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- ABSTRACT

A cost model is derived for the design.of cumulative sum control
charts using the Average Run Length to calculate the average time of
out-of-control operation. The minimum cost design is obtained by em-
ploying the ""pattern search' technique. The nature of the loss-cost surface
and the effect of the design va;iables on the loss-cost surface are investi-
gated. The effects of the shift parameter (§), the average time for an
assignable cause to occur (1/\) and the cost factors b and ¢ on the

optimum designs and the loss-cost surfaces are also evaluated by numeri-

cal examples.



1. INTRODUCTION

The operation of a cumulative sum (Cusum) control chart for con-
trolling positive deviations in the mean of a process consis'ts of taking
samples of size n at régular intervals of s hours and plotting the

r number

cumulative sums Sf = z (x.-k) wversus sample/\r. If a plotted

point rises a distance gflor more above the lowest previous point, it

is assumed that a shift in the process mean has occurred. Thus the

sample size n, sampling interval s, reference value k and decision

interval h are the parameters needed to operate a one-sided Cusum

dhart. If both positive and negative deviations are to be controlled,

two one-sided charts with reference values k;, k; (k; >k;) and re-

spective decision intervals h and -h or a V-mask with lead distance

d and half angle ¢ can be employed. -

In order to determine the parameters of a Cusum chart, the accept-

——able and rejectable -quality levels along with the Tespective Average Run

iengths are generally specified. The design values of the parameters

are then determined to approximately satisfy these requirements. This

approach of deéigning the Cusum charts based on the Average Run Length

(A.R.L.) criterion does not take into consideration the cost aspects of

the process and also the sampling interval, s, has to be selected

arbitrarily. Taylor [6] has recently given a method for obtaining the

” v
See Glossary for explanation of symbols. -
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parameters of a V-mask using the average cost criterion under the as-
sumption that the sample size and the sampling interval are known from
other considerations.

| The objective of this paper is to develop @ procedure for the design
of Cusum charts based
km minimum cost criterion. In a recent paper [2], we discussed the
economic design of X-charts based on Duncan's model [1]. A similar
approach is adopted in this paper to derive a cost model that gives the
loss-cost for the process as a function of the parameters of the Cusum
chart and the cost and risk factors associated with the process.
An explicit solution of the cos-t model .tb obtain the optimum values

of the parameters does ncst seem possible, therefore a numerical method
is employed to find the paramefers that minimize the loss-cost for the'

process. The loss-cost surfaces are analyzed and the effects of the

parameters & and \ and cost factors b and c are investigated.

2. DERIVATION OF THE COST MODEL
A cost model is derived to measure the loss-cost.from the
process as a function of the design variables of the Cusum chart and
the varioﬁs cost and risk factors associated with the process being
controlled. The derivation closely follows the approach adopted by
Duncan for the design of X-charts except -that the Average Run Length
of the Cusum Chart is used for the development of the model.

It is assumed that the process starts in a state of control at time



t = 0 with a mean value By and a known constant variance ¢?. A
single assignable cause occurs at random and causes a shift in the
process mean of a known magnitude &0 so that its new value is

"

r =iy + 6. The time between occurrences is assumed to be exponen-

tially distributed with mean 1/\ and the process stays at the new level
until a lack of controll is indicated by the Cusum chart and adjustments
are made to bring it back to the control level p.a; No assignable cause
is éssumed to occur dgring the taking of a sample, and the process is
n6t shut down while a search is being made for the assignable cause.
Also the costs of repairs and bringing the pfocess back to control are
not charged against the control chart procedure.

The behavior of the process can be best\ explained by a diagrarﬁ
: .shown in Figure 1. At the starting point, O, of the cycle the process
is in control at level by and stays at this level until an assignable
cause, which occurs at E, chbanges it to e The‘ avssignable cause
~is removed at G and the process level is brought back to My The
quantities OE and EG denoted by ta and tr are respecti;rely the
average lengths of time the process is in-control and out-of-control.
The distance OG denoted by tc is the average length of one cycle of
the process.

The average net income per hour from the above process can be

written as:



Average net income = Income - Cost.

The hourly incc;me is divided into two parts:
(@) income, when the process is in-control, wIa, and
(b) income, when the process is out-of-control, yIr.
Similarly, the cost per hour is divided into three parts:

(a) cost of looking for an assignable cause when none exists, a fT

(b) cost of looking for an assignable cause when one exists, ew, and
(c) cost of maintaining the control chart, Cm’
where w and vy are respectively the proportions of the time the process
is in-control and out-of- ;:ontrol in the long fun, and ia and Ir (Ia > Ir)
are the respective average incomes per hour from the process. The

average number of false alarms per hour is a_ and the average number

f

of times the process actually goes out-of-control is e¢. T is the cost

of looking for an assignable cause when none exists and w is the cost

of looking for an assignable cause when one exists. »

The proportions w and y are equal to ta/ (ta + tr) and tr/(ta + tr)’
respectively, where, under the assumption that the time between assign-
able causes is exponential, the quantity ta' is 1/\. To obtain an ex-

pression for t we note that it is made up of three quantities tz, t3 and

1 .
t  as shown in Figure 1. The time t_ is —s—_= and t, is

4 (l—e—)‘s) A 4

D+ Aen) as shown by Duncan [1]. The quantity t3 is obtained from the

Average Run Length of the Cusum chart as explaineci below. -



When the quality rem'ain‘s constant, the Average'Run Length of a
scheme is defined as the average number of samples obtained before
action is taken. The A.R.L. of a one-sided Cusum chart with hori-

zontal boundaries at (0,h) is given by [5]

_ __N(0)
A.R.L. = 1= P(0) (1)

where P(0) is the probability that a test that starts on the lower
boundary will end on or below vit, and
N(0) is the unconditional average sample number of the test.
F&r the case when the sample average, xj’ is normally distributed with
mean p and variance unity, P(0) and N(0) satisfy the following inte-

gral equations:

- 0 h

P(0) = J fx)dx + J P(x)f(x)-dx @)
. =00 0

and

N() = 1+ [ N(x)-f(x)dx | o ®)
0 |
where
-1 1 2 '
f(x) = 1z expl- )] . (4)
(2n)

Thus the A.R.L. of a Cusum chart depends on the chart parameters n,
h, k and the process level u. When the process is in-control, i.e.,
b=y, the A.R.L. is denoted by Lé1 and when the process is out-of-
control with p = s the A.R.L. is represented by Lr . If we calculate

f(x) from equation (4) by substituting p = Mgy and obtain the values



of P(0) and N(0) from equations (2) and (3) for this value of f{x), then
La is given by equation (1). Similarly, Lr is obtained from these equa-
tions by substituting p = B in equation (4) to get the value of f(x).

Thequantity t. as seen in Figure 1 is the average time elapsed

3
between the first sample after the occurrence of the assignable cause

and its detection. Since Lr gives the average number of samples ob-

is equal to

tained when the process is out-of-control, therefore t3

(Lr - 1)s hours.

To determine a_, we note that La is the average number of

£
samples taken before a false signal is giveh by the chart. In other
words, on the average thére will be one false alarm after each La' S
hours. Hence the average nflmber of false E%larms per ta hours of in—
.control opera’;ion will be ta/La- s or equivale;ntly this will be the
average number of false alarms per t. hours of operation. Therefore,
a is equal to ta/Las t-

The process is out-of-control once in tc hours. Therefore, ¢,
the average number of times the process actually goes out—of-control
per hour is equal l/tc.

The cost Cm of maintaining the control chart per hour of opera-
tions isv (b + cn)/s, whe‘re c 1is the cost per unit of inspection
and b is the cost per sample of sampling and plotting. [1]

In summary, the average net income from the process per hour of

operation is:



In = (wIa"L‘{Ir)__(afT+€W+Cm)
= Ia-(yM+afT+e'w+Cm)
= I -C
a
where -1 -1 and C=(YM+aT+ew+C_).
a r f m

On substituting the expressions for various quantities derived above,

we get
s 1 _ . T
[{l_e_)\s )\} +(Lr 1)s+D+en:IM+)\Las+v_v bt o
: J(2re) o
1 s 1 S
» T 1-e_)‘s_ y |t (Lr—l)s+D+en

The quantity C is termed the loss—c‘:o.st. Since Ia is independent
of the parameter of the chart, In will be maximum when C is minimum.
.Therefore, minimizing C is‘equivalent to maximizing In.

Equatior} (5) is the cost model that relates the design variables of,
the Cusum chart and the cost and risk factors of the process. Thé values
n, h, k and s that minimize C are the optimum values of the design
variables.

Note that if an X-chart with control limits at by Boe/Nn is used
for the control of the process, the Average Run Lengths La and Lr can
be shown to be:

L =
a

R |

and



On substituting these values of La and Lr in equation (5), the cost
model reduces to the form given by Duncan and discussed by the authors

in [2].

3. NUMERICAL METHOD FOR THE DETERMINATION OF OPTIMUM
DESIGN PARAMETERS—AN EXAMPLE

The optimum design parameters are those values of n, h, k and s
that minimize the loss-cost, C, given by equation (5). An explicit solu-
tion for these parameters does not appear to be feasible because the
Average Run Lengths, La and Lr’ are complicated functions of n, h, and
k. Therefore we employ the Ypattern search” technifjue (7) to obtain
the design values of the parameters.

Pattern search is a numerical method for optimizing a function
S(¢) of several variables ¢. The argument £ is varied gntil the opti-
mum of S(£) is obtained. The pattern search routine determines the
sequence of values §; an independent routine computes the functional
\.ralues of S(¢). This technique has been used by the authors to determine
the optimum design parameters of X-charts. It was ‘found that the
optimum design values for the X-charts were same to third decimal
place or better as compared with those shown in [2].

In the case of a Cusum chart, the function S(§) is C and the
variables are h, h, k and s. If we use a central reference value, Kk,

then the only parameters to be determined are n, h, and s. Since the



sample size has to be an integer, a search is made for the values of
h and s that minimize C for a given integer value of n with known
cost and risk factors.

For a given integer n, the search staﬁs with a local exploration
in the h-s plane around a starting point arbitrarily chosen. If the
loss-cost reduces during local exploration, the.a step size grows; if not,
the step size reduces. If a change of direction is necessary, the method
starts over again wiih a new pattern. The search is terminated when
the step size reduces to a specified value or when thé number of
iterations equals a predetermined value, whichever occurs first. This
search process is repeated for other values of n until an overall mini-
mum 1oss-.cost is obtained.

For illustration, we consider the design of two one-sided cumula-

tive sum charts using the pattern search method and the model given by

equation (5). Suppose a process is to operate at an acceptable quality
~level, - p.a‘=“10 units and the rejectable quality levels are B = 12 and
_ 1

b= 8 units. The standard deviation of the process is assumed to be
2

one unit. Other cost and risk factors, etc., are:

1

M = $100, T = $50, W = $25, b = $0.50
X = 0.0, D = 2. 00, e=0.05 c=$0.10.
The parameters to be determined are the sample size n, the samp-

ling interval s and the decision intervals h and -h. The central
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reference values for these charts are k; =11 and k, =9. In order to
‘ca;lculate the loss-cost C from equation (5), the Average Run Lengths
La and Lr for a two-sided chart are obtained from the Average Run
Lengths of the two equivalent one-sided charts by using the relation-
ship given by Kemp [4].

To obtain the values of h and s, assume. an initial value n; = 1.
Suppose the search starts at h =2.0 and s =0.2 as shown by A in
figure 2. The loss-cost at the basepoint A for 100 hours of operation
is $756.66. The first local expioration in two dimensions, using a
step size of 0.10, yields B as the second base point with a loss-cost
equal to $594.44. A and B establish the first pattern. Since similar
exploratioh around B may be expected to broduce the same results,
local exploration is skipped and the arrow from A to B is extended to
C where C is 2B - A in vector notations. Local exploration at C
gives D as the best point which becomes the third base point. Now,
the arrow from B to D is exte;nded to E wheré E = 2D - B. The point
F gives the minimum loss-cost on a local expldration arbund E. The
arrow from D to F is extended to E 'where E=2F-D and a local
exploration again gi\}es F as the best point. At F, the step. size is -
reducéd. After a few trials and step size redu'c'éions, the pattern moves
through G, H, I, J and K, and stops at X, the minimum loss-cost point.
The coordinates 2.51, 0.54 of X are'the optimum values of h ‘and s

respectively.
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Thus, for n =1, the optimum values of h, s and-C for 100 hours
are 2.51, 0.54, and $501.52, respectively. Proceeding similarly for
values of n from 2 to 10, the optimal values of h, s and C are
obtained as listed in Table 1. The values of the design parameters
n, h, and s that yieldrthe overall minimum loss-cost C = $400.93
are: »

n=5 h=0.39,. and s =1.40.

If a V-mask is to be employed instead, the values of the désign

parameters d and ¢ using a scale factor w can be determined from

the relationships given by Kemp as follows:

e, - b,
tan ¢ =T=1 if w=1 and
h.
d = tan ¢ 0. 39.

Note that the quantij:y ”Percentage‘Incre.ase in Loss-Cost, PIL,"
is also listed in the table for comparison purposes where PIL is the
percentage increase in loss-cost compared to the overall minimum [2].
For example, for n = 4, the loss-cost is $4-02. 32 and since the overall
minimum is C = $400.93,

402,32 - 400.93 B
PIL = 20093 X 100 = 0. 35,
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. 4. ANALYSIS OF CUSUM DESIGNS BASED ON COST CRITERION

It has been shown that for a given set_ of cost and risk factofs
and for a given n, there is a set of values of h and s that yield the
minimum loss-cost for that n. These values of h, s and C for various
n provide useful information to evaluaté the flexibility in the choice of
the design variables. Also, an investigatién of the loss-cost contours
- enables us to evaluate the effect of n, s and h on the nature of the
loss-cost surfaces.

To illustrate the flexibility in the choice of h and s for various
n, consider the results shown in Table 1. The values of h, s and PIL
for n from 1 to 10 are plotted in Figure 3. It can be seen that the
sampling interval s increases yvhile the decis;ion interval h decreases
with increasing sample size. Also the rate of change of s and h is
higher for small n than for large n. For example, s increas es by
0. 86 hours when n is changed from 1 to 5 while the iﬁcrease is only
0.39 hours when n is incréased from 5 to 10. Similarly, h decreases
by 2.12 units for a change in n frdm 1 to 5 and by 0. 22 units when n
is increased from 5 to 10. This implies that sampling frequency should
be cut down and a smaller decision interval should be used as the
sample size is increased and vice versa.

For the case when a V-mask is employed, the variations in the

values of s, d and tan ¢ are illusfrated in Figure 4. The changes in
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d and h in figures 3 and 4 follow an almost identicél pattern due to
the fact that both h and d control the frequency of false alarms.

The variation in loss-cost with n is exhibited by the PIL curve
in figure 3. For small deviations from the optimum sample size, the
value of PIL is relatively small. However, for a large déviation, the
PIL is generally greatef when n is redﬁced from the optimum value
compared to the PIL when n is increased by the same amount.

For example, if n = 2 is used instead of n =5, the value of PIL is
9.44, while for n = 8 the''Rercentage Increase is Loss-cost" is only
4.61.

To investigate the nature of the lovss—cost surface as a function
of the variables n, h and s, the loss-cost is calculated for a two-
dimensional grid of the values of h and s and for a given n from
equation (5). The loss-cost contours are obtained by parabolic
interpolation on a digital computer. Such contours in the h-s plane

-—-—~——-for -n -from 4 to 6 are shown in figure 5(a). The range of h is from
b. 25 to 0.75 and s is varied from 0.8 to 1.8. Each of these three
sets of contours represents a section of the loss-cost surface at the
given value of n for the above set of data with 6§ = 2. 0.

These loss-cost contours appear to be distorted concentric ellipses,
the center being the point of minimum loss- cost. The constant loss-
cost surfaces can be compared to a set of footballs, one inside another,

somewhat twisted in a counter-clockwise direction along the axis of
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increasing sample size. As an example, let us consicﬁer the surface
for C = $415 and examine its sections at n = 4,5 and 6 as repre;ented
somewhat

by the $415 contours in figure 5(a). We see that the contour isAelliptical
at n = 4, bulges to a larger size at n =5 and narrows down at n = 6.
During this process of bﬁlging and then narrowing, the surface slowly
twists in the counter—ciockwise directién. ‘The phenomenon of "twisting"
is directly related to the change in the optimum values of h and s for
various n. As n increases from 4 to 6, the optimum values of (h,s)
change from (0.51, 1.27) to (0.32, 1.50) going through the overall
optimum (0.39, 1.40) at n = 5. This increase in s and decrease in h
is similar to that seen in figure 3. |

The loss-cost contours in figure 5(a) also show that if it is not
feasible to operate the chart at the optimum point, i.e., at n =5,
h =0.39 and s =1.40, there is a large choice of the parameter values
to choose from. Thus, for n =5, any combination of h and s within
the contour $405 can be used for an additional 1.25% cost or less. Also,
for a given C and a fixed s, there are, inr'general, two values of h
to choose from and vice versa. For example, if s =1.50 hours, any
value of h between 0.260 and 0.515 will yield C less than or equal
to $405. If h is fixed at 0. 45, any value of s between 1.10 and 1.66
will result in a loss-cost of $405 or less. While keeping C fixed at

$405, there is a choice of various values of s and h for n=4 or

n=6 as well.
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5. EFFECT OF SHIFT PARAMETER, 6

The shift parameter & is related to the change, 60, in the process
mean that the Cusum Chart is designed to detect. The effect of \‘raria—
tions in & on the design variables and the loss-cost surfaces are
illustrated by numerical examples.

Consider three values of 5 equal to 2. 0., 1.0 and 0.50 with the
respective loss rates M as $100, $12.87 and $2.25. These loss
rates have been calculated on the assumptiqn that + 30 specification
limits are used on the process and M is proportional to the increase
in percent defective. M has been arbitrarily taken equal to $100 for
.6 = 2.0. Let the remaining qoét and risk fagtors be the same as in the
previous example. The results for the case when 6 = 2.0 and fof n from
1 to 10 were Jgiven in Table 1 and figure 3. The optimum values of s, h
and C for & = 1.0 and 0. 50 and various values of n are listed in
Table 2.

The optimum design parameters for 6 = 2.0, 1.0 and 0.50 are as

follows:
5 M n s h c
2.0 100 5 1.4 0.39 400,93

1.0 12. 87 14 5.4 0.23 141.28

0.5 2.25 37 22.3 0.12 83.39
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It can be seen tﬁat the optimum sample size n and sémpling interval
s increase and the decisioﬁ interval h decreases with decreasing 6.
In other words, as the shift to be detected decreases, larger samples
should be taken less often and a smaller decision interval should be
used. Also, the loss—cbst decreases with & due to a decrease in the
loss rate M. |

The variations in the parameters of the Cusum charts with changes
in sample size are illustrated in figures 3, 6 and 7 for & = 2.0, 1.0
and 0. 50, respectively. Note that these three graphs are drawn on
different scales to accommodate the relevant values of the variables.
As seen in these graphs, the effect of deviating from the optimum sample
size on the '"Percentage Increase in Loss-cost,' is maximum for 6 =2
and minimum for & = 0.50. As an example, for &§ = 0.50, when n is
reduced by 4 units from 37 to 3}3, PIL is only 0. 077, while PIL is 25. 09
when n is reduced from 5 to 1 for 6§ = 2.0. Therefore, deviations from
the optimum sample size are more critical for higher values of 6§ than
for lower values. The variation in s for all tﬁree cases follows a some-
what similar pattern, rising gradualiy as the sample size increases. The
decision interval h decreases with increasing n, the rate of decrease
being maximum for & = 2.0 and minimum for & = 0.5.

To studyb the nature of the surfaces in the h-s plane, nine sets
of loss-cost contours are given i.n.figures 5(a), (b) and (c) for & equal

to 2.0, 1.0 and 0.5 respectively. Three different scales are used to be
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able to show the surfaces in the vicinity of the minimum loss-cost
point. The center point of each surface represents the overall minimum
loss-cost and occurs at n=5, s =1,4andh =0,39 for § =2.0; at

and
14, s =5.4,[\h= 0.23 for 8 =1.0; and at n =37, s =22.3 and

n

h. 0.12 for 6 = 0.50. The loss-cost contours tend to become elliptical
and the ratio of the major to minor axis increas:es as 6 decreases as
shown in figure 5. ' .

In order to explore the slope of the surfaces around the minimum
loss-cost points, consider arbitrary areas, one unit high and 0. 05
units wide, as shown shaded in figures 5(a), (b) and '(é) for n equal to

5, 14, and 37, respectively. Within these shaded areas, the loss-cost

2
changes respectively by about $25, $0.70 and $0.31 for &6 equal to 2.0,
1.0 and 0.5. This implies that the loss-cost surface is more steep for

& = 2.0 compared to the surface for § = 0.50. Due to this difference

in the slopes of the loss-cost surfaces, there is less flexibility in the

choice of h and ‘s for higher values of & than for lower values.

6. EFFECT OF COST FACTORS b AND ¢ AND PARAMETER 1/

The cost factors b and ¢ detemmine the cost of maintaining the
contro.l charf which is equalto (b + cn) per sam'ple, where b is the
cost of sampling and plotting and cn is the cost of sampling, plotting
and computation. To evaluate the effect of these factors on the optimum

designs and the loss-costs, consider the data for the previous example .
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as the base level and four additional sets of data with b and ¢
increasing in éteps of 50% of the base level. The léss—costs for n
from 1 to 10 are given in Table 3 along with the values of b and c.
The variation in ''Percentage Increase in Loss-cost,” with n isil-
lustrated in fiéure 8. |

It can be seen that the general shépe of tl;e PIL vs. n curves is
the same for all five levels of . b and c. However the PIL for equal
deviations from the optimum n depends on whether the deviation is
negative or positive and on the values of b and ‘c. i‘o illustrate,

let us consider the following results taken from Table 3.

Data b _c_: n* n*—z PIL n*+2 PIL,
A 0.50 0.10 5 3 2.92 71 2.57
B 0.75  0.15 5 3 2.80 7  2.87
c 1.00  0.20 5 3 2.59 7  3.13
D  1.25  0.25 4 2 9.68 6  1.38

E 1.50 0.50 4 2 9.54 6 1.61

(n* is the overall optimum sample size.)

These values indicate fhat in some cases (A,‘ B and C), a reduction

of sample size by two units results in an aﬁproximately 3% additional

loss-cost while in others (D, E), the additional loss-cost is about 10%.
‘ 'i‘he optimum values of the design variables for these five sets of

data are shown in Table 4. It is seen that the only design variable



19.

significantly affected by the values of b and c is fhe sampling
_interval s, which increases from 1.40 hours to 2.31 hours when b and
¢ increase by 200%. This means that the samples should be taken less
often as the costs of sampling, etc., go up. Whe’n the increase in
sampling costs is as high as 200%, a slight reduction in the sample
size is called for. It éhould be noted 1;hat the above general conclusions
are based on the five sets of data considered. The same approach can
be used to analyze the reSulfs for other costs and risk factors.
The average number of assignable causes per hour is equal to A
and an increase in \ is equivalent to a decrease in the average time
for an assignable cause to occur. To evaluate its significance, con-
sider three values of \ equal to 0.01, 0.02 and 0. 03 other cost and
risk factors being the same as in the previous examples. The loss-cost
values, calculated as above, afe listed in Table 5 and thé PILvs. n
curves arér shown in figure 9. It is seen that the minimum loss-cost
~~~~~~ ——increases from $400.93 to $957. 32 as \ changes from 0. 01 to 0. 03.
;I'his addition in loss-cost is due to the increased frequency of o‘ccurrence
of the assignable causes. The effe.ct of )\ on the nature of the PIL

curve appears to be relatively insignificant.
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7. CONCLUSION

1. A cost model is derived for the design of Cusum éharts similar
to that of the design of X-charts. The Avérage Run Length of the Cusum
chart is used to calculate the average number of false alarms aﬁd the
average time of out-of-control operation. This cost model gives the
loss~cost from the process as a function of the design'variables of the

chart and the cost and risk factors associated with the process.

2. The ""pattern search' technique is used to obtain the optimum
values of sampling interval (s) and the decision interval (h) for a
given integer n. The values of n, s and h that minimize the loss-cost
are the design parameters of the Qusum chart. This procedure gives not
only the optimum design but also provides additional information which

enables us to analyze the loss-cost surfaces.

3. Effects of the shift-parameter (6), average time for an assign-
able cause to occur (1/\) and the cost factors b and ¢ on the loss-
cost surfaces and the optimum design are evaluated by numerical ex-
amples. The loss-cost surface in the h—S plane was found to become
steeper as the value of & is increased. Effectof b and c¢ and 1/\

on the '""Percentage Increase in Loss~-cost' was relatively insignificant.
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GLOSSARY
n sample size
s sampling interval, hours
h decision interval
k - reference value
d lead distance in terms of a uni;t distance on the vertical scale
¢ half angle of the V-mask
B control limit factor of an X-chart
p' process mean
o process standard deviation
xj jth sample mean-
r sample number
'Sr cumulative sum at the rth sample
La average run length, when ‘the process is in-control at p= pa'
Lr o Véverage run length when the process is out-of-control at bR
: '"ta — —--average time the process is in-control in one cycle
_tr average time the process is out-of-control in one cﬁrcle
Ia income per hour when the process is in-control
I income per hour when the process is out-of-control
P probability that an assignable céuse will be detected by an X-chart
a probability of looking for an assignable cause when it does not
exist
& shift in the process mean is &§¢

1/\ average time for an assignable cause to occur



Loss rate equals Ia - Ir

delay factor

'average time taken to find an assignable cause

cost of looking for an assignable cause when none exists
cost of looking for an assignable cause when one exists
cost per sampie of sampling aﬁd plotting

cost per unit of sampling, testing énd computation
proportion of the time the process will be in-control in many
repetitions

proportion of the time the procéss will be out-of-control in
many repetitions

average number of false alarms per hour

average numbeér of times per hour that the process actually

goes out-of-control

24.
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