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0. Summary

In testing a hypothesis concerning the correlation coefficient
in a bivariate normal distribution where all the parameters are un-
known, the Pearson product moment statistic is appropriate. It may
happen, however, that there are relations among the parameters in
the distribution, in which case the Pearson statistic would not
utilize this information. In particular if the variances of the
two marginal distributions are equal, it is possible to test the
correlation coefficient by means of a simpler statistic which makes
use of this information. In this paper we explain how this statistic
arises and present some properties of its distribution. This statistic
as well as its properties developed here are utilized in the latter
part of this paper where we consider the problem of estimating the
difference of the means when some of the observations corresponding

to one of the variables are missing.

1. Introduction

Let X192 Xq99 v Xy and Xp1s Xops sees Xoy be samples from

a bivariate normal population having means Hys My and covariance matrix
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Under the assumption o, =0, the likelihood ratio test of the hypothesis
Hy: p = py lead to a critical region based on the statistic u (say defined

as follows

u= —22 (2)



where
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We present in section 3 the general non central distribution of
this statistic corresponding to o, $ o, and p $ p, and we give the first
two moments of u in section 4. These moments are used in section 5 in
investigating the behaviour of an estimator of My - My which is proposed

here for the case of missing observations corresponding to one of the

variables (say) Xye

2: A derivation of u.
Let us test Ho: P =P, against Hl: p # Poe Under the assumption

0, 30,=0 (say) the logarithm of the likelihood function can be

written down as follows:

N, 2.2
———-—5; (sl+52-20312)

log L = - N log 27 - N log 02 - g-log (l-p2) -
2(1-p

(6)

N - 2 - 2 -~ =
e [R-u) #+ (Xy-u,)C - 20(x,-ug ) (X, mu,) ]
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The solution of the likelihood equations

9 log Ll ) 9 log Ll ) 0 log Ll i 9 log Ll - %
= = 5 = =
aul au2 30 ap
turns out to be
2 2

- ; - = ; sl+s2 N _ 2sl2 (7)

My = X3 Hy = X3 3P
2 sl+s2

We note here that the maximum likelihood estimate p of p is the

statistic u given in (2). The maximum value of the likelihood function

under Hl is

max L (upsp,07,0) = (Te)™ [(s24s2) —us2 7N/ (8)

iy

Similarly under the null hypothesis HO: o =P it can be verified



that the maximum likelihood estimates of His Wy and 02 are

2 - 2 32 + 32
y = ; . » = )—( . (;2 = _l___..z (9)
Hl l, u2 29 2

The maximum value of the likelihood function under Ho is

2.N/2
(1-p7) /
max L (u,4u 02 p )= (He)-N °
1°M299 9P, | 2

2
Ho (sl+32-2pos

N (10)
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The likelihood criterion is given by

2
max L (ul,u2,o ,po)

2
) H _ (l-po)

N/2 2. 2,2 2
_ [(sl+52) -ule
2 2 2 N
Eax L (ul,uQ,c 50) [sl+s2-2posl2]
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N/2

(1-02)(1-u”)
] (11)

=[

(l-pou)2

which is a function of u. The likelihood ratio test is

(1-p§)(1-u2)

> < ¢ (12)
(l-pou)

where ¢ is chosen so that the probability of the inequality in (16)

when samples are drawn from normal populations with correlation Po is

the prescribed significance level @,



The critical region can be written equivalently

pc+ (1- p2) vV l-c
u > °2
pc+l- po
(13)
pc—(l—pz) v 1-c
u < 02
pc+ 1~ po
When Py = 0 the critical region becomes
u > v l-c
(14)
u < =¥ l-c

§3: Distribution of u:

The distribution of u both for the null case p = 0 and the non-
null case p # 0 has been given by DeLury1938under the assumption

ol = 02. In this section we derive the non-null distribution without

the restriction cl = 02.

In order to find the density of u we start from the Wishart

density which can be written as
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N-4 N
2 " 2 52 s2 2ps
2 2 - 22 2 2(1=-p7) 1 2 12
p(sl,s2,312) = K (sls2 312) e [ ;§-+ ;5 - - 1 (15)
1 % 192
where
N-1
K= N1 [unP(N-2){oio§(l-pz)} 2 g
0 < 32 s2 <o :~g58 <8 _. <88 (16)
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To obtain the distribution of u we apply three successive trans-

formations. The first transformation is

2s

_ 12
51%%,
_ 2 2
Tl v = sl+s2
W = 32
2

As the joint probability density function of u, v, w is obtained in a
straightforward matter, the details are omitted here. Next we apply

the transformation

[ 14+t/1-u?]

N <

Tt w =



and integrate out the variable v in the joint density function of u,

v, t to obtain the joint probability density function p(u,t) of u and t.

(17)

-1 <cu<l; -1 <tc<l

On applying the transformation

we obtain the joint probability density function of u, z which, when z

is integrated out yields the probability density function of u

N-1

N1 N-3 N-2 N N N-2
N-4 2,2 ——(a-b) B(—=,3) + (a+h) B(z,—5~)
ow) = e2) 2 (;:i ) (1ou?) 2 7’3 202 ] (18)
1 (o%?) 2 (@2 - p2yN/2

which is valid for any sample size N > 2.



Here
a:_2];( 1 + l).. pu : b:%(_%-__l?) l—u2 (19)
o) o, 9,0, o5 o7
When 6, =0, =0, say, we have from (19 )
a:k%g;b=0 ) (20)
o

Substitution of these values for a and b in (18) yields

N-3
N N-1 N=9
r(z) 2
p(u) = —— Ngl (1-02) 2 (-u )N-l (21)
/;T- F(T) (l-pu)
and when p = 0 this becomes
N N-3
r(z) —
p(w) = 2= —5— (1-u)) (22)
Yy r(-§—

It is evident that from (22 ) that the null distribution of u under these
restrictions is the same as that of the product moment correlation

coefficient corresponding to N+l pairs of observations.

4: Fiprst two Moments of u:

It is possible to obtain the moments of u by utilizing directly

the distribution of u in section 3. In this section we obtain these



moments through a technique based on moment generating function which
yields these results more readily.
Suppose X and Y are random variables with joint moment generating

function ¢X ¥ (tl, t2). If pr {Y < 0} = 0, the mth moment of %-is given by
?

Xm _ O 3" ¢ m
E (g = _£ oo [ I ;;m (t;s t,) ] - g=l at,, (23)
1 1

m
where we set t, = ) t (cf. Dixon 1944.).

Now the moment generating function of the Wishart distribution

is given by

_ N1
) 2
*2 2 ) (v)15Vppe¥yp) = [T -2 1 V] (24)
8195954839
; 9 % Yin V2
= I’y V: - -
) H 3 0y, = P00, (25)
%2 % Vig Vo2

Consequently the moment generating function ¢y v (tl, t2) of X = 2s
3

and Y = si + sg is given by

12



¢X,Y(tl’t2) = ¢ 9 »

Thus

E(u)

E(u2)
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(N-1)
) A=
l O
) 9 %2 t §
(t ,t ,t ) - "2
S, .S .28 2772771 0 1 o 02
17727719 12 % Y
- 2 2 2.2 2 2 22 2 2 -(N-1)/2
= [ 1-40, .t -2(c%+ - - -
[ 121172007 #0,))t,-4(070,-07 ) )] +4(070-07 )5 ]
the first two moments of u are given by
0 rap(t,,t,) 0 4(N-1) o., dt
= I:-—- 1 2} dt2 = f 12 2 N+1
- -3t t.=0 - 2 2 22 2 ..2.72
1 1 [ l—2(ol+02)t2 + u(clo2-ol2)t2]
2
0 37¢(t,,t,) -
- 1?72
=-f t, [ — J dt,,
-0 atl 'tl=0
22 2
0 4(N-1)(olo -0_.) t. dt
- 17277127 "2 2 Nl -
2 2 22 2 .2 .2
[ 1-2(ol+02)t2 + u(clo2-012)t2 ]
2 2
0 4(N°-1) o], t, dt, N+3 (26)
o [ 1-2(02402)t. + 8(c202-02.)t2 ] 2
1 2772 12 12772

(26)

(27)



~1l1l-

These integrals can be evaluated by standard techniques utilizing re-
duction formulae. In section 5 below we have evaluated these integrals
for specifie values of N in order to obtain the numerical values of the

efficiencies in Table 1.

5. An application of u to incomplete data:

In the present section we consider the problem of estimating the
difference of the means in a bivariate normal population when the sample
has some missing values corresponding to one of the variables. This
problem can arise in sample surveys, archeological investigations,
psychological tests, and many other situations where it is not always
possible or desirable to obtain all of the observations corresponding to both
variables (cf. Nicholson 1957). The problem of estimation of the parameters
of a bivariate normal distribution when the sample available is incomplete has
been considered by Wilks 1932 and Rao 1952. These authors have obtained the
maximum likelihood estimators of the mean vector along with their large sample
variances and covariances. More recently, the problem of estimation of the
mean vector from an incomplete sample from a trivariate normal population
has been considered by Anderson 1957 and Lord 1955. We are concerned here
with the problem of estimating the difference of the means. For this, an
estimator designated below as Z, in which the u-statistic is utilized, has

been suggested and the behavior of its variance for small samples studied.

Suppose that we have a sample

X112 ®320 o002 X1 Xipe1 000 N

(29)
Xp12 %222 00 Fope
with (N-n) missing values of the variable X, as indicated. Let the under-

lying bivariate normal population have means His W, and covariance matrix

« . PR,
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We wish to estimate difference of means 8, say where
= - 30
§ = u My . (30)

Let us write

N n
wel¥) - Y %3 ax™) = I x,. 3

1 i=1 11 2 i=1 2i
=(n) _ ¥ -(N-n) _
nx, " = Z X5 3 (N-n)xl = z X135 (31)
1 n+l

A simple estimate of § which is unbiased is given by

. =(N) _=(n) (32)
T = xl - x2
which has variance
2
%
Var (T) = — [ A + k - 2pxvk ] (33)
n
where
2 2
k = 9, / oy 3 A =n/N., (34)

There are, however, other unbiased estimators of § which, although not
as simple as T, have variance less than that of T for certain values of

the parameters involved, namely p, k and A,
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One such estimator of 8§ can be obtained as follows. Consider

the estimator Zg defined by

- a =(n) =(N-n) =(n) 35
2, = Bpxp T+ Axy ) (35)

Accordingly we write

which will be unbiased for 8§ if A2 =] - Al.
7 = a 2(n) _a yo(N=n) _ =(n) (36)
Alxl + (1 Al)xl %,

where Al is an arbitrary constant to be specified. A plausible method
of specifying Al is to choose that value which minimizes the varianee of
Zo' It is easily shown that the variance of Z_ is

2 A

)* =+ k-208Nk ] (37)

o2
1
n 1-A

2
Z = -
Var o [ Al + (1 ~-A

1

and the value of A, which minimizes (37) is given by
Ay = [n+o/k (N-n) 1/ N=1+ok (1-0) (38)

Of the three parameters A, p and k involved in (53), A will generally
be the only one known in any given practical situation. Thus to employ
Zo in pratice as an estimator of § we must specify p and k.

Now as already shown u is the maximum likelihood estimate of o

when k = 1. Consequently one would expect that the estimator Z defined as

Z = Aii“) + (1-A)§(1N'n) - §;") (39)



~14-

with

A=)+ u(l-2) (40)

would perform well in the neighbourhood of k = 1. As will become evident

in the following sections it turns out that this estimator has a smaller
variance than the estimator T not only in the neighbourhood of k = 1 but also
in certain other neighbourhoods, depending on the value of the correlation

coefficient p and the number of missing values.

6: Efficiency of Z:

Since Z is an unbiased estimator of My — My @ natural way of
evaluating its behaviour is to compare its variance with that of T.

For this purpose we define the effieiency of Z as

eff 2 =Var T / Var Z (41)

We obtain the variance of Z as follows, utilizing the fact that

Z is conditionally unbiased given u.

Var Z = E [ Var (Z|u) ]
u

(42)
oi )
= — =[x+ (1-M)k - £\ +(1-M)pvk } E(A) + E(AF) ]

n(1-1)
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where

ECA) = A + (1-1) E(u)

(43)
£(A%)= 22 + 2A(1-0) E(w) + (1-0)2 Eu?) i
Consequently the efficiency of 2 is
off 7 = _ (A +k-2pk A -2) (44)
[ A+ (1-0)k = 2 {A + (1-A)p/k } E(A) + E(A) ]
It can be easily shown that eff 2 : 1 according as
E(u?) $ 2 o/K E(u) . (45)

Since E(u2) > 0, there is a loss in efficiency if p = 0. By the con-
tinuity of the expression for efficiency there is a small interval around

p = 0 for which Z will continue to be inefficient. The behaviour of Z when
p is not in the neighbourhood of zero is not so obvious and will be ex-
amined in some detail below. At the same time the dependence of efficiency

on values of k will also be examined,

We have calculated the efficiency of the estimator Z for several
values of n and also for a grid of values of the parameters p, A and k. As

the results for moderate values of n are all quite similar it will suffice to
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present here the values of the efficiency for n = 17 only. In Table 1
appear the values of the efficiency for the indicated values of p, X and k.
On examining the table it is evident that there is a gain in efficiency

in some regions of the parameter space and a loss in others. There appears

to be a general loss of efficiency in the region around p = 0 extending

from about p = -.1 to p = 0.1 with a few exceptions where there is a very
slight gain. In the remaining region of p extending beyond o] > 0.1 there
appears to be a general gain in efficiency except for a few instances

where there is a slight loss.

For fixed values of k and p the gain in efficiency decreases as A
increases from 0.1 to 0.9. On the other hand the loss in efficiency de-
creases as A increases. It is also apparent that whatever be the values of
k and A the efficiency increases asp moves away from zero in negative or
positive direction. Further for values of p close to + 1 and whatever be
the value of A the efficiency appears to attain a maximum for values of k
in some interval around k = 1. This is not surprising, however, since k

was assigned the value one in constructing_an estimator Z_with mipimum vgriange.

In conclusion, it is evident that the estimator Z has a substantially
smaller variance than that of T if the values of the parameter o are
sufficiently far away from zero. It was, in fact, for this purpose that
the estimator z was constructed, namely, to take advantage of the possible
correlation between the two samples when such correlation may exist. Al-
though in the construction of this statistic Z the ratio k of variances was
taken to be one, it turns out that the variance of Z is still substantially
less than that of T in a wide range of k values when the correlation is
sufficiently large numerically. Consequently the statistic u is not only
interesting in itself as a simpler estimator than the product moment corre-

lation coefficient but it can also be utilized advantageously in the problem

of estimating a difference of means.
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7. Useof Z intestingH : &6 =6 .
o) 0

In section 5 we considered the statistic

7= A=)+ - =N (M)
with variance
V(Z) = n&_)\) [mlz+ (1—)\)62 -2 {mzl + (1)) poya, } E(A) + UIZE(AZ)]

It should be noted that the parameters involved in V(Z) are

2 2 Z-6

o, 0,7, o,( =po,0,). Now under Hj has a standardized
1 2 12 172 NVZ)

normal distribution N(O,1). If 0'12, 0'22, 0y, are unknown one can use the

modified statistic

7" = 28 (46)
N V(Z)

where now slz, 322, 129 the maximum likelihood estimators of crlz, 022, P

respectively have been substituted in the expression for V(Z) to give ’O’(Z).
Since the maximum likelihood estimators are consistent, therefore, as n, and
consequently N-n, tends to infinity the distribution of Z* tends to N(O0,1).
The referee has suggested the possibility of utilizing Z* for testing Ho’

and this aspect is currently under investigation.
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8. Example:
Now we illustrate the use of the estimator Z through an example.

A sample of size 10 was drawn from a bivariate normal population with

10.8

0.8 4] . Let us assume that the

4 , .
mean vector [6] and covariance matrix [

last five observations on X2 are missing. The quantities required in

calculating Z are

El(n) = 4.956 ; EI(N'H)= 3,160 ; Ez(n)= 6.238 3 A = 0.5
n n n
= (n),2 - (n),2 —(n) = (n)
= - = 4, ; - = . > - . =4,
Z ey X)) = 47735 3, = X, = 25,266 5 3 (k) K )y ox, )=4 484
This vields u = 0.299, A = 0.649 and consequently Z = -1.912 .
For the purpose of comparison we note that T = X (n)_z M _ ;. 180.

1 2

Evidently for this sample the estimate obtained by using Z is closer to the
true value WpThy = -2.0 than the simple estimate obtained by using T.

For further comparison we consider the estimate which would have been

1(10)— ;2(10) if all 10 observations on
1(10)_—}1(10) -

obtained by taking the difference x
both variables had been available. From the sample we obtain X -2.049
This is closer to the true difference By 7By S -2.0. However the performance

of Z in the absence of 5 observations indicates some advantage over the

use of the simple difference of the means when such data are missing.
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Table 1: Efficiency of Z when n = 17.

N 0.1 0.2 0.5 1.0 2.0 5.0 10.0

0.1 -.9 1.0942 1.2645 1.80u46 2.3104 2.2014 1.5752 1.2898
-7 1.0306 1.1231 1.3595 1.5182 1.4899 1.2828 1.1574

~.5 .9773 1.0181 1.1225 1.1897 1.1918 1.1246 1.07u4l

-.3 . 9382 . 9483 .9941 1.0313 1.0474 1.0379 1.02u44

-.1 . 9151 . 9110 . 9346 .9629 . 9854 .9986 1.0010

.1 .9101 .9061 . 9316 . 9616 . 9850 .9986 1.0010

.3 . 9262 .9388 . 9932 1.0351 1.0516 1.0400 1.0254

.5 .9690 1,0245 1.1604 1.2366 1.2258 1.1376 1.0793

.7 l1.0488 11,2011 1.58u46 1.7885 1.6591 1.3321 1.17u44

.9 1.1828 1.5689 3.1843 4, 7419 3,2928 1.7475 1.3361

0.5 -.9 1.014) 1.0418 1.1237 1.2020 1.2334 1.1745 1.1109
-.7 1.0049 1.0223 1.0738 1.1197 1.1367 1.1036 1.00668

~.5 .9961 1.0037 1.0310 1.0561 1.0667 1,0521 1.03u2

-.3 . 9886 .9883 0.9982 1.0110 1.0191 1.0175 1.0120

-.1 . 9835 . 9780 .9782 . 9852 . 9934 .9993 1.0005

.1 . 9816 .9751 . 9749 .9832 . 9926 .9993 1.0005

.3 . 984y .9828 . 9973 1.0166 1.0272 1.0225 1.01u45

.5 .9933 1.0072 1.0671 1.1189 1.1258 1.0808 1.0469

7 1.0107 1.0605 1.2552 1.4163 1.3850 1.2026 1.1064

.9 1.0405 1.1746 1.9820 3.0507 2.3907 1.4708 1.2107

0.9 -.9 1.0016 1.0049 1.01uu 1.0235 1.0283 1.02u40 1.0169
-7 1.0006 1.0027 1.0090 1.0151 1.0183 1.0154 1.0108

-.5 .9995 1.0005 1.0040 1.0076 1.0097 1.0084 1.0058

-.3 . 9986 . 9985 . 9998 1.0016 1.0030 1.0030 1.0022

-.1 . 9980 . 9972 . 9969 . 9977 . 9989 .9999 1.0001

.1 .9978 . 9967 . 9963 . 9972 . 9987 .9999 1.0001

.3 . 9981 .9977 0.9996 1.0029 1.0052 1.0045 1.0030

.5 .9992 1.0010 1.0108 1.0217 1.0253 1.0171 1.0100

.7 1.0001 1.0083 1.0420 1.0793 1.0812 1.0450 1.0236

.9 1.0051 1.0241 1.1649 1.4047 1.3063 1.1087 1.0u83
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