually
given.

A typical situation seems to be where the machine which
is mass producing components is subject to going out of adjustment,
and that the further one is away from target the worse the quality of
the component is. Although small deviations from target can be tolerated,
when the deviations become sufficiently large it will be necessary to
stop the machine and reset it. This situation might realistically be
represented by the following set of assumptions:

(i) Rather than assuming the disturbance to be represented by random
variation about a fixed mean it will be assumed that we have a situation
where successive observations are dependent and have a tendency to drift.
In particular we shall consider the uncontrolled quality characteristic
to follow the representationally useful non-stationary (0,1,1) model

considered previously:
Vz; = ('I-GB)at

(ii) The loss sustained through being & units off target is proportional

2 dollars.

to the square of the deviation and is k&
(iii) When the deviation is sufficiently serious, the mean level must
be adjusted, but now in making each adjustment a fixed loss of C dollars
is sustained.
(iv) The dynamic characteristics in making a change are of no significance,

but rather the adjustment is effective at once.
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A control system in which the level is periodically
adjusted and the controlled observations are considered in relation to
a fixed target is equivalent to a system in which the uncontrolled
observations z are considered in relation to a movable set point X to
which the adjustments are applied with opposite sign (see Figures5 and6).

Therefore if X is the adjustable "set point" at time t+1, then the

t+]

deviation from target at this time is z - X If it costs nothing

t+] t+l°
to make an adjustment (C = 0), then we could minimize costs by making
an adjustment Xt+1 = Et(1) at each stage. But we must pay $C to make
an adjustment and so the predicted deviation ;t(1) - X; at time t must
be such that k(;t(l) - Xt)2 dollars is sufficiently large to warrant
paying C dollars. Because of this the set point will usually be kept
at a constant level for considerable periods.

Our problem is, knowing k, C, 6, and og, to choose an
optimal policy that tells us (a) when to change and (b) by how much
to change so that the over-all loss in running the control scheme is
minimized.

This is a problem of sequential decision-making and can
be Tooked at in the framework of dynamic programming. Suppose that the
is

control procedure must terminate after one further observation Zi41

taken. The expected loss viewed from time t will then be

2

2
) a

kE(z - X = k(zt(l) - Xt)2 + ko (if no change is made)

t+] t

kE(z - xt+1)2 +C (if a change is made)

t+]

The loss when a change is made will be minimized by setting Xt+1 = zt(1)
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and so this becomes ko + C. Hence the rule which minimizes the over-all

N > N

Toss is to change if | t(1) - th > (C/k)lé = ) and to continue at the
current level if |;t(1) - th < Ay. The Toss function corresponding to
this best rule is

Lz, (1)} = Min{ko? + k(z,(1) - xt)2 . kcg + C}

Denote by LN{zt(1)} the minimal expected loss if the procedure terminates
after N further observations. Then the expected loss Léo){zt(l)}, if
no change is made, is the expected loss one step ahead plus the minimal

- X, and there were N-1

expected loss if we started in position Zin t

further observations. This will be

U0z, a0+ szN_1{Et+](1)}p{§t+1(1)|§t(1)}d2t+](1)
and since 2t+](1) = fy = ;t(1) - Xp ¢+ (1-e)at+1, this may be rewritten as
02,103 = ko + k(2,(1) - x)? + LLN_1{Qt(1) + (1-0)c2up(u)du  (15)

where p(u) is the unit normal distribution. The loss if a change is.
made at time t+1, LéI){zt(1)}, may be obtained by replacing ;t(]) by
zt(l) - (Xt+1 - Xt) in (15) and adding C. Again this loss is minimized

by setting X, ., = zt(l) and the optimal rule is to change if

t¥]

Lz, (103 > L{P2,(1)1 which can be expressed in the form |2,(1)-X,] > A,

The sequence {Ai} decreases monotonically and tends to a limiting value

Aopt corresponding to the practical case where the time of operation
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of the control procedure is effectively infinite. This optimal control
rule appears very similar to a Shewhart chart where a quantity (in this
case zt(i) - Xt) is plotted and referred to control lines (in this case
at = Aopt
these control lines are exceeded.

units above and below the target Xt)’ A change is made if

A detailed analysis of this problem has been carried

out in [3]. The optimal value of the control limit )\ is summarized

opt

in Table I in terms of the general parameters 6 and cg

of the stochastic
model and for a range of the ratio of the cost parameters C and k. In
this table we have also tabulated the expected run length E(n) (the
average number of observations taken before an adjustment is made) and a

cost variable 9y which enables one to calculate the expected "within

2

g k(l—e)zcggw due to being off target. The

changes" loss Lw = ko
expected Toss due to changing is given by LC = C/E(n) and the expected

over-all loss L 1ds the sum L = Lw & Lc'
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TABLE I
A
TT:%%}_ » E(n), and g, @as a function of c = —-Eiﬁz—z
a (1-8)%0;
A
- _C/K opt
¢ = 11—-{}—- E(n)
(1-0) 03 -0 Ga ( gw
20 2.6 10.7 1.5
50 30 17.5 gL
100 4.3 24.5 3.8
200 5.3 34.2 5.6
500 6.8 55.4 8.9
1000 8.2 78.2 2.7

As an example, consider the case where k =8, ¢ = 100,
6= 0.5, 0, =1.0 so that c = (c/k)/(1-0)%% = 50. From the table we
find that E(n) = 17.5 samples and lopt/(l-e)ca = 3.5, so that the

best rule is to change when |z,(1) - X.| > 3.5 x 0.5 = 1.75. The

v

within-run Toss is then Lw =8+ 2x2,5=13 and the loss due to

changing Lc = 100/17.5 = 5.8, and hence the over-all loss L = 18.8.

Figure 5 shows a series for which 6 = 0.5 and o, = 1.0 in its uncontrolled
state and Figure 6 shows the same series controlled in accordance with the
optimal rule. Plotted in Figure 6 are the predicted deviations from

target ;t(l) - X one step ahead. Appropriate adjustment is made when

a point crosses the line. This in effect periodically refers the original
series to the best current prediction at new origin as shown in Figure 5.

In Table II we give for this example the values of E(n) and the losses for

a range of values of ).
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TABLE 1II

Expected losses as a function of A when k=8, C=100, 6=.5, ca=1

(n) Mean
A E(n L 3 L Square
¥ = Error
0.0 1.0 8.0 100.0 108.0 1.00
1.0 7.2 9.8 13.9 23.7 1.22
1.5 13.4 11.9 7.4 19.3 1.49
1.75 17.5 13.0 5.8 18.8 1.62
2.0 21 .7 14.6 4.6 19.2 1.82
2.5 31.9 18.0 31 21.1 2:25
3.75 58.4 26.6 1.7 28.3 3.32
4.5 92.9 38.2 1.1 39.3 4.78

It may be seen that the over-all loss L 1in the region of the minimum

A is fairly flat. This suggests that the control scheme is remarkably

opt
robust to changes in the position of the "control lines".

In practice the ratio of costs C/k will not be very
precisely known and the statistician is in the position which he commonly
occupies where he needs to know a particular constant in order to produce
an optimal answer to a problem. In this as in other instances he can
usually best proceed by presenting the management with the alternative
possibilities. In this example for instance the expected mean square
error Lw/k of the fluctuations about target can be tabulated as we have
done in Table II. This will increase as the spread of the control lines
X increases, but so will the average run length E(n) between changes,

and hence the expected loss due to making changes Lc will decrease.

These figures could help in the balancing of costs subjectively.
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Conversely, if a particular value of A is presently being used for
the control Tines, Table I would give the value of C/k to which this
corresponds and enable one to examine whether this was sensible.

The form of the control scheme arrived at is worth further
consideration. As illustrated in Figure 6 the one step ahead forecasts
are plotted about a target Xt and referred to the control lines drawn
at a distance = Aopt above and below the target. As long as the forecast
falls within these control Tines no change is made. One can see that this
is similar to keeping a Shewhart chart on the predicted deviation from
target one step ahead. Thus we note that a procedure very similar to
one which has been found to be highly successful can be justified on
assumptions which are probably more realistic than those originally adopted
to justify it. By further noting that for the (0,1,1) process considered

the one step ahead forecast can be written in the form
(2, (1) - %) = 8(z,_1(1) - X9+ (1-0)(z, - X,)  (16)

we see that by plotting (;t(1) - Xt) we have in fact the geometric
moving average chart such as was suggested by Roberts [13]. However,

the justification for it and the basis for choice of the "control limits"
are quite different. We have not assumed as did Roberts that the

series is a sequence of random independent deviates about a fixed mean

but rather that it is highly correlated and has a tendency to drift. The
"control Timits" are seen to be related to the relative cost of making a
change to that of being off target and to the parameters of the stochastic

model rather than to any ideas of significance testing and probabilities
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of being outside control Timits. In addition it should be noted that the
"adjustable" parameter of the geometric moving average (16), rather than
being selected in some arbitrary manner, is in our situation the @
parameter of the (0,1,1) process. As 6 tends to one this stochastic
process becomes a random walk and the optimal control procedure then
reduces to the standard Shewhart chart, but with different "control
Timits". (It is worth noting that in this situation where we have intro-
duced inertia into the system by viture of associating a cost with making
a change we did not end up with a cummulative sum chart.) Thus we see
that by starting off with reasonable assumptions for the problem we have
been led to something which we know to have been of great value in the

mass production industries.

5. Summary

An approach to discrete feedforward and feedback control
is given which starts with modelling the dynamic and stochastic characteristics
of the system. This description of the system together with the type of
cost function involved leads to appropriate optimal control schemes. in
Part I [6] a class of stochastic models was introduced which was capable
of representing the kind of stationary and non-stationary behavior encountered
by many practically occurring time series. A class of discrete transfer
function models was also introduced which was capable of describing the
dynamic relationship between a manipulated variable X and a controlled
variable Y. Procedures were given for identifying, fitting, and checking

these models and for using them to obtain optimal forecasts. In Part II

the close Tink between forecasting and feedforward and feedback process control
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became apparent. Here the minimum mean square error controller was seen

to act so as to cancel out the forecasted deviation from target which would
have occurred if no control action were taken. Although usually implimented
automatically this control action can often be implimented manually by the
use of simple control charts not too different from the quality control
charts used in the parts manufacturing industry. In the latter case the
main difference in the design of a control scheme is the additional cost
associated with the making of a change. In the machine tool problem
sensible assumptions led naturally to a charting procedure very similar to

Shewhart's which has been used very successfully in these industries.
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