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where o, = 04 ;4 That is, y, 1S the sum of two independent

autoregressive - moving average processes where in addition the
"noise" {at} generating one of them is known. It is assumed in
the sequel that the input has been chosen in this way and that

an appropriate input-whitening transormation has been performed
on both the {xt} and {zt} series, prior to fitting and diagnostic
checking, so that the dynamic/stochastic model discussed in this

paper can be written {in the form (1.8).

2. Review of Properties of Residual

Autocorrelations in IARMA Processes

For future references [sections 3 and 5] the principal re-
sults regarding the large-sample distribution of the residual
autocorrelations for autoregressive-moving average processes ob-

tained by Box and Pierce ([5] are now set forth.

2.1 Distribution of residual autocorrelations.

Suppose an IARMA model (1.1) is correctly identified and

fitted to a series {zt}, producing residuals {at} calculated from

the parameter estimates ¢1""’¢p’el""’eq through the relation

s v& 2z, = 6(B) a

€ (2.1)

tl

~ ~ ~ 1

thus determining residual autocorrelations r = (rl,rz,... ) as

in (1.3).




~

Linear expansion of Iy

In [5] it was shown that to Op(%) the residual autocorre-
lations {rk} from the| IARMA model (1.1) have the same distribution

as the {rk} from a correctly fitted autoregressive model [with

_ o4
yt =V Zt]

n (B) Ve = 3 (2.2)

where

n(B) = 14n,B-... -n_, B®'d = ¢(B)6(B) (2.3)

M pt+q

and moreover that the residual autocorrelations from the latter

can to the same order be approximated by a first order Taylor
]
expansion about the white noise autocorrelations r = (rl,rz,...)

where
I a, a
rk - t 2t k (2.4)
] a
t

to obtain

n ~ ark

rk = rk + z (nj-nj) -a-;]F- .

j

Approximation of the derivatives.

It was also established to O (—l— that
Pm
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+
x

Ty

or
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e coefficients in

+g232+... = [(n() 1L, (2.7)
e dual relations
n(B)Ek =0,k >0 (2.8)

class of autoregressive processes (2.2).

~ 1

(2.10)




where

m-1

is an mx (p+g) matrix.
m is small relative t
for v > m-p-q are ess

A

r as a linear transfo

0 ve. 0
1 U
£ ) 0
. 1
gm__z s e gm_p_q (2011)

The approximation (2.10) works best when
o m yet sufficiently large that the {g}

entially zero.

rmation of r,

A further resul

. . 1
t in [5] is that [to OP(H)]

A

%: 2N Ek—j = 0, 1<j<ptq,
that is,
A1
rx=20, (2.12)
and from (2.10) and (2.12) it follows that
r = (I-Q) &, (2.13)
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where

0 = X(x'x)"l x -

Thus to a close approximation for n sufficiently large,
2 1
~ N(0, H[I-Q]) (2.14)

which contrasts sharply to the large sample distribution

£ ~N(, ZI) (2.15)

satisfied by the white noise autocorrelations {1,2].

Implications for diagnostic checking.

Since the elements {Ej} of the X-matrix (2.11) are usually
largest for the smallest values of j, it can be demonstrated
that the biggest disgrepancies between the distributiong (2.14)
and (2.15) [that is, the smallest variances and largest corre-
lations in the residual autocorrelations] occur for the {;k} of
lowest lag k. Since it is precisely these quantities which are
most apt to reveal existing lack of fit,it follows that treat-

~N
ing r's as r's in diagnostic checking can cause a strong

tendency to overlook significant model inadequacy. However

~

if the r's are examined relative to their true (large-sample)

distribution (2.14),|these difficulties are overcome. 1In partic-
ular since the matrix I-Q is itempotent of rank m-p-q, the

statistic
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m .
n ) r
ksl

z (2.16)
will still possess a xz—distribution, only now with m-p-q rather
than m degrees of freedom. Thus we reiterate the conclusion
reached in [5] (which will shortly be seen to hold also in
dynamic models), that while there exist sharp discrepancies
between the distributions of £ and r, these differences can be
taken into account so that the residual correlations remain a
powerful tool in diagnostic checking.

~

2.2 Alternative expansion for r,is in the ARMA process.

The approximate linear expansion (2.9) for Ty is equally
valid for the pure autoregressive and mixed autoregressive-moving

average processes (2.2) and (l1.1) respectively. For the ARMA

process (1.1), however, with 7w (B) = ¢(B) e_l(B) and Y (B) = w_l(B)
we can write {[with Y Vd zt]
T(B) vy, = a,, v, = V(B) a.; (2.17)

and an examination of equations (2.12) through (2.26) of [5]
shows that replacing n(B) by the infinite operator w(B), and
£(B) by ¥(B), causes no lose of validity in the resulting ex-
pression for ;k [the orthogonality relations (2.12) of the pre-
sent paper no longer hold, however]; that is, for the mixed

model (1.1) we have an alternative expansion to (2.9), namely

r,=1 +] (my=m3) Yy (2.18)
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which will be very useful in the following section.

3. Distribution of Residual Autocorrelations

Suppose that two series {at} and {yt} are available
[perhaps after an appropriate transformation as discussed at

the end of section 1] for which a dynamic/disturbance model

- w(B) 0 (B)
Ye = 5B Tt T 30BY “t (3.1

where

u
Wy wlB s wuB R

w(B)

\'4
1""'6 B_.oo"'sz 2

§ (B) 1

L)

{at} and {at} are both white noise [the former is the known in-
put and the later the unknown disturbances entering the system],

and ¢(B), 6(B) are as in (1.1), has been correctly identified.

Then for any value

l\_ = (9’_'_6_:1'2) = (wolwll"'lwulsll"'févl

GpreeerbprByreeeif)

in the parameter space, a gquantity a, is determined where

a, = a, () = $BLy 2B ol
EFT e T e s ©
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In particular setting A = A reproduces the model (3.1) while

for A = XA the expression for the residuals {at} is obtained.

Alternatively, with

V(B) = Qo + 61 B + 62 p2 4+ ... = w(B)
§ (B)
and
n(B) =1 -1, B-m, B - .. =3B,
6 (B)
(3.1) becomes
a
= (3.2)

Yy = V(B) a, + B C

and an expression equivalent to (3.2) is then

a, = 1(B) y, - m(B) V(B) a,

t

== DMy Ve v L LTy Vg ey g

(3.3)

where Ty = -1. It is assumed that the number n of observations

in the two series is sufficiently large that there exists a
number m where

(i) all n., V. for j > m are uniformly o(l—)
J J - /N

= o) .
/n

S8

(ii)

Then in (3.3) and in all following expressions of a similar

nature, the present order of approximation will be preserved

by stopping the summations at i, j = m.
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Based on (3.3) we can define an autocorrelation function

as

(3.4)

H .
o

]
0017§‘ )

where ¢, = ) a, a,_, is n times the sample covariance of {a,},

so that from (3.3)

. . ay . . . ay
LD Mg My Vi Cquggiggens ~ DL DTy e Vg egg g

(3.5)

where

y ay
C, = 1 ¥p Yy_yr Cy = 1 Oy Yyo

a
and similarly for Cy* Thus from (3.4) and (3.5) the auto-
correlations r, are determined as functions of 7, V and the
various sample covariances of {at} and {yt}. Our chief interest

will be in the expressions obtained when 71 and V are set to the
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true and estimated parameter values, yielding respectively the

L] . ~

white noise and residual autocorrelations r, = ry and r, = Iy -

A

Linear expansion of -

Since . = 7w, + O (—i—) and V., =V, + 0O (—l—), we can ex-
. J P & ] . P »m
pand Iy about the true parameter values (m, V) = (r, V) to ob-
tain
poo=r, 4+ T (m o= M) mey ] (V. - VL) ko + O () (3.6)
k k i i ik j 3 jk p'n *
where
. 3 -1 s¢
Mip = _TE = - [} ai] *TE
9T, AT,
i |a i |a
K.k-"—.—- —'[z at] —
J 3V 3V

and """ connotes that all derivatives are evaluated at the
least-squares parameter estimates. Systematic differentiation

of (3.5) show that
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~ ~ "'1 ~
- 2
ik [Z at] {g. Tyt [ck+1 i k+i -1]
+ . v
RS AERAN
o o
[c. ]

i'+j'+k-i-j + ci+j'+k--i'-j

ay ay
- E. g it V [Civijek-i * Citjak-it]
ay ay
- g' g i V leg, r4j-k-i T ci+j-k—i']} (3.7)

and
A A2 -'l A A ~
Ky = ) a;) {g g' g' T My Vj'
a a
(Civagran-i- * Citejak-i-§')
- g g. Ti Tiv Civegek-i
PN ay
_-g E' LPE P ci+j-k-i'}’ (3.8)
where Z ai in these expressions is obtained by setting "." = """

and k = 0 in (3.5).

Approximation of the derivatives.

We have already remarked that the root mean square errors

of {nj} and {Vj} are O(—l—), and since this is also true of the
Yn
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sample correlations of {at} and {yt}, it follows that if u,,
and Kjk are the result of replacing the estimated parameters

and covariances in (3.7) and (3.8) by the theoretical values, then

~ 1
ik = Mk 7t Op(7§_) ’
(3.9)
= +0(—L’

“ik T S5k T ez

so that making the substitution in the linear expansion (3.6)

preserves its accuracy; that is,
- _A _" l
r, = rk + Z (wi ﬂi) uik + Z (Vj Vj) Kjk + op(n), (3.10)

In evaluating the approximations up,., and k., in (3.10) to the
ik jk

derivatives in (3.6) it is first helpful to obtain an approximate

form for % 2 ai, which converges in probability to the variance

og of the white noise {at}. Now if

= ¥(B) a, = ) a,

represents the noise in the dynamic model (3.1), then it is
known (e.g., [4], Chapter II) that its theoretical autocovariances

are given by

Yy =0 ) Uy Yiax (3.11)
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Now since m(B)*Y(B) = 1 it can be shown that

Z Z, Ty Ty Z wj wj+i-i' =1, (3.12)
i i j

and combining (3.11) and (3.12) we obtain

e
g T Mo Yiogo (3.13)

ot N

o oy Y
Then with v, = E(a, a, ), v, = E(e_,v.), and v, = E(Y, Yeoy)

denoting the theoretical auto- and cross covariances of {at}

and {y .}, we have

Y
Mijx = K {g. Tiv Dpyiogr * Yieir-gl
+ . v !
BHETE
o o

Y5 v 450 4k-1-5 * Yiejr+ek-i'-5]

oy oy

- g. § Moo V5 Dgogsek-i ¥ Yiegak-ir]

oy ay

- g. § Moo V5 Dgvggox-i ¥ Yiegok-it??
Y y
=X {§. Too Drpiogr * Yraivog!
-y (02 Vs v + V .01)}
TRERER I TR B AR 1 S SRR ES LSS R

(3.14)



e e
=K %. Moo Dggiogr + Yeeir-g!
e e
Lomy D oppioiv * keiv-g!

where (3.14) follows because

a a 5 QY 2

Y =0, kF 0; vy = 0gi Yy = 0y Vi

equation (3.15) utilizes the easily verified relation

gvj Viek 7

and (3.16) follows from (3.15) and (3.13).

Now just as for an autoregressive process
¢ (B) e, = a,
the autovariances satisfy

e
¢ (B) Y = 0 [compare (2.8)],

19

(3.15)

(3.16)
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it is also true for a mixed AR-MA process

that

e
T(B) v, =0 (3.17)

Therefore by comparing (3.16) with the corresponding formulas

(2.5) and (2.6) in section 2, it follows that

Mik = Yg-i (3.18)

and thus to Op(—i—) the derivative with respect to ﬂj of ;k in
a dynamic model is the same as that of ;k in the corresponding
stochastic model. Moreover, to Op(;%—) the derivaties of ;k
with respect to the dynamic parameters are approximately

Lok, T

Ky = K {g z § T Tia V

o o

Y540 ak-i-9 ¥ Yitejek-i-j')

ay ay
g. Mo Moo Dgvggekei ¥ Vi wg-k-i)?

2
=Ko, (L7 M0 Wiggpeir * Vivggax-il

DI m T Vigaees * Viegek-it ]!

(3.19)

il
o
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so that for large n we have the important result that the effect
on r, of changes in the parameters Vj (in a region containing
the true paraﬁ&er values) is negligible; that is, the residual

autocorrelations r are distributed independently of the dynamic

parameters.

A

Distribution of r.

By substituting (3.18) and (3.19) into (3.10), the follow-

ing expression is obtained:
ro=r, + J (- M) UL+ O_(D), (3.20)
k & J J k-3 pn

1 <k <m, where m is as in the discussion following (3.4).

But equation (3.20) and the corresponding result (2.18) for the
residual autocorrelations from an autoregressive - moving average
model are identical. Therefore the large-sample distributions of

r in the two models

_ w(®) 8 (B)
Ye = 3B Yt T B) 2t (3.21)
and
$(8) vy, = 8(B) a, (3.22)

are the same and independent of any dynamic parameters in the
model (3.21). Discussion of the distribution of the residual
autocorrelations in dynamic models can therefore be referred to

section 2.1 (or to [5] for greater detail), as all of the results



obtained there apply ¢

Dyamic model with whit
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squally in the present setting.

te noise.

An important sif

fitted with the distu

tuation occurs when a dynamic model is

rbances or noise assumed white [that is,

$(B) = 6(B) = 1 in (3.1) ) For this case,that is if a model of
the form
B
v, = $ter, + a, (3.23)

is correctly identifi¢

1 .
that to Op(ﬁ)' since ¢

Therefore we do have
large n the residual
they were calculated
[It will everywhere e

be seen again in sect

4., Distribu

autocorrelations
from white noise

lse, as has been

kion of Residual

rd and then fitted, it follows from (2.13)

D

0,

(3.24)

I

a situation where the supposition that for

"ought" to behave as though
will not lead us astray

seen so far and as will

ion 4].

Cross Correlations.

The derivation
correlations in dynam
the fact that the lin

of the dynamic parame

in ARMA models for wh

tained [5].

The situ

bf the distribution of residual auto-

ic models was considerably simplified by

ear expansion of r was totally independent
ters and moreover identical to the expansion
ich the distribution had already been ob-

ation is less straightforward for residual




~k
cross correlations r

and stochastic parame
same approach of appn
pansion will be seen

cross correlations as

corresponding white n

will be found that the degree or dimension of singularity in this

transformation, and h
of r , is the number
the model (3.1), irre

associated with the n

4.1 Residual cross ¢
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A A ]

(rl, Ty ..s) , where both the dynamic

ters will be seen to play a role, but the

A

*
oximating Iy by a first order Taylor ex-

to lead to a representation of the residual
a singular linear transformation of the
oise cross correlations. Furthermore it
ence in the resulting covariance matrix
(u+v+1l) of estimated dynamic parameters in
spective of the number of parameters

oise.

orrelations as a linear transformation of

white noise cros

s correlations.

Suppose the ser

dynamic model (3.1) w|

ies {yt} and {at} are available from a

hich we now write as

_ w(B) t
Yt = B o(t + W ’ (4.1)
where m(B) = ¢(B) e—l(B). Then for any value i = (irﬁrﬁ) of
the parameters we can define [as in (3.3)]
a, = m(B) y, - n(B) LBL 4 (4.2)
t Ye 3(B) %t’ .
.* -
o, =1 oy ag (4.3)
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and thus determine the cross correlations between {at} and {at}

as
= (Joa2Tad 2e (4.4)

so that setting a = a/and a = a in turn yields, respectively,

the residual cross correlations

~ Ja,_, a
r = t-k t (4.5)
2 ~2
//Z ay 1 ap
and white noise cross| correlations
R Ja,_, a
r, = tk t | (4.6)
) a2 ) al
t t
Linear expansion of Ty -
~k
The residual crpss correlations r, as functions of
A = (w,8,7) can be approximated by means of a first order Taylor

expansion about A = )\ to obtain




where as in previous
consequence of the si

(wi,Gj,¢i,ej) and whe
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A "~

+ O (4.7)

m, = M, .
37" Mk
expansions the accuracy to Op(%) is a
ze of the root mean square errors of

re

5y L yer
A% Tx ~2 2,77 %
Kik = - a. = - [Z at Z Gt] —
w. |~ W, | A
i i
- l %
~ ar ~ - 8c
*
Tey = = ---1-E = - [Z az z (12] 2 —15'
ik 55 | . L ¥ S A
J J
a’* 1 a'*
nxo_ Tk S -y aZya? 2k
jk a'n'_ A t t a'ﬂ'- A
J J
where the """ denotes that all derivatives are evaluated at the
least squares parameter estimates. If Aj represents any one of

A A

the parameters (wi,6

i
from the relations

A

r -5 3dc
Mo gadpad 2
A 3.

] ]
_o=1 9
= K — (] o 3¢
A
j A
A 9
-1
= K 2 o [R—
t Tk N

,wi), then these derivatives can be determined
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A

where a, is as in (4.2). Thus

% ?‘_l - 1
K = K o - ["(B)w——— a _.]

ik Z t-k 5 (5) -1

% - P“_l _A (:)(B)

Ty = KL ey 1B S a ] (4.8)
e el o (B)
ujk = ; Z at-k [-Yt_j + — at_j]

Approximation of the herivatives.

|
£ «* , <, and ut be th 1t of replacing th
Let Kjy ., Tygs and uy, be the resu of replacing the

~
14

§,m) in (4.7) by the true values A.

parameter estimates A = (

Then, since

% K = o oy + Op(7é—)' (4.9)
n
it follows that
= ke 4+ O (—
“ik = ¥ik ¥ Opl =)
A* + 0 (=2 (4.10)
T =T- n—— .
ik ik P
~ —*+O(l)
ik T Mik T Pelg
so that by making these substitutions in (4.6) the accuracy
of the latter approximation is preserved; that is,
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Ak ~ * R g *
rk = rk + z (wi - wi) Kik + z ( 3 - j) Tjk

*

- 1
+ Z (ﬂj ﬂj) qu + OP(H) (4.11)

The expansion (4.11) can be simplified by observing [from (4.8)

and (4.9)] that

* o no. oL -
My = (0 cajca) PRI Ye-q *+ V(B) oy
1 oy
“ W, o, [=ep_y * :ZL Vi Ck-j-il

o

which again without a&fecting the degree of accuracy of (4.7)

or (4.11) can be apprbximated by

1 oy o
Wik = 557 [TYe-3 * 1 V5 Ye-jo1!
a %a
1 2 2, _
=0 [Vk-3 % * k-3 %l =0 (4.12)
a o
ay  ay

where the {cv}, {Yv}é etc. are as in the expressions following
(3.5) and (3.13). Tdus all terms containing (wj—;j) in the
expansion (4.11) of 3; can be dropped, and it is seen that g*
for large n does not%depend on the noise parameter estimates
;(B) = 6-1(B) ;(B), ﬁhich is interesting to compare with the
fact that the ggggcoﬁrelations £ in dynamic models do not de-

pend on V(B) = G—l(BX w(B) as was demonstrated in the last

: ot
section. However it will now be seen that r does depend on
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A

the true values 7m(B) whereas r was to a close approximation

distributed independently of V(B) altogether.

It is necessary now to obtain the approximate derivatives
&
of the linear expansion of Iy with respect to the dynamic
] ]
parameters w = (wo,wl,...,wu) and ¢ = (61,...,6v) . From

(4.7) and (4.8),

%* - -
Kig = oy o)™ T ey (r(B) & L) o,
(4.13)
* -1 -2
Ty = (o o) " 1 agy [m(B) & T(B) w(B) a,_,l;
and by defining
B, = 672(B) (B) a, = €(B) ™(B) oy (4.14)
where
_ 2 =2
e(B) =1 + €y B + €, B+ ... =6 “(B), (4.15)
equations (4.13) become
* -1
K jx = (n oy 0y) Zc oy S(B) By s
1 aB
- L 6(B) o (4.16)

no_ o
o
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and
* -1
Tk = (no,o,) { ap_, w(B) Bt—j
aB
v w (B) ck_J (4.17)
a
where
aB
e = L ap i B
=J o . [J)e, m 60 . .1
£ t-k i3 i "3 "t-i-3
) c
= €, T. Cp =+ =
i3 i3 Tk-i-j
1 ¢ ¢ 1
Since = ¢, = v, + O_(——) this may be approximated (upon dividing
n 'k k P
both sides by n) by
aB a
Ye =L 1eg Ty v g
_ 2
=0y, ) €5 My (4.18)
i
_ 2
=0, e (B) My

so that, denoting by Kix and Tjk the results of substituting the
approximation (4.18) for Cy into (4.16) and (4.17), our approxi-

mations to the derivatives (4.8) are finally
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(¢}
== §(B) e(B) ™ (4.19)

a

ik = k-i

o
o
3k E; w(B) €(B) ﬂk_j.

T (4.20)

When (4.12), (4.19), and (4.20) are substituted for the

derivatives in (4.7) or (4.11l), we obtain

~ % * ~ N 1
r, =1 + ¥ (g = wy) Ky #+ ) (Gj - Sj) Ty + Op(ﬁ)
= r, 4+ 32 E (w, - ;.) §(B) €(B) w __.
k 94 i=p i i k-i
+ 22— § (6, - 3,) w(B) €(B) m, . + O (l) (4.21)
9% j=1 3 ] k-] pn

A
*
Linear constraints on the r 's.

To derive from (4.21) a representation of £* as a linear
transformation of the white noise cross correlations £* analogous
to expressing the residuals of a linear regression as a function
of the true errors [as in (2.13) for autocorrelations], it is necessary

establish the orthogonality relations

u
o
~
o
A
™
A

&
I r kg u, (4.22)

(4.23)

I
o
-
-
A
(]
A
<
~

%
) Ty Tyg =

where the k's and t's are given by (4.19) and (4.20). This
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will be done to the present order of approximation by once
again making a linear expansion, this time of a, itself and in

terms of the parameters estimated in the model. Thus

A ~ aa A aa
t t
a = a + ? (¢. - ¢') = + % (9. - e.) P
t t i21 i i ¢i 5=1 j j aej
u ~ da v ~ Ja
t t 1l
i?_lo (wl wl) 50)1 jzl ( J ) j P(n

where now the derivatives are evaluated at the true parameter

values. Comparing this to a linear regression model it is seen

1
that to OP(H)'

~

(4.24)

Bat
) a, gx; =0

where Aj is any of the p+g+ut+l+v parameters

s

61, LI B 4 v)o

L = (¢ll v ey ¢pl el’

It will be sufficient to utilize the relations (4.24) for the

cen 6 w eeey W
14 ql o' ? ul

dynamic parameters w and §. Rewriting (4.2) as

: ¢ B ¢ B . B
a, = $1—L Ye .( ) ?( ) Oy v
8 (B) 8 (B) &(B)
the appropriate derivatives are
Jda
£ = 1(B) §7T(B) ap_;
i

m(B) 6(B) e€(B) Oy
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1
Therefore, to Op(H)

1

Bat
38y

A ]

(where j'

~
1t

!
j

A

I r,

*
C.
J
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~1(B) w(B) §72(B) ay_j

-m(B) w(B) €(B) at-j

[7(B) 8§(B) €(B) a ]

t-i

€

k €2 %t-i-j-k-2

ok
85 €y Civjrk+n

ok

x €9 Tyr-i-k-2 5

i+ 3 +k+2)

. 6(B) €(B) m,

j'-i

§(B) £(B) ﬂk_i, 0 <i<u

(by changing j' to k and observing that

%

dividing Cx by a constant does not change

the

zero-value of the expression),
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and
1< j<v

~ Bat
0=]a. 35, -
3
=7 ;t [7(B) w(B) e(B) o _j

A* ]
) r, w(B) € (B) -3 1<3j<v

(by exactly analogous procedures) .

™ *
as a linear function of r .

r
The relations (4.22) and (4.23) having been established,

we may proceed as follows. Let

= s~ L (B) m(B)

E(B) = §(B) e(B) m(B)

1+ B+ &, B2 + ...

and
-2
w(B) § “(B) w(B)

X (B) = w(B) €(B) w(B)

_ 2
=X, * Xy B+ Xy BT+ ...
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Then, if
~ -
1 0 0o ... lxo 0 0 .. 0
0(1 ' I
.2 & 1 0 0 | X2 X1 Xo 0
. . 1 | . . .
L ] L ] I X
£ ] : I. . L] o
. . . . . lo . . :
tn-1 ®m-2 Em-3 ¢ Fmou-l | Xm-1 Xm-2 *m-3 *°° Xp-v
L _—
(4.25)
is an [m x (u+v+l)] matrix, then (4.21) can be written in
1
vector form to Op(ﬁ) as
A * Ww-=Ww
r =r +X ( ~ (4.26)
$§ -8
where from (4.22) and (4.23)
%
r'x=0 (4.27)

so that multiplying both sides of (4.26) by
0 = x(x' xytx"
it is easily seen that

(1-0 ¢ (4.28)

R
il



35

which except for the structure of the X-matrix is of the same

~

form as (2.13) for the residual autocorrelations r. [Note that
o
while X is scaled by the ratio 32 ; @ is independent of these
a
parameters].

*
4.2. Distribution of r.

Recall that once the relationship (2.13) between £ and r
in an autoregressive process was established, the distribution
of g followed as a direct consequence of R. L. Anderson's [1],
Bartlett's [3] and T. W. Anderson and Walker's [2] results on

the large -~ sample distribution of the white noise autocorrelations,

namely that

1
r - N, £ I). (4.29)

The author was unable to find in the literature corresponding
results for the cross correlations £* between two white noise
sequences {at} and {at}, and this subsection is therefore de-
voted to obtaining the distribution of £*, which is found to re-

produce (4.29).

Moments.

%*
The white noise cross correlations {rk} are given by

Ja, . a
rF = t-k _t (4.30)

k
// ) ai ) ai
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where k =1, 2, ..., m and it is assumed that m is small re-
lative to n. To evaluate the moments of (4.30) it is very help-
ful to make use of an argument due to Koopmans [8] and extended
by Moran [9] and Jenkins [7]. Applied to the present situation
the argument proceeds as follows. The ratio (4.30) is a homo-
geneous function of degree zero in a = (al, ey an) and in

a = (al, ceny an) and thus it is independent of the lengths of
these vectors |a| = V/ ] ai, la] = ¥/ } ai, or any function of
them, and instead depends only on the angles which a and o make
with the axes in n-dimensional space. Since the joint normal

density functions of a and of a,

p(a, a) = p;(a) py(a)
1 2 1 2
-5 ) &, - 53— L ©
= 1 o 203 ) t 20§ L t
(2m™

are independent of these angles and depend only on the lengths,

*
it follows that the distribution of the ratio Ty of

*

Cx (4.31)

Dok 3

and

1/2
2) /

a=(] o] al (4.32)

’

*
given 4 = do’ is independent of the value do; that is, ry and
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d are independent. In particular, therefore,
* *
. p _ p p
E (rk d) E (rk) E (@),

and thus

E (] ap_y at)p
E (] ai ) ai“__)p/2

E ()P = (4.33)

*
It is clear that these same arguments apply if several r 's are
considered jointly; for example,

EL(] apy 2" %t-k-j a,) ]

ko .
2

(4.34)

E () ai ) ai)

*
The moments of r are now straightforward to obtain. Since

E(] a,_y ay) = ) E (a,_,) E (ap)

it follows that

*

" (4.35)

]
[}
.

E (r

Moreover, from (4.34)with p =g = 1,



38

* *
Cov (ry, Ty,s) «E (] ey a) ) Upx-j 3¢)

) g E (o as_k_j)E(at ag) .

Since for j # 0 it is impossible for the relations

t-k

s-k=-3j

both to hold simultaneously, every term in the summand is zero.

Consequently we have the important result that

*

k+j) =0, j# 0. (4.36)

*
Cov (rk, r

*
The derivation of nonvanishing moments of {rk} is facilitated

by observing that
E () ai ) atz__)p/2 = E(] ai)p/2 E (] ai)p/Z

is of of ti p)th ' 2
is o o times the square of the (2) moment “p/2 of a Xp

distribution. Specifically it is readily shown that

* *'1; ~ 1
V(r;) = E Brk)l— nk oL, (4.37)
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Joint distribution.

From (4.37), (4.36), and (4.35), it is seen that for large
n the white noise cross correlations (4.30) have 0 - mean and
covariance matrix % I. To show that jointly the statistics
£* = (rI, ceey r;f will possess a multivariate normal distri-
bution for large n, we apply the multivariate Central Limit
Theorem (e.g., Cramer [6]) and Slutsky's [11l] theorem to the
*

cross correlations r .

Write

X, = /n ry
= E% (4.38)
where
by = ';,% I opk 3¢
and
a = % ) ai % ) ai .

Then bk is of the form

/oy

where
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is the mean of n independent and identically distributed vari-
4

ables y, = a;_ , a;. Moreover, b = (bl, ceey bm) has for all n

mean 0 and covariance matrix Oq O I. Hence by the multi-

variate Central Limit Theorem b has the limiting distribution

N(O, GaoaI)‘ Furthermore,

where "B" denotes convergence in probability. Hence by Slutsky's

theorem,

X = % b (4.39)
converges to the distribution N(0, I).
It is therefore shown that for large n
* 1
r -~ N(O, = I) (4.40)

which is identical to the limiting distribution (4.29) of white

noise autocorrelations.

Nk
4.3 Distribution of r .

The distribution (4.40) of the white noise cross corre-
*
lations r having been established in the last section, we can
now continue from where we had left off (4.28) in our discussion

A

of the residual cross correlations r . Equation (4.28) now
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shows that approximately

A

* 1
r- N, = [T-0D), (4.41)

which parallels the results obtained for residual autocorrelations
in [5] and in the previous section. 1In particular the distribution
of g* = (;*1, seey ;;f is contained in a subspace of dimension
m-u-v-1; that is, the distribution has a (u+v+l)-dimensional

singularity given by the constraints (4.22) and (4.23).

i T (o 2
Distribution of n ] (r,)°.
1

Paralleling the observations made in sections 2 and 3 in
connection with autocorrelations, it can be stated that if the
fitted model is appropriate and the parameters A = (w,$,¢,0)
are exactly known, then the caluclated "residuals" {at} would
be uncorrelated normal deviates or white noise, and from (4.40)
their cross correlations 5* with the whitened input {at} would
be approximately N(O, % I). Thus under these conditions the

statistic

m
n J (r)? (4.42)
k=1

2 distribution with m degrees of freedom.

would possess a ¥
From (4.41) it is evident that if m is large enough so that the
elements after the mEE in the latest vectors of Q [i.e., the

columns of X] are essentially zero, yet m is still small relative
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to n, then the statistic

m ~
n ] (rp)? (4.43)
k=1

based on the residual cross correlations £*, will still possess
a x2 distribution [since the matrix I-Q is idempotent] only

now with m-u-v-1 rather than m degrees of freedom. This result
is of considerable practical importance in diagnostic checking
as it shows that an over-all test of fit of the dynamic model
(3.1) can be based on the statistic (4.43) simply by making an
adjustment to the number of degrees of freedom in the xz-dis-
tribution of the statistic which would be appropriate had the
model been correct and the parameters known exactly. In
section 5 these ideas are explored further when the use of re-

sidual correlations in diagnostic checking is considered.

4.4. Examples.

The X-matrix (4.25) which determines the distribution of
the residual cross correlations is of a considerably more com-
plex nature than the corresponding matrix for autocorrelations,
so that further understanding of the distribution of i* and how
it departs from that of the white noise cross correlations £*
is best obtained by a consideration of the X and Q matrices
occurring in some simple subclasses of the class of dynamic
models (3.1). These will be considered under three headings

depending on the structure of §(B).
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Case (1): 6(B) = 1.

The situation is quite simplified if the transfer function
V(B) is finite, for then the operator x(B) plays no role in the

X-matrix (4.25), which now becomes simply

~ -
l O 0 o o & 0
%
X = 5 -ﬂl 1 0 . (4.44)
a
-ﬂz —nl 1 .
L] *® » 0
L ] - L ] 1
“Ta-1 “"m-2 “™m-3 °°° " "m-u-1{ °

It is noteworthy that the degree of singularity in the co-
variance matrix % (I-Q) is therefore determined by the number
(u+l) of parameters (wo,wl,...,wu) estimated but that the
dynamic parameters themselves play no role, as X is made up en-

tirely of coefficients of

7(B) = 0"1(B) ¢(B).
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Thus
[ o -
X' X = Y Iomimiy cee L Mg
) TiTi-1 I “i e L TiTi-u+l
¥ ;i“i-u . cee ;i . (4.45)

and from these results the Q and % (I-Q) matrices can be de-

termined.

White noise.

The situation is especially interesting if w(B) = 1, that

is for the model

for which

We have

Q

ye = w(B) o, + a, (4.46)
' = =
X' X 1 . Tosd -
0.
1
(u+l 4(m-u—l)

I L0

x(x' )7t xt = |mmmmree-



so that

I-Q =

—

0.

.
- —

-

0

17

~

1

45

with zeros everywhere off the diagonal. Thus the variances of
~ % ok
rl’ *» o0 ru+l

[that is, they are of order ~% l]. This is comparable to the
n

are to the present order of approximation zero

situation in which a first order AR model is fitted to a process
where ¢ = 0 (i.e., a white noise process); for in this case we
would have from (2.14) for the lag 1 residual autocorrelation
[since 0 = {q;} = BI72 (1-02))

2 1

V(gl) %— to O(H)

"
o

~ %
Higher-lagged r 's are then distributed approximately as

*
the corresponding r 's.

Case (ii): 6(B) = 1 - §B.

The special case considered above where 6(B) = 1 is some-
what artificial in dynamic systems for it means that the effect
on the output of a given change in input does not build up

over time but rather is instantaneous (that is, the time constant
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[4] of the system is zero). The situation where 6 (B) is a first

order polynomial in B characterizes the first order dynamic

models, which are of greater interest from a practical stand-
point. Unfortunately, however, as soon as §-parameters are in-
cluded in the model the X-matrix on which the covariance matrix
of i* is based becomes considerably more complicated, owing to

the presence of the {Xj} in its columns, where as in (4.25)

these coefficients are determined from
x(B) = w(B) 6 2(B) m(B).

Thus we shall here discuss only in general terms the nature

~%
of the distribution of r fer these models.

First order dynamic model, white noise.

Suppose the appropriate model for a given process can

be written

w
= 1°)
Ye = T=5 8 % 2 (4.47)

Then

s @) =1+ 6B+ 82B%+ ...

2@y =1+26B+3 s2B2+a83B 4+ ...,
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so that, since 7(B) = 1,

1+ 8B+ 6282+ ...

£(B)

w, [1+28B+3 §2 82 &+ ...]

x (B)

Since the wvalue of W, does not enter into the matrix Q = X(X'xy'! x'

~%
and thus does not influence the distribution of r , there is

no loss of generality in assuming W, = l. Likewise we can
o
assume 52 = 1, Then
a
X = 1 1 X' X = —L—z—- ——lﬂ
(1-67) (1-67)
$ 28
52 382 |, "
3, 1 (1+87)
S S (1-52) 2 (1-6%)3 | -
* L3 2
_ |x* 8
— X' X|= ,
(1-6%)%
and
. L | 1-et - (1-8%)2
§ -(1-87) (1-67)

1 vo= (8371, 5 6371

J
is the jEE row of X, then the elements of Q are given by

Thus if Q = X(X' X) ~ X' = {g;4}, and ¢

= ' ' -1
qij = £ (X' X) Ej (4.49)



from which the matrix Q and thus the covariance matrix
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ok
% (I-Q) of r can be determined. For example, marginally

% &k Nk
(rl, Tys r3) are for large n approximately N(O,

}) where

~
84 —2 83 (1-8%) * 2 83 (1-6%) (1-282)
p=4% 82 (1-76%+68%) - 2 & (1-36%+3s%) (1-6?)
| (sym.) 1 - 62 (1-6%) (a-116%+9s%
(4.50)

~

*
The variances and covariances for higher-lagged r 's can also

be determined in a straightforward manner, but the formulas

become progressively more involved; however, it is possible to

draw some general conclusions.

From the matrix (4.50) it is

~x ~k
seen that V(rl) and V(r2) can be quite small, and moreover that

the covariances and correlations of the residual cross corre-

Nk
lations r of small order can be very high. However for higher-

lagged r*'s it is evident from (4.49) that the general element

of Q is of order at most gi+ti-4

i-1

qij

multiples of §

[since the elements of g5 are

]l. Thus as i and/or j becomes larger there

is a return of the elements of the matrix % (I-Q) to the elements

(zero or %) of the matrix % I which is the large sample co-

variance matrix of the white noise cross correlations.

Hence for this

model the two-dimensional singularity in the distribution of

Nk

r is concentrated heavily on the first two or three lags with

~ %
little effect on higher-lagged r 's.
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First order dynamic model, non-white noise.

Consider now the model

_ 1 8 (B)
Ye T T =3B % + Yl a, (4.51)

where in accordance with the discussion preceding (4.48) we
have assumed that the unknown parameter Wy is 1. From the
general results of section 4.1 it follows that the presence
of the noise parameters 6 and ¢ this model will not cause any
further singularity in the distribution of £* as compared with
the model (4.47) where the noise was assumed white. In parti-
cular therefore it is significant that the statistic

m

n ) o%2

WLy (ry) (8.52)

will for large n possess a x2 distribution with m-u-v-1 (here,
m - 2) degrees of freedom regardless of which and how many
parameters (¢,0) are associated with the noise {at}.

However the distribution of £* itself is considerably
affected by the presence of autocorrelation in the noise. The
X-matrix still has two columns but they now consist of the co-
efficients of

2 2 2

(L+ 8B+ 6" B + ...)(1 + Ty B + T, B + ...)

£ (B)

(L+268B+3828B%+ ...0(1+ mLB o+ ..l)

x (B)
(3.53)
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where w(B) = —%%g% .

From (4.53) it is evident that the general effect of an
increasing degree of autocorrelation in the noise [either through
additional parameters {ej}, {¢i} or through the ¢'s lying closer
to the boundary of the region of stationarity] will be to dis-
tribute the singularity of i* throughout more of the lags; that
is, the restoration in the behavior of {;;} to that of the {r;}
for increasing k will be slower, but also the initial values
(e.qg., ;1, ;;) will behave less unlike the corresponding white
noise cross correlations. [And thus a qualification to the re-
marks made concerning the xz-distribution of (4.52) is that for
highly autocorrelated noise the values of m and n may have to
be greater for the approximation to be equally feasible]. This
phenomenon is entirely analogous to the effect on the distribution
of the autocorrelations £ of letting ¢+1 in a first order AR
process, as discussed in [5].

For models in which w(B) is of first degree or¥ higher in
B, the situation is more complex but the same general considerations

A

concerning the distribution of r apply.

Case (iii): Higher order dynamic models.

To get an idea of the situation which obtains for more
complex dynamic/stochastic models, let us finally consider
briefly the second-order dynamic model with delay and (1, 0, 1)

noise, given by
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1 6 B
Y = ol + TR a (4.54)
tT 1 s 8-, 2% T T-9¢8°t

Prom the general results in section (4.1) we have

E(B) = (1 -6, B- 35, 85yl 1 -em7t -4 B)
=1+¢ B+, B2 + ... (4.55)
X(B) = (L -6, B=6,B9)72 (@ - w B) (1-06B "
(1 - ¢ B)
_ 2
= X, * Xy B+ Xy BS+ ... (4.56)
and
N 1 0 Xo 0
- &1 1 X3 Xo
&y &1 X2 X1
Lgm-l Em—2 Em-l gm—2

where m is large enough so the ¢ .. Emm1’ *°° and X _o¢

X1’ *°° are of order L or less yet % is itself of order 1 .
v/n /n
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The coefficients {Ej} and {xj} and the resulting X,
(X' X), Q, and % (I - Q) matrices can conceptually be determined
through (4.55) and (4.56), although such a procedure would be
rather awkward to carry through. One suggestion might be to
approximate (wo, wl, 61, 62, 8, ¢) by their estimated values and

use these to determine an approximate X-matrix numerically by

computer.

5. Diagnostic Checking in Dynamic Models.

The approximate joint distribution of the autocorrelations

g of the residuals {Qt} in fitted dynamic models has been ob-
tained in section 3, and that of the cross correlations i* be-
tween the residuals and the whitened input {at} in section 4.

In both cases it has been seen that these distributions can in
some respects differ sharply from the distributions of the white
noise correlations, that is, the correlations which would result
if the "residuals" were calculated not from the estimated
parameters but instead from the true parameter values. The

*
properties of r and r therefore need to be carefully considered

for their effective utilization in diagnostic checking.

5.1 Summary of the distribution of residual correlations.

A A*
We have seen that both r and r are singular linear trans-
*
formation of the white noise correlations r and r ,

r= (-0« (5.1)

~ % *
r =(I-0 (5.2)
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where Q is 6f the form

Q0 = X(X' x)~1 x',

X is an m X 2 matrix of rank %2, and % is the number (p+q) noise
parameters in the modél (3.1) for equation (5.1), and the number
(u+v+l) of dynamic parameters for equation (5.2). Thus the
residual correlations have for large n a singular normal dis-
tribution concentrated in an (m-%) dimensional subspace of
Euclidean m-space. Now it is easily seen that if the parameters

(w,8,9,0) are interior to their admissibility regions [that is,

the roets of w(x) = 0, ¢(x) = 0, etc. lie outside the unit circle],
then the X-matrix for either (5.1) or (5.2) is such that as we
progress downward along any column (say the jEE), the elements
{xkj}, k=1, 2, ... go to zero [which is of course why we have
always been able to guérantee , for n sufficiently large, the
existence of a number m such as in the discussion following
(3.3)]. Thus the matrix Q will have its largest elements in
the upper left-hand corner, that is for smallest values of i and j,
with other {qij} going to zero as either i or j increases.
Since the residual correlation covariance matrices depend on
I-Q, it is therefore seen that the departure of the distributions

~ ~ % *

of r and r from those of r and r are greatest for the residual

correlations of smallest lag; and specifically that this de-

parture can consist of unusually small variances and very high
correlations among the r's and r s of low order or lag (Higher
lagged residual correlations then behave increasingly like their

white noise counterparts with respect to both their variances
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and covariances).

5.2 The over all XZ test.

- '
Since the large sample covariance matrix I - X(X' X) 1x of

the quantities

x =/nr (5.3)

I8 >

x=+/n

is idempotent of rank m-%, where & is the rank of X, it follows

that the statistics

m ~9
n ) rs (5.4)
j=1
and
m Ak
n J (r:)? (5.5)
j=1

to the order of approximation we are here employing, possess
x2 distributions with m-% degrees of freedom. Moreover in the
distribution of £, 2 is the number (p+q) of stochastic para-
meters estimated and is independent of the dynamic model itself;
while in the distribution of £, 2 is the number (u+v+l) of
dynamic parameters estimated and in turn is independent of the
noise structure associated with the model.

It can therefore be concluded that regardless of the

particular dynamic/stochastic model fitted to a set of data,

a useful over-all check of the adequacy of the fit of the model



55

is provided by referring the statistics n z ;2 and n z (;*f to
their appropriate xz-distributions. Such procedures would not
be expected to be as sensitive as those based on individual

;'s and ;*'s, but their applicability is universal in that the

distributions of (5.4) and (5.5) are independent of the parti-

cular parameter values appropriate to the model.

5.3. Diagnostic procedures applied to individual residual

correlations.

As was indicated in section 1, the underlying rationale
in the use of residuals and of residual auto- and cross corre-
lations in diagnostic checking is that for a correctly identified
and fitted model the residuals {;t} should resemble the white
noise {at} from which the series is assumed to have been generated.
We have seen that in some important respects this resemblance
breaks down, but that the consequences of this for the use of
the overall criteria n ) 2 or n ) 2 in diagnostic checking were
slight, as only a modification in the number of degrees of free-
dom in their xz—distribution was required.

The story is different, however, when individual residual
correlations are examined, for it has been seen that the vari-
ances and covariances of the {;k} and {;;}, especially for
small values of k, can differ greatly from those of the corre-
lations {rk} and {r;} based on white noise. Thus if individual
residual correlations are to be compared with their standard
errors to determine whether they are unusually large, then

modifications of the "quality-control-chart” procedure which
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would be appropriate for white noise correlations are now

necessary.

The situation is very similar to that discussed in [5]
for autoregressive residual autocorrelations, and figure 2,
taken from that paper, illustrates the narrowing of the standard-
error bands which occurs, contrasted to those of figure 1 for
white-noise autocorrelations, which from (4.40) are identical
to the standard error bands for white noise cross correlations.
The particular AR examples in (a), (b), (c), and (d) of figure
2 are appropriate also for examining adequacy of the noise
structure of dynamic models via the residual autocorrelations
when the fitted noise is AR(1l) or AR(2) with parameters as
shown, which from (2.3) and the preceding discussion also in-
cludes fitted dynamic models with MA(1l), MA(2), and mixed
AR(1)-MA(l) noise. The standard error bands for £ with other
noise structures, and those of the residual cross correlations
£ for various dynamic and disturbance models, are all similar
in appearance to those presented in this figure, since the
singularity of their joint normal distributions is of the same
nature in all cases, that is, it is such that there is a strong

depression of the variances of the residual correlations of

small lags. It is thus seen that a failure to take account of

this discrepancy between the white noise and the residual auto-

and cross correlations can lead to a serious underestimation of

significant inadequacy in both the dynamic and the noise com-

ponents of the model. This fact is especially important be-

"~ A*

cause if lack of fit does exist it is the r's and r 's of
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FIGURE 1. Standard error limits for white noise autocorrelations r,
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lowest order which are most apt to reveal this.

The situation is further complicated by the presence
of high correlation among the ;'s and ; 's. Since ;1 and ;2, for
example, will usually be highly dependent, a decision as to whether
one is significantly large should properly take account of the
other, so that the construction of statistical tests based on
several individual ;*'s [as opposed, for example, to the over-all
xz—test] is more difficult than if they were independent as
would be the case for r* and r; for white noise. However, charts

1
such as in figqure 2 can still provide rough guidelines.

5.4 Conclusion: Use of residual correlations in diagnostic

checking.

It has been demonstrated in this paper that the departure
of the distributions of the residual correlations £ and g in
dynamic models from those of the white noise correlations r and
£* is of sufficient extent to warrant a careful consideration
of their properties in connection with their use in diagnostic
checking. Since the consequence of supposing that the ;'s and
;*'s can be regarded as r's and r*'s was found to be an under-
estimation of significant model inadequacy, it follows that
whenever diagnostic testing procedures based on this erroneous
supposition do reveal lack of fit in the model, more sensitive
procedures based on the singular distributions of £ and g* will
also lead to this conclusion, and even more forcefully so.
However it is essential to consider the true (even if approximate)

distributions of the residual auto- and cross correlations in

diagnostic checking if existing model inadequacy is always to
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be detected. When this is done these statistics remain useful
and important tools in examining the adequacy of fit of stochastic

and dynamic time series models.
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