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They prove a theorem according to which ﬁ(P) has smaller variance
than that of X and 37 for ail values of k if and only if N >10. The
present paper constitutes an attempt to improve upon the estimator ﬁ(F)
when N <10 and when it is known that k>1, This corresponds
to situations where it is known that the variance in one specific sample
exceeds that in the other. For this case
weipresent estimators for sample sizes 3,8,
7, 9 and 11 which for all values of k > 1 are more efficient than the corresponding
estimator Q(F). We prove that, in fact, for all sample sizes there exist
estimators belonging to the class defined below which have efficiency
greater than that of ﬁ(F) for all k > 1. This should not at all appear
surpfising, however, because ﬁ(F) was presented as an estimator of p
for all values of k > 0, whereas the estimators presented here have been
formulated to behave well only in the restricted range k > 1. The purpose
of comparing the behavior of our estimators with that of ﬁ(F) over the
range k > 1 is rherely to indicate what advantage can be gained by
utilizing .such é priori knowledge about k.

As far as the two sided case of k is concerned, i.e. k > 0,
Zacks [2] has developed a class of estimators for sample size N = 3

which for a certain finite interval of k values, symmetric around k = 1,
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It should be noted here that the constants A,C and ko which appear in

the classes of estimators defined above are to be interpreted aé general
constants ., that is to say not necessarily the same values of these constants
would be employed in different classes, For example the constants A

and C which appear in T1 need not have the same values as A and C

in T3 .

2.2 Rationale for the choice of the above estimators.

The class T1 includes ﬂ(P) as a special case when C =0 and
A ='1. The constant C in this class has the effect of changing the origin
of the F distribution and the constant A simply changes the weight given
to y. On intuitive grounds T1 has the possibility of surpassing ﬁ(F)
in efficiencyb by a prudent choice of constants C and A which would
increase the» weight given to x and decrease that given to 37 fork >1.
We shall prove in section 2.4 below the existence of a set of constants
for which efficiency of '1‘1 is greater than that of Q(F) for all values of
k >1 and for all sample sizes,

In the class of estimators T2 a preliminary test is employed on
the basis of an F-statistic in order to decide whether to use the average
of 5; and y of to use a statistic of the form T1 with C=0. There is no loss
of denerality in taking C = 0 here for otherwise the constant k° in the
preliminary test would merely be adjusted accordingly. This preliminary
test is of the hypothesis Ho: k=1; consequently if it is accepted, it is
reasonable to use the statistié —}—%ﬁ and when it is rejected, to use

a statistic of the form T1 .



It may be pointed out that other functions ¢ of F could also

be employed to generate further classes of estimators., In particular,

we ‘explored the following two functions

1
o(F)= —C*EZ (17)

C+F2+A

&(F) = | ——— for F < k°

{ (18)

—_—r for F_>_k°

The estimators of p obtained thus do not posses any interesting
pro;berties which T1 . T2 and T 3 do not already posses, and consequently

wili be left out from further consideration here.

2.3 Efficiency of the three classes of estimators for sample size N= 3

A natural way of comparing the behaviour of the estimators presented
here is to examine their variances. Furthermore all of these should be
compared with the best linear unbiased estimate available when the value
of k is known, viz, ﬁo, For this purpose we define the efficiency of
an estimator in the usual manner, viz, the ratio of variance of ﬁo to
the variance of the estimétor in question.

Although it is possible to obtain expressions for the efficiencies
of the estimators T1 ’ Tz and T3 for any specific value of N, these are
generally very cumbersome and really of little practical value for sample sizes
N>3 . In the present section we derive the expressions for efficiency
for the case N = 3. Further consideration of the efficiency for sample

sizes N > 3 will be given in section 3 . Now we may write
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also if we let k tend to infinity in (26) we obtain
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The variance of the class of estimators T3 is given by
of e (C+F) +kA% dF
V(Ty) = = k S 2 . (29)
. ke P2+A (k+F)

Application of the transformation F = tz—C so that dF = 2tdt immediately

gives
ZO'f
V(T3)—-—— k [y (3)+kA Y (1) ] (30)
where
\ 00 i
Y(i) = tdt 5 fori=1, 3. (31)

Je @ +1)2 (k-C+t?)
The integrals Y(i) can be evaluated by employing the standard reduction

formulae. Consequently we obtain

eff T, = 0.5 (k+1) ! [¥(3) + ka? y(1)1™! (32)

2.4 Some properties of the estimators:

In this section we prove certain results which depict some important

properties of the estimators T, ., T, and T,.
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in 'ghe region 0 <F <1 and k > 1, the integrand in the above integral

is negative, and hence

d
['oTcT V(Tl)]ngo (38)

consequently there exists a value of C > 0 such that V(T‘l) < VIR (P)].

(2), An optimal choice of constants A and k° in T2

Let us consider the estimator T2 for which the variance expression

for any N is given by

N-1 N-3
o2 2 k° 2
V(T.) = —L k k +1 S‘ F° dF
2 N-3 (39)
r —
N §°° 2 4 x aZ
2 N-1
Jx° (F +A4) (k + F)
On taking the first derivative of V(Tz) with respect to k° we obtain
2 N-1 2 N-3
d_ gy oL _k° k+1 _ kO +ka? | k© 2
qk° 2 N B(N-l N_—_l) 4 o 2 o N-1
2 2 L (k~ + A) (k+k ")
(40)

It is easy to see that the above expression vanishes for all k if we

set ko = A, Further, it can be shown that the second derivative with
respect to k° is positive at ko = A whenever k >1. Consequently for value
of A the estimator T2 has minimum variances when k° = A, This simplifies

the 'choice of constants for seeking estimators in the class Tz.
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In Table 3 we have depicted the behavior of the efficiency of T2

for N=3 at k =1 and k =« for values of k% =4 lying in the range 0 < kO =
A <o, At k =1 the efficiency of T2 increases from 0.5 at k® =0 to 1.0

at k° = ©, On the other hand at k = »the efficiency of T, decreases from
1.0atk®=01to 0 at k° =, i‘he behavior of T2 for intermediate values of
k° has been presented in Pigure 3. Let R1 be the value of logekO for
which the efficiency of Tz corresponding to k =1 assumes the value of
0.75. Let R, be the value of logeko for which the efficiency of T2
corresponding to k =« assumes the value 0.5. Then for Rl < logekO

< R2 i.e. 0.35 < k° <1 .33 all the estimators T2 with k© in this range

and A = k© are more efficient than {(F) for all k > 1,

(3) A property of the estimator T3

Let us now consider the behaviour of V(T3) as k tends to infinity.

We can write down the variance of T3 for any N as

’ N-1 N-3
| 0 k 2 ® c+r+ka® F % gr
V(T,) = (41)
3 N NI Nl J, T 2 k + N1
—z "2 [(C+F)2+A]
Setting F = kt so that dF = kdt we get
N-3
af . o ot 2 a4t
V(T ) = S . 4+
3 N N-1 N-1, | 2 _
B(=5= 77) | “ons —A 1 N1
(C+kt)?
N-3 (42)
® A%t 2 gt

(U3

© [(C/k+t) +A/'Jk_]?‘(1+t)N"1

Taking the limit as k>« and applying the Lebesque dominated convergence

theorem, we note that
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We‘ note that for N = 3 the limﬁ:ing variance of T3at k = becomes infinite,
thafc is to say the efficiency of T3 ‘as defined earlier becomes zero. Never-
theless as will be pointed out in section 2.5 these estimators can be
extremely useful for a wide range of k. In fact in Table 2 which considers
the range 1 <k <8103 the efficiency of these estimators surpasses that of
ﬁ(l’-:') and furthermore surpasses that of the other estimators over a certain

interval of k values.

2.5 Comparison of efficiencies of T, , T,, T, for the case N =3

i
+

In this section we compare the efficiencies of the three classes
of estimators when N=3, Two particular sets of constants A, C, ko
have been selected to illustrate that these estimators posses certain
desirable properties, The efficiencies of these two sets of estimators
are presented in Tables 1 and 2 respectively while their corresponding
graphs are given in Figures 1 and 2 respectively. All the computations
were carried out on a CDC 1604 computer,

The estimators in Table 1 are such that all of them have a high
efficiency around k = 1 and at the same time they are more efficient
than ﬁ (F) for the range of k values considered here, namely, 1 <k <54.6.
In fact the estimators T1 and 'I‘2 have a higher efficiency than {(F) for
1 j‘k <o, At logek =0 (i.e. k=1) the efficiencies are in the neighborhood
of 0.86 but their behaviour beyond this neighborhood differs. The

efficiency of T3 rises to a peak of about 0.94 around logek =1,0 (i.e. k=2.72)
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but: then drops rapidly. On the other hand the efficiencies of T1 and

T2 rise gently to a peak of about 0.90 at logek between 0.25 and 0.50
(i.e. at k between 1,28 and 1.65) but do not drop nearly as rapidly as

that of T In fact T, , for logek >3.50 (i,e. k > 33,12) and Tz, for

3 1°

logek >3.75 (i.e. k >42,52) have efficiencies wh ich are higher than that

of T3 .
In Table 2 we present constants A, C and k® for which the estimators

have higher efficiencies than ﬁ (F) for a wide range of k values, namely,

1 <k <8103. In fact the minimum efficiency of T1 and T, for the range

1 <k <= js greater than the maximum efficiency of i (F) which is 0.75

at k = 1. Estimator T3 has efficiency whiqh exceeds 0.85 for the range

0.5 <log k <3.0 (i.e. 1.65 <k <20.09) and is in fact higher than that

of ’I’l as well. But for values of k > 8103 the efficiency of T3 is below 0.5.

It may be noted that the estimator T, which employs a continuous

1
weight function ¢ (F) performs better than T2 which employes a discontinuous
weight function. We can therefore conclude that although all T1 . T2 , and

T3 perform better thanﬁ (F) yet T1 is the best of them all in view of the

fact that one can select constants A and C as in Table 1 or Tablbe 2

such that it has higher efficiency than that of ﬁ(F) foralll <k ' <o,

If we are interested in a particular interval of k values, however, for example

1 <k <20 then as is evident from Tables 1 and 2 and Tigures 1,2 the

estimator T3 is the best,



-17=

An explicit expression for the efficiency of T1 for any (odd)

sample size can be given as follows

Bl BL
off T)(N) = w—
kz (k+1) [ A, log k +A2 +B24.B3 + +BN.1
SR &G ARG TR T, 2 (N-2)kN-2
(44)
where if we write Lpl(F) and 4/2(]?) as follows
N-3
o) = E 2 1c+r)? + k A% (45)
2 2
4 (F) = F~ _[(C+F) -;kA ] (46)
(C+A+F)
then
g (47)
A =lgr WOl (caa
and
BN-]. = [LPZ(F)]F = -k
. (48)
B S SR NS fori=1,2 N-2
N-1-i (i-1)! dFi 2 TR Gae ey

F=-k

For even sample size the expression for efficiency involves an infinite
series; consequently we confine our attention to odd sample size. Now
we shall prove that the limiting efficiency of T1 as k tends to infinity is

unity and this is true for all values of A > 0 and C > 0 provided N > 5. Since



-19-

2
lim V(}J. ) -—NL

k= o

. it suffices to prove that
lim V(T;) —O'/N for all N> 5,

k = w0

Now we have

2.
o 2. .2
vr) = <L el (C41)"+ k'
(C+F+A)
) N-3
o1 1 S (C% + kA% x 2 dx (49)
=N NI N1 N-1

N1
p(N-L, N-L ), N-I (14%/k)
2 2 k 2 (C4x+n)?

Application of the transformation x = ky immediately gives

) N-3
VT )= 71 5‘°°(C+ky)2+ ka2 y ? gy (50)
17" N-1 N-1 2 N-1
NB( —5—, —5) “o (C+ky+A)" - (1+y)
Hence
o} l_ * (Ctky)?
lim V(T)) = — | 1 S LLL_Z dHy_;  N-1(Y)
Kk — k"’°°‘ o (C+ky+A) ! |
‘ (51)
@ dHy 2 Ao (V)
+ A2 Hm + S N-1, lg ]
k — o0 (o] [ +C+A

k

where Hy N-l(Y) is the cumulative distribution of Snedecor's F with
N-1,N-1 degrees of freedom. Now by the Lebesgue dominated convergence
theorem

® Ciky)?
7 dHy.p N1V = g: dHy ;| o () =1 forall N> 1

lim q
k=0 ' 0 (C+ky+A)
(52)

wo dH (v) dHy y aoq (V) ,
S N-1, Nl = Soo N%'Nl < for all N>5 (53)

C+A] e Yy

and

lim
k >

O[y+

Hence
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