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Nothing whatever is known about the small sample power of the bivariate
Wilcoxon test W (it is the test R of Chatterjee of Sen [4]). The computation
of exact power is extremely difficult due to the involvement of the probabilites
of bivariate rank configurations. Consequently we employ Moiite Carln
simulation to estimate the power for several bivariate normal alternatives
and compare the results with the exact power of the T2 test.

The Pitman asymptotic relative efficiency (ARE) of W with respect to
T2 depends on the direction in which the shift occurs as well as on the
correlation. Bounds on the ARE for normal and other bivariate distributions
have been studied by Bickel [2] and Bhattacharyya and Johnson [1]. This
large sample measure essentially reflects the relative performance of the tests
under local alternatives and is not always a satisfactoxfy guide to the compara-
tive power in small or moderate samples. The ARE values corresponding to
the alternatives considered for empirical power are presented in Section 3
for the purpose of showing the manner in which the ARE reflects power.

It is found that over most of the alternatives considered, the empirical
power of W does not lag appreciably behind the power of T2 test which is the
uniformly most powet'ful invariant test for the normal family. What is more
interesting, the power of W seems to exceed that of T2 fér certain shift
alternatives and certain correlations in the normal distribution. It is an
unusual situation where a nonparametric test seems to perform better than the
best known parametric test and certainly contrasts with the univariate case
where the power of the Wilcoxon test always falls short of the t-test for
normal alternatives since the latter is UMP unbiased (for numerical values

see [5]). This points to the need for further theoretical studies on the test W.



recomputing (2) in each case. Let Wl'_SWZ' <... < W'N be the ordered
()

m
values thus obtained. The level a rejection region of the permutation test

consists of the k largest values of W' if k =a(§1) is an integer. If k is
not an integer, we have to randomize on the boundary or slightly change a to
make k an integer. In practice one need not always compute all the ( 11:11) values.
It is often possible to recognize the column partitions which give the largest
af ﬁ) values of W by inspection of ‘R, and only a few trial computations.
W is well defined except for the case q=+ L, I_f g happens to be +l,
we modify it to q' = 1-e where ¢ is a very small number (the value used here
is € = . 001). Similarly if q = -1, wereplace q in (2)by q' =-1+e¢. This
in some sense preserves the continuity of W. Unless the bivariate distribution
degenerates to a lower dimension, the occurrence of q = + 1 has very small

probability and hence such modification is seldom needed.

Example. In reliability studies, it is often of interest to compare similar
systems produced by two competing manufacturers. Suppose a system consists
of two dissimilar components arranged in parallel so that the system fails if and
only if both the components fail. Even though the arrangement is in parallel,
the assumption of complete independence of the functioning of the components is
often unrealistic. Thus we assume that the failure times (X,Y) of the two
components have the continuous bivariate distribution F(x,y) for one system
and G(x,y) for the other and consider testing of the hypothesis HO: F =G
against G(x,y) = F(x-0y, y-0,), (91,92) # (0, 0). Hotelling's 72 test requires
the assumption not only of bivariate normality for F and G but also of equality
for their covariance matrices. Such assumptions for life distributions are

hard to justify and hence the applicability of the T2 test is dubious. The W
test on the other hand requires no assumption on the forms of F and G

or on their covariance matrices. We illustrate its application by considering



3. EMPIRICAL POWER OF W AND COMPARISON WITH "['2

In this. section, Monte Carlo simulation is employed to estimate
the power of the W test for shifts in several bivariate normal distributions
and the estimated power is then compared with the exact power of the T2 test.
computed from the tables of Tang [6] and Tiku [7]. Since both the tests are
invariant under scale changes in x and y coordinates, without loss of
generality we take unit variances in all the normal distributions. Four
evenly spaced value‘s 0, .3, .6 and .9 were selected for the correlation
parameter p.

There are an enormous number of possible choices for the vector shift
parameter § = (91,62). For simplicity in computation, we consider two types
of shift: (a) a shift in only one coordinate, 91 = 0 and 62 = ¢ >0 and (b)
equal amount of shift in each coordinate, el = 92 = 6’:< > 0. Four different values
are chosen for the single shift parameter in each case. Since our objective
is to compare W with TZ, we choose the values of © and 6  so that there
is an even coverage of the range of power of T2 and also so that the power
T2 can be z:ead directly from the tables [6, 7] without interpolation.

More specifically, it is known that for the alternative @  in a bivariate
normal distribution with correlation p, the statistic (N-3) TZ/Z(N—Z) is
distributed as a noncentral F with (2, N-3) degrees of freedom and

noncentrality parameter N\ where
-1
(4) "2 = (mn/N)(1-p%) (05 - 20,0+ 02)

1
The power is tabulated in [6,7] for different N and certain values of  =\3 2,
For each of the combined sample sizes N = 8, 10 and 12, it is found that the
é-values 1.0, 1.5, 2. 0and 3.0 cover evenly the range of power of the T2

test. Thus fixing the values of ¢, we determine the amounts of shift by



dircctly from |6, 7] and entered in the second row of each table. [I'or the
sample size (8,4), linear interpolation in the reciprocal of the degrees of
freedom as discussed by Tiku [7] was employed to interpolate power. The
rest of each table exhibits the estimated power of the W test for the two
types of shift and four values of p. Thus each column of a table presents the

empirical power of W at different points on a constant power surface of the

T2 test.

As a check on the extent of internal scatter of the estimates of power,
the 1, 000 replications in each case were run in four groups of 250 each. It
was found that the variation of the rejection numbers from group to group
was quite small in most cases. As is typical with the simulation study on
a permutation test, the most important contributing factor to the computer
time was the gene_ration o (2) column partitions of R, and xjecomputation of

the values of W. The time used for the present job was approximately five

hours.
Table 1. Exact power of T2 and the rejection numbers for W
in 1, 000 replications for the two types of shift.
Sample size: m =4, n = 4; significance level a =. 05
P
| ¢
: 1.0 1.5 2.0 1 3.0
2 | !
] T . 197 .388 | .612 = .915
i =0 225 458 | 642 878
| 8;=0 [ p=3 7 219 , 214 634 865
! 62>0 L op=.6 | 210 ’, 375 ‘ 547 - 826
- p=.9 ! 135 , 215 339 | 595
; __p= 0 242 ‘ 399 631 886
'9.20.>0|—PZ 3 266 466 ‘ 675 ‘ 893 ?
17V 27 Y p=.6 282 | 491 , 696 1 894 ‘
; Lop=.9 296 ‘ 536 i 737 921
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2
Consider also the ARE of W with respect to T which for the
bivariate normal family considered depends on the correlation p and the
- two types of shift. For shifts in the direction Q = (91,92), the ARE is

given by (c.f. Chatterjee and Sen [4])

2 2

_ 3 (-p%) (8172P59%4%, )

e ew:tP = T T T2 3 2
(1-p%) (6]~ 260,0, + 03 )

where Po = (6/7) arc sin (p/2). For p = 0, the expression (7) reduces to
3/m which is the ARE of the univariate Wilcoxon test relative to t-test.

The lower and upper bounds of (7) for all QV# Q and all -1<p < 1 are .87
and . 97 respectively [2]. With a view to investigating the extent to which
the ARE reflects the comparative power in the present situation, we compute

its numerical values for the two types of shift and four values of p and

present these in Table 4.

Table 4. Values of eW_T(QJ p)

P 9 =(0,0) 9 =(6,0)

0 . 9549 . 9549
.3 . 9473 . 9642
.6 . 9241 . 9658
.9 . 8837 . 9592
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