e o

The University of Wisconsin
Madison, Wisconsin

TECHNICAL REPORT NO. 307

July 1972
TOPICS IN CONTROL

2. CONSTRAINED FEEDBACK CONTROL OF LINEAR
DYNAMIC-STOCHASTIC SYSTEMS

by

John F. MacGregor

This is the second of
four chapters on
Topics in Control

Typist: Jacquelyn R. Jones

This research was supported by the Air Force Office of Scientific Research under
Grant AFOSR-72-2363.



CHAPTER 2. CONSTRAINED FEEDBACK COMTROL OF LINEAR DYNAMIC-STOCHASTIC
SYSTEMS

This chapter is concerned with the design of feedback controllers
for dynamic-stochastic systems when, in addition to optimizing some
quadratic function of the outputs, it is desired to constrain the
variances of the manipulated or control variables. There are two very
powerful methods for solving this problem, one employina the minimum
mean square theory of Wiener [70] and in particular the Wiener-Hopf
technique, and the other employing Bellman's theory of dynamic pro-
gramming [12,13]. These two methods are presented and their relative
‘merits discussed. (A third abproach_to the problem using non-linear
programming theory is treated by Tabak and Kuo [61] and will not be

discussed.)

2.1 Minimum Mean Square Error Control

The classical theory of control [40,45,55] as widely taught in
engineering curricula, and still the mainstay of industrial control
practice, ignores the stochastic characteristics of the underlying
disturbances affecting the system. In general the control system is
designed to aive a satisfactory response to some deterministic upset,
usually a step or sinusoidal function, with the implicit assumption
that if it can adequately respond to these, then it will adequately
respond to most stochastic disturbancgs encountered in practice. There
is a certain vaqueness in the criterion of performance used in designing
these controllers. What is usua11& involved is a mutual compromise of

various indirect measures of control loop performance and stability.



On the other hand, in most modern control theory the actual
disturbance upsetting the system is modelled by some suitable stochastic
model and the controller designed to aive a satisfactory response to
this. It is also usual to define a single criterion of control system
performance often subject to constraints, whose value is to be minimized
by the choice of control. Wiener's theory of minimum M.S.E. prediction
led to the development of the first such controllers [49]. More
recently Box and Jenkins [19-24] and Astrom [2,3] have further extended
the theory of M.M.S.E. control by working in the discrete time domain
with transfer function dynamic models and ARIMA disturbance models.
They showed that the optimal controller consists of two parts: one a
predictor which predicts the effect of the disturbance on the output,
and the other a regu1ator_wh1ch computes the control sianal necessary to
make the prédicted output-equal to the desired value. This seoaration
of the problem into two independent parts is often referred to as the
separation theorem (or in economics as the certainty equivalence
principle).

Astroém showed that these optimal controllers can be very sensitive
to parameter errors, particularly so when the zeros of the transfer
function (i.e. the roots of w(B)) or the roots of the moving average
part of the disturbance model (6(B)) 1ie near the unit circle. He
suggests usina a suboptimal strateay in these situations which employs
the common practice in classical control theory of shifting these
troublesome roots to a more suitable location away from the unit circle.
This results in controllers which have slightly larger output variance
but are quite insensitive to parameter errors. (In addition these

controllers result in a greatly reduced manipulated variable variance. )



This raises the point of the present chapter; that in some
situations it is not possible to tolerate the large variance of the
manipulated variable required to accomplish M.M.S.E. control, and even
if it can be tolerated the properties of the controller other than
optimal regulation are often enhanced by its restriction. These
problems of large variance in the manipulated variable arise whenever
the dynamic or stochastic parts of the model lie near their stability
(stationarity) or invertibility regiéns. Further as Box and Jenkins
[24] have shown and will be shown below, it is usually possible to make
very large reductions in the manipulated variab]g variance by allowing

only a very small increase in the output error variance.

2.2 Transfer-Function Models and the Wiener-Hopf Techniqu2

Although in some cases it may be desirable to specify lower and
upper limits on the ranne of the manipulated variable ut (corresponding
possibly to physical limitations) this type of restriction leads to a
highly non-linear problem that is very difficult to solve. A criterion
for designing a constrained controller which yields a much more tractable
problem is to minimize the variance of the output deviation from target
(V(et)) subject to a restriction on the variance of the input (V(ut)).
That is the controller is to be chosen to yield the unrestricted minimum
of {V(et) + A V(ut)} where A is an undetermined multiplier which can
be chosen finally so that the variances of Uy and €, are jointly
acceptable.

Newton [49] appears to have been the first to solve this problem

using the powerful Wiener-Honf technique. Following Whittle's treatment



of this preblem [68], Wilson [71] extended it to cover the entire range

of discrete transfer function-ARIMA models.

2.2.1 General Forms for Constrained Controllers

It is of some interest to see how a minimum variance controller
is modified when we place a constraint on the variance of the manipulated

variable. Consider the general transfer function-ARIMA model:

w (B) 6_(B)
- 5
't "5 (B Yer1 t ;ai“;gg'at (2.1}
p

where f represents the number of sampling periods of pure delay and the

lsubscripts s, r,q, p, and-d represent the order of the polynomials in B.
It is easily shown from the minimum variance control theory of

Box and Jenkins that the minimum variance feedback controller for this

general model is of the form
f d
(1-w}B-...~¢fB )MS(B)¢D(B)V o=
5 k
= ~(0g-ayB. ..~y B8, (B)e, (2.2)

where k = max{p+d-1: q-f-1}, and the parameters $i and a; are functions
of the parameters in (2.1). From the Wiener-Hopf solution to the
constrained control problem [71] it can further be shown that the
constrained feedback controller for this general model will be of the

form
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where
h = Max{f+s+k+1-d; 2+q-d}
k is as defined above in (2.2)
£ = Max{r+d; s}
and the parameters C; and bi are functions of the parameters in (2.1)
and of the amount of constraining desired (i.e. the value of 1).

By comparing these general forms (2.2) and (2.3) for the minimum
variance and the constrained controller resnectively, a few important
points can be noted. Firstly, the order of the right hand side of the
equation operating on the output deviation does not change, only its
parameters. Secondly, for sufficiently large f (f > max(q-p-d; 2-s+q-p-d))
the orders of both sides w111 be the same, only the parameters being
different. These general %orms (2.2) and (2.3) could be of value when
the trial-and-error approach often used in industry of implementing a
giveh controller form and then adjusting the constants to give satisfactory

control is attempted.

2.2.2 Example: Delayed First Order Dynamics with IMA(1,1) Noise

To illustrate the effect on control of constraining the variance
of the manipulated variable, consider as an example the following system

with delayed first order dynamics and an IMA(1,1) disturbance process,

2 9(-8){(1-v)+wB} 1-6B
Yy © : (‘l-aa\)) . Ugpr ¥ L(’IT)T a, (2.4)




From the previous section we can write the form of the optimal constrained

controller for f =1 as

(1+C]B+c BZ)Vu = -bo(l-éB)et

2 t

where following Wilson's generalized Wiener-Hopf approach [71] it can
be shown after a considerable amount of algebra that the parameters are
given by
¢, =y {y, + (1-0)yn)
1T YoM Yo
= -1
¢, =Yg {(1-8)(1-8)v + BYZ}

by-= Yo' (1-6)

where

Yo * Yt vy = (1-6)

v(1-v)(1-8)2 - (1+8)%

YoY1 ¥ Y2

YoY2 8\

where A is an undetermined multiplier. The variance of Vut and Yt are

given by



V(Tuy)  (1-0)20ygtv,) (1467) + 2y,6)

c: gz(Yo'Yg){(TO+Y2)2 - Y?}
V(e,) . (1—8)2{(YO+Y2)[Y5+(v—v6—Y2)2] - 2vqY; (v-v8-v,)}

To illustrate the above scheme, calculations were made for the

case

-k
n
T
D
n

0.6

for both 6 = 0.5 and & = 0.9. The characteristics of the uncon-

strained schemes are as follows. For & = 0.5

“Vuy = 1.07 Tuy_ +0.27 Yu,_, + 1.33(e,~0.5¢, ;)
V(e,) V(vu,)
it i
7 = 1.16 5 6.13
04 Ca

and for & = 0.9

Vup = 1.07 Tuy g+ 0.27 Vuy o + 1.33(e,-0.%, ;)
V(st) V(Vut)

=1.16 ' = 0,63
ES ES

a a



% increase % decrease Controller Parameters
5
; 2 . 2
in V(Et)/ﬁa in V(Vut)/c?a_“r c, ¢, by
(unconstrained scheme)
0 0 1.07  0.27 1.33
0.2 491 0.88 0.24 1.19
0.5
3 69.8 0.69 0.23 1.06
2.8 = a0.0 0.24 0.20 0.74
(unconstrained scheme)
0 0 1:67 0.27 138
g1 40.5 t D93 n.25 1.23
0.9 ;
0.7 1.7 0.68 D.23 1.05
2.4 89.4 0.29 0.21 0.78

Table 2.1: Comparison of constrained and unconstrained feedback schemes.
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Various optimal constrained schemes are shown in Table 2.1. It will be
noticed from this table that very dramatic reductions are possible in
the adjustment variance V(Vut) with very 1ittle increase in the output
variance V(Et)'

It has been noted [56] that in the minimum variance control
situations where the variance of the manipulated variable is unduely
large, the manipulated variable behaves in a highly oscillatory manner,
its setting at time t to a great extent cancelling out the effect of its
setting at time t-1. Some insight into this effect and how constrainina
the manipulated variance affects it can be seen in Figuré 2.1 where the

‘weights of the minimum variance and various constrained controllers
taken from Table 2.1 in the form Vut = L(é)at are plotted. It can be
seen from this Figure that the constrainina of V(Vut) has the effect of
removing this larce alternating effect of the unconstrained scheme and

appears to be tending in the limit to put all the weigcht on the present

shock only.

2.3 State-Variable Models and Dynamic Proaramming

The use of Dynamic Proaramming or the Calculus of Variations
[2,27,35,44,51,52,57] with discrete state variable dynamic-stochastic.
models provides another very powerful procedure for desianing constrained
feedback controllers. Dynamic Programming essentially involves the
application of a recurrence relationship to a staged process involving
successive transitioﬁs from one state to another, the solution to the
problem being derived iteratively by working backwards from the final

state. Although a numerical solution can theoretically, at least, be
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obtained for any model and any performance criterion, an analytical
solution in closed form is feasible only for models linear in the

variables and for a quadratic performance criteria.

2.3.1 Optimal Controller Algorithm

Consider the Tlinear state system of equation (1.20)

Xep] = Pxp + Guy +owy
(1.20)
Ye = Hxp +ovy

and suppose it is desired to find the multi-stage control policy
UpsUpppsesesliy which will optimize the quadratic performance criterion
N-1

Minimize E{xyQox, + T (xgQyxg + ugQou )} (2.5)
Upsly qsesesl s=t

where 90’ 91, and 92 are symmetric positive semi-definite matrices. Such
a performance criterion is quite general. It can be seen to include the
previously discussed case of univariate minimum mean square error control
subject to a constraint on the variance of the manipulated variable if we
choose Q = Qy = H'H (where H is now a (1xn) vector) and 92 =) a
Lagrangian multiplier. The use and specification of such a criterion
will become more apparent in subsequent sections and in particular
section 2.3.5 where an example is treated.

It has been shown [2,51,57,65] (Astrom [2] gives perhaps the most

general treatment) that the solution to this optimal control problem is
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given by

u, = -L.x

~t ~t§t|T (2.6)

where uy is the optimal control setting to be applied at time t, and gtlr
is the conditional expectation of the state vector E(xt[XT) where
¥ = (XT’XT~1""’¥0) represents the data which is available for

determining the control action. Lt is an (mxn) matrix of constants given
by

- | '] 1 .
Ly =[G * 65449817 6'Sy 98 (2.7)

where

‘s 1 -.I-l :
ol 91 - A §t+1§[92 *G §t+1§] G §t+15 (2.8)

with the initial condition
Sn = (2.9)

The state estimator gt]r can be obtained from the appropriate Kalman
filter or predictor of section 1.3.

This result implies that the optimal strategy can be separated
into two parts: a state estimator fortobtaining the best estimate of the
state variables, and a linear feedback 1aw‘which operates on the estimated

state. The feedback matrix Lt depends only on the system dynamics (A and
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G matrices) and on the parameters of the loss function (QO, Qqs and
92), but not on the covariance matrices (5] and 52) of the noise

processes W and Vi
state model (1.20) will be identical to that derived from the equivalent

Therefore, the optimal control strategy for the

deterministic system where w,_ = ¥y ® 0. In addition the state estimator

given by the Kalman filters in section 1.3 is unaffected by the

Xt)t
feedback control law. This important result is referred to as the
separation theorem or certainty equivalence principle, and results
because we have assumed a linear system with Gaussian inputs and have
minimized a quadratic cost function.

In general, it is usually of more interest to find out what the
form of the steady-state optimal feedback control law is, rather than
the more general time-varying form given above. As the terminal time
for contro1- N> then for a completely controllable system the value
of § in the recursive equation (1;46) will tend to a constant matrix
S '[35,37,41] with corresponding steady-state feedback gain given by

L, = [0 + §'5,817'6'S.A | (2.10)

This asymptotic solution L together with the steady-state Kalman

filtering solution for g . provide the optimum control policy,

t]

gt - -Eoo §t|'["

2.3.2 The Special Case of Univariate Unconstrained Control

Consider a system described by the state equations (1.20) with

a single manipulated variable uy (r = 1), and suppose that we are
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interested in obtaining the unconstrained control (Q2 = 9) which
minimizes the mean square error of a single output variable Y1t That

is, we want the asymptotic control policy which gives (for Now)

£

Since in (1.20) v, is uncorrelated with x_, this is equivalent to that

t’
which gives (for No)

N
I s
gree ity

where Q]

in the form of (2.5) but with Q, = 0 and Q=9 = (Q1Qi).

is the row of the H matrix corresponding to Y1t This is now

In this above special case the optimal asymptotic control vector

L is given explicitly in terms of the system parameters by

L, = [6'0,617 6" A (2.1)
To prove this let us first consider the following lemma.

Lemma: sa[s*se]“]§'§ = S (2.12)

~ A mues

where S is a symmetric {nxn) matrix of rank 1

and G is an (nx1i) vector
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Proof: Since S is a symmetric (nxn) matrix of rank one it can be written
as

= 1

S = M4

where A is the single non-zero eigenvalue of S and g] is the corre-

sponding eigenvector. The left hand side of (2.12) can then be written

Se[6'S617'e'S = A ZiZ{60n6 226176 Ty,
L (246)(6'2,)2;

(6'2,)(Z16)

M

=MLY - S Q.E.D.

Applying this result in (2.8) yields Se = Q for all time t.
The relationship (2.11) then follows directly upon setting S = Q,
in (2.10).

This relationship (2.11) considerably simplifies the design of
univariate unconstrained minimum mean square error contro1]efs since it
expresses the control vector L explicitly in terms of the system
parameters, whereas ordinarily it would have to be obtained numerically

by iterating on equation (2.8) until convergence.

£.3.3 Duality

A very interesting and useful duality between the state estimation
problem of section 1.3 and the optimal control problem of this section

was pointed out by Kalman [34]. He showed that these two problems were
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_equivalent mathematically and the resulting iterative equations (1.28),
(1.30), (1.25) for the Kalman filter and (2.8), (2.9) for the optimal
controller are identical if one makes the following correspondence

between the matrices:

Optimal Control State Estimation

3t | P|t-1

% Ro

% B

Q Ry

A 3

6 He

Ly . ARy

Making use of this principle, whatever results are obtained for the
linear regulator problem with a quadratic cost function can be translated
into the corresponding results for the linear filtering problem with
minimum mean square error criterion, or vice-versa. This fact is very
useful in proving the convergence, uniqueness, and stability of the
corresponding sets of iterative equations [41]. It also simplifies the
numerical solution of these problems since it allows one to use the same

iterative computer program for both.

2.3.4 Structure of the Optimal Controller

Suppose for the moment that the syétem is a deterministic one in

which the true value of the state vector is known at every time instant t.
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The optimal controller is then

In this deterministic case the state vector Xy may be precomputed for
all time and hence there is no difference between a control program
operating on open-loop and a feedback control law operating on closed-
loop. A difference between the open-loop and closed-Toop control Taws
will occur only when stochastic disturbances occur in the system, and
hence a state estimator is necessary. It is the state estimator which
gives rise to dynamics in the optimal feedback Taw.

To see this consider the case in which the state is estimated
by the Kalman filter (1.26), (1.28)

~

Xelg = (A = KHRDX qpq * (8 - KHBDuy + Koyy
and the optimal controller given by

up = L xtlt

Substituting this optimal control law into the state estimator gives

Rept = (1= KA = BLOX g1 * KoYy

~

as the closed-loop estimator. This can be rewritten in the form
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_ -1
Xgpg = (- CB) Koy

v ol
Kottt j§19 Kt-3

Thus the optimal feedback controller becomes

~

th = _Emext " Eoo Z

which is a multivariate proportional-integral controller where the first
term gives the control proportional to the current output deviations and
the second term expresses the control due to the summation (integral)

of the past output deviations. The relative amount of proportional and
integral contrel depends on the matrix C = (I - Ewﬂ)(g - GL_) the

dynamic matrix of the state estimator.

2.3.5 Variance Formulas for Closed-Loop System

In the engineering literature on optimal control the matrices
90’ g1, and 92 in the loss function (2.5) have always been assumed
known. Whereas the specific control desired will usually imply values
for 90 and 91 (and possibly 92 in electrical engineering situations),
this is not usually true in the process industries for 92, the constraint
matrix. As previously mentioned one will usually want to choose QZ by
iterating on it until the variances of the outputs and inputs are jointly
acceptable. Therefore in this section we develop the formulas required

to calculate these variances in any given control situation.
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For the simultaneous estimation case (that is, where the state
estimate at time t is based on information up to and including time t)

consider the steady-state closed-loop system characterized by the follow-

ing equations:

Xepp = AXp T Guy + oWy _
| (1.20)
Yp = Hxe + Vg
Uy = -LeXilt (2.13)
Repe = (L= KHA - BLX g4 + Koty (4}
Write
Xe = Xelt T Xt (2.15)

where Xt|t is the estimation error, independent of the estimate Xt|t
Then by using (2.15) and subtracting (2.14) from (1.20) the following

expression results for the estimation error under closed-loop control:

(2.16)

Xpen [£41 = (1 - KHDA Xepe * (1= Kfwy

where (I - K H)A has all eigenvalues inside the unit circle. We have

~~~

already shown in (1.28), (1.30) that th1s has the conditional covariance

matrix
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Py (1- kAP

Pert|ter = (1 - KA Py AT - K+ (T - KHIR (I - KH)

Lt
(This also follows directly by noting that (2.16) is a multivariate
AR(1) process).

Also, under closed-loop control, equation (1.20) can be rewritten

as

X = Mg - BLXyy *

{2.17)

A -G + G
(~ NEW)E L tht
where (A - GL_) also is assumed to have all its eigenvalues inside the
unit circle. Thus the overall c1osed-1oop system plus estimator given
by equations (2.16) and (2.17) is stable and of order 2n.
The covariance matrix FX(O) of the state vector x, can be obtained

=t
from (2.17) as

P(0) = E(xg,q%tyq) = (A - GLJE(x x)(A - GL.)

+ (5 - QEW)E thtit L G + GL E(xt[t A - gkm)'
+ GL E(xt|t t|t ) By G + E(w t)
or
£,(0) = (A - GLIT(O)(A - GL)' + (& - GLIFy, LG
: (2.18)

+ 6L, Pypp(A - 6L + 6L Py LIG' + Ry



where the fact has been used

E(§twt)

and

E(x xt|t

that
EXy)p wg) = 0
E(%

et Repe) T Pt
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Now from (2.18) the covariance matrix of the output Yt and of the

input u, can be obtained. Since

Yt
then
Elypyt)
and since
Ut
then
E(ut t) =

= Hxy ¥y
= HEX(O)H' + R,
= L. gtlt
LEKy e X)L

Em(zx(o) - Etlt)!:oo

(2.19)

(2.20)
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Consider now the system representation of (1.21) or (1.31),

(1.33) whose steady-state closed-loop behavior is given by the equations

N

Xear ¢ = Agpgor ¥ Qe * I

= (A -6, )~t|t > S0
Yy © H§t|t-1 T
up = L xt+1|t

It is easily shown that the covariance matrix of the state vector gt+1|t

is given by
I00) = (A < GLTR(O)(A - 6L + Tir (2.21)
and'hence
Eluguy) = L, Tp(0L . (2.22)
and
E(yy;) = Hg(OJH' + I + HIZ + ID'H (2.23)

These equations will enable one to calculate the covariance
matrices for the output Yt and input Uy under closed-loop conditions for

any of the state model forms considered in Chapter 1.
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2.3.6 Optimal Control with Delayed Dynamiés

Very often one has to deal with processes in which there is a
time lag or transport delay of f sampling interva]ﬁ between a change in
the input and its effect on the output. The incorporation of this
delay into the design of the optimal controllers currently being
discussed can be done in either of two ways or a combination of them.

The first possibility is to incorporate the delay into the state
model by the addition of extra state variables. This may easily be done
for example for model (1.24) by the addition of f new state variables

of the form

Xo#2,t+41 = X1t

Xn43,t+1 - *ne2,t
i (2.24)

Xntfe1,t41 = Xn+f,t

and the altering of the output equation to

Y L e 0 1]5

The second possibility does not involve altering any of the state

equation forms. Suppose the state model is

Xpe) = X+ QU gt Wy
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We can obtain the optimal controller directly as

g = oL xt+f|t _ (2.25)
where the f-step ahead forecast from (1.34) is given by
s _ af=1a f-2
Xprelt = & Xpaae ¥ B g ¥ oo ¥ Bl
fa f-1
Py ¥ 8 Glpap ¥ <o ¥,
and hence the optimal control is given by
f-1
up = -L {A tht Gup ¢+ oon T GUL 1
_ (2.26)
_ f- 1A f-2
= "Em{A t"‘]lt A Gut _F+-| P Gut 'I}

However, in employing this equation it is important that xt]t be evaluated
using the Kalman filter of equations (1.27) and (1.29) and not that of
(2.14) which is obtained from (1.27) and (1.29) by use of the relation-
ship u, = -kwgtlt which is no longer true in this instance. Lee [43]

made this error and therefore obtained some confusing results.

2.3.7 An Example: First Order Delayed Dynamics with IMA(1,1) Noise

Consider again the example discussed in section 2.2.2 under the
Wiener-Hopf technique and let us treat it now using the dynamic program-
ming approach. Using the state model representation of (1.24) and

accounting for the one unit of delay by means of an additional state
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variable as in (2.24) the state model of the system can be written as

R 1.5 1.0
X2t+-l - '0.5 0.
X341 6. 0
_x4m4~ I 1.0 0
Y = (0 0 O 1)§t

with covariance matrices

R] = FF'02
s &= {d

R, = 0
We want a

2

matrices as

o o o o

controller of the form Vut =

o o O

0 X1t .3 1.0
0 ¥ 2 -1.1
. ot .
+ Vu, + a
1 t+1
0. X3t 0 0.3
O._ _x4t i 0,_ " 0 i

'Ew§t|t which minimizes

+ A Zu%} which can be done by choosing the loss function

o o o o
1O
Z%)
1
>
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Consider first the minimum variance case where XA = 0. An iterative
computer program was used to obtain the asymptotic solution to the
controller equations (2.7), (2.8), and (2.9), and to the Kalman filtering
equations (1.27)-(1.30). Because of the duality between these two sets
of equations (section 2.3.3) the same computer program was used for both
problems. The converged values for the Kalman filter gain and the

optimal control vector are respectively

[ 0.40 5.0
-0.20 3.33
= and L= |
~ 0.0 ~ 0.
1.0 | 0. |

Optimal control is therefore achieved by setting

VU = —500 )’(\

3.33 %

t 1t - gtlt
where from (2.14)
[-0.40 0. 0. O0.7] .40 ]
. -1.30 -.67. 1.0 0. | _ -.20
%t o o o o, [t T, Pt
0. 0. 0 0._] | Y0
By substituting for X]t|t and thit the control equation reduces to

('I+.67B)(1+.4OB)Vut = -1.33(1—0.58)yt

(2.26)



27

Using another iterative program to solve the covariance

relationship (2.18) one gets for the covariance matrix of Xt

~1.16  -1.18 .30 .40'7
-1.18  1.641 -.33 -.387
~X .30 -.33 .09 0.

| .40 -.387 0. 1.16
and hence from (2.19) and (2.20)

Var(yf) = 1.1602

2

Var(Vu,) = 6.130,

For the case of constrained control (X = .05) the converged

optimal control vector is
Em = [2.96 2.24 0.80 0.0]

while the steady-state Kalman gain K_ remains the same. The optimal

control action is then

2t|t ~ 0.80 x

Vu, = -2.96 X -2.24 X

% Tt|t 3t|t

where from (2.14)
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21 .33 -2 0 .40
. -.89 -.45 .84 0. | -.20
BT 5 " e A i
| o. 0. 0. 0.| 1.0 _|

which reduces to

(1+.248+.208%)vu, = -0.73(1-0.5B)y,

t

The variance calculations give

Var(yt) = 1,192 and Var(Vu,) = 0.614

0
a 2.8% increase and a 90.0% reduction respectively.

(Comparing these schemes with those obtained in section 2.2.2 for
the same system by using transfer-function and ARIMA models together with
the methods of Box and Jenkins, and Wilson, one can see that they are
identical.)

Although the above solution illustrates the general solution
procedure it is not the most concise in this instance where there is one
whole period of delay (f = 1). Using the parsimonious representation of

(1.23) the state model can be written as

18 1,

*1t+1t M)t

-.5 Oo

Xot+1|t *2t|t-1
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~

ye = (1 00Xepeq + 3y (2.28)

The minimum variance controller can be calculated using (2.6) and (2.10)

to give

Vu, = -L X -[5.0 3.33]x

£ = LeXean |t T Xg41 |t (2.29)

and the state estimator (gt+1lt) can be obtained directly from the above
state equations without having to solve the iterative Kalman filter
equations (see section 1.3.1) by substituting in (2.27) for a, and Vu,
from-(2.28) and (2.29) to give

=k 10, .4

Resllt ” : Xe|t-1 7 Yt
-1.3 -.67 -.2

Upon reduction these equations again yield equation (2.26). The variances
of the input and output can be calculated from equations (2.21), (2.22)
and (2.23). The solution of the constrained controller 1is straightforward.
For a case in which there is more than one whole period of delay (f > 1)
equation (2.26) will yield the optimal controller directly in terms of
that for f =1 given above. This more concise form (2.27) can be used
only in the case where the number of whole periods of delay (f) is greater
than or equal to one since the state representation (1.21) yields only

the delayed state estimator gtlt-l ana when f =0 the simultaneous state
estimator ftlt is needed. In this latter situation the state representa-

tional form (1.24) as used in the first solution is very convenient.
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2.4 Comparison of the Two Approaches

The two approaches just discussed for designing optimal controllers
differ in two main aspects--the types of models used, and the method of
solution. The Wiener-Hopf solution was used in conjunction with a transfer
function and an ARIMA model representation of the dynamic-stochastic
system, while a dynamic programming-Kalman filtering solution
was used in conjunction with state variable representations.

The drawbacks of the former approach which seem to have led to its
near abandonment in favour of the latter seem to be largely overexaggerated,
although they do have some basis. A major drawback was believed to be the
fact that non-stationary disturbances could not be handled using spectra
6r covariance generating functions. Howevef, Yaglom [73] and Box and
Jenkins [24] have shown that non-stationary disturbances can easily be
incorporated into this frémework if one works with a suitable difference
of the original process. A second drawback is the difficulty, or more
truly, the tediousness of the solution of the Wiener-Hopf equation by
spectral factorization for higher order systems.

In the second approach using state variable models the Wiener-

Hopf equation is in effect replaced by the first order matrix difference
equations of the Kalman filter and of Dynamic Programming. These equations
are not only very easily solved iteratively on a computer but the same set
of equations hold for all linear dynamic-stochastic systems; only the
parameters have to be changed. In addition, multivariate systems fit

into exactly the same framework and so. provide very little extra difficulty.
It is this unity of representation and solution that accounts for the major

advantage of this latter approach.
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