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Introduction. In nonparametric inference, the importance
of the functional A(F) = ffmfz(x)dx, where F is the

population cdf with density £, could hardly be overempha-
sized. It is a fundamental guantity involved in the ex-
pressions for the asymptotic efficiency of rank tests for
many problems like location shift, regression, dependence,
analysis of variance, etc. Also in some cases, point as
well as interval estimates derived from rank tests have
asymptotic efficiency involving the above functional. By
a variational argument Hodges and Lehmann (1] derived the
lower bound of A(F) over the class of all absolutely con-
tinuous F with finite variance. Thus this bound provides
the guaranteed asymptotic performance of manv nonparametric
procedures. To assess the suitability of such a procedure
for a specific body of data in the absence of any knowledge
of F, an estimate of A(F) would be much desirable.

In this note we consider first the problem of estima-

tion of A(F) from a single sample. Let Xl, xz,...,xn he



~

. 2
(1.3) MY = by (X)) = [E (x)ax.

Example 1. Taking K(x)=1/2(0) according as |x|<(>)1, we
- -1l.n -1 3 _

have fn(x)—(Znh) Ej:lIi(x)’ where Ij(x)—l if Xj hsxng+h

and equals 0 otherwise. Noting that fIi(x)dx=2h and that,

for iFj, I;(x)I,(x)=1 if |xj—xi]52h and max (X, ,X,) -hexg

min(xi,xj)+h, and equals 0 otherwise, we obtain

(1.4) AR = (2nm) 2 [2nha254 (20 %=X, ),

where I'* represents the sum over all 1l<i<j<n such that
[Xj-xi]52h. ret w1 w2 4@ genote the orderea

values of the a=(g) differences IXi-Xi!r and set w!¥ =0,

(n )
W(a+l)=m. Denote by Ny the integer satisfvino W ° £2h
(n_+1)

and W °© >2h, Then (1.4) readilv simplifies to



~ n .
(1.5) A(X) = (2nh)—2[2nh+4hn0—22igow(l)].

To calculate the last term one need not compute all the
differences IXj-Xil and order them. It can be calculated
easily from the order statistics X(1)<X(2)<...<X(n) of X.

To see this, for i=1,2,...,n-1, let a; bhe the integer

<2h and X

0<a;<n-1 such that 05X(i+ai)ux(i)— - (i+a.+1fx(i)

v i
<2h, where we set X(n+1fm. Then we have I:OOW(I)=Zn"l
a.

i=1
i _eh=1 N
ijo[x(i+j)-x(i)] and no—£i=1ai, and hence A(%) has

apparently the form of a linear combination of order

statistics. The coefficients involved, however, depend

on h and {.

Example 2. Take X(x)=¢(x), the standard normal density
. 2 . -2.n n
function. From (1.2) we have ffn(x)dx—(nh) Ei=lzj=1

j¢[(x—xi)h'11¢[(x—xj)h‘11dx which by straichtforward in-

tegration yields

-1/2 1/2. -1

—1n—2 .

I

(1.6) AR = 2 3=123

h -1 o0 (X;-%X)2
In this case A(%) is a constant times the averaae of n2
standard normal densities evaluated at the points (Xi—Xi)/

(zl/zh), and hence it can be computed easily with the

help of a table of normal density.



2. Properties. In this section we study some properties of
the class of estimates given by (1.3). Denotinag by F
and G the cdf's of the random variables X and Y, respec-
tively, one can easily verify the followinae properties of
the functional A(F):(i) for anv constand d, V=X+d implies
A{G)=A("), (ii) for any constant d>0, Y=dX implies A(G)=
alA(F) and (iii) Y=-X implies A(G)=A(F). The followina

theorem states the similar invariance properties of the

estimates (1.3).

Theorem 2.1. lLet Ah K(E) be the estimate (1.3) based upon

h,K and the random variables X, and let ¥=(1,1,...,1) be

the unit n-vector. Then the following properties hold:

el

(i) for any constant 4, Ah’K(§+d¥)=Ah

XX
-1

K
A

(ii) for any constant d>0, Ah,K(dK)zd (h/d),K(x)

(iii) if K is symmetric about 0, Ay K(—§)=Ah'K(§).

Proof. Denotino the expression for fn(x) aiven in (1.3}

by qh(x,§) we have qh(x,¥+d¥)=qh(x—d,§), qh(x,d§)=

1
/4

Using these results, the proof follows bv inteagration and

a- (x/d,é),.hlaaK(v)=K(—v) implies qh(x,—§)=qh(-x,§).

simple transformation of variables.

The rest of this section is devoted to the studv of

asymptotic properties of A(X). To denote explicitlv the



sample size we shall henceforth write A(¥n)' The fol-

lowing regularity conditions will be needed in the sequel:

(A) sup{K(y);-w<y<wo}<w= and yK(y) -0, as |y|+w
(Bl) lim h{n)=0 and lim nh(n)==, as n-w«,

(B,) lim nh? (n)=e, as n+e,

Pheorem 2.2. If the function X(*) satisfies the condition

(A} and h=h(n) satisfies (Bl), the estimate A(¥n) given

in (1.3) is consistent for A(F) in the mean, that is,

E{E(%n)~A(F)|+O, as n-eo,

Proof. By Cauchy-Schwarz inequalitv,
=

(2.1) E| [1£2 (x) -£2 () ax | <BL/ 2 [ 1£, () +£ (x) ) ax
B2 f1e_ (0 -f(x)17ax

vging Fubini's theorem and (1.2), we have

(2.2) Pf_(x)£(x)dx = h™ [[£ (K (x-v)h "] £ (v) dxdv

Iff(x)K(Z) f(x=-hz)dxdz
<1f£2(x)ax1 /2 ([ [£2 (x-hz) K (2) dxdz] /2

= {£2(x)ax.

The last equality follows from fK(z)dz=l and jfz(x—hz)dx=

f£2(x)ax. (2.2) implies lim supE[f_(x)f (x)dx<[€” (x)ax.



On the other hand, by Theorem 1A of [3], Efn(x)+f(x)

at every continuity point of f, and hence an application
of Fatou-Lebesqgue theorem vields [f?(x)dx<lim inf
[E(OEE (x)dx. Combining the last two inequalities, we

have

(2.3) lim Rf€_(x)£(x)dx = [£7 (x)ax.

Again from (1.2) we have

(2.4) Ef£2(x)ax = (nh?) e fr? ( (x-x ) n " Y ax
+ (n-1) (nb?) THEZR T (x-x ) p M1 ax
= (nh) "1x%(v)dy + (n-1)n"3
[1[R(v) £ (x-hv) av] 2ax.
From (A) and (Bl), we have sz(y)dy<w and nh-+wo, So

the first term on the right hand side of (2.4} tends to

zero. Writing the integral in the second term as

[ [RA¥) K (w) £ (x-hv) £ (x~-hw)} dvawdx
and applying Cauchy-Schwarz inequality, we obtain

lim supk[£2 (x)dx<[£ (x)dx.

2

On the other hand, h EzKr(x—Xl)h_l] + Fz(x) at every



continuity point of f. These results and an application

of Fatou-Lebesque theorem yield
. 2 2
(2.5) lim Eff (x)dx = [£5(x)dx .

Use of (2.3) and (2.5) in (2.1) completes the proof of
the theorem. As a consequence of the above theorem we

have immediately

Corollary 2.1. Under the conditions {(A) and (Bl), A(%n)

is an asymptotically unbiased and consistent estimate of

A(F) in the probabhility sense.

Theorem 2.3. If ¥(*) satisfies (A} and h=h{(n) satisfies

the condition (Bz) in addition to (Bl), then Var[A(%n)]+0,

as n-e,

Proof. From (1.2)

1

4zln{jxr(x-xi)h' ]

(2.6) E(f£2(x)ax)* = (nh)”
K[(x—xi)h—lldx .

IK[(x—xk)h‘l]R[(x-wr)h'l]dx}

where 21 is the sum over all 1<i,j,k,r<n. In this sum
the total cont¥ibution from the terms with i,7,k,r all

different is



(n) , (nh) “HE[R( e-x DR THIRT-X,) 0 Y ax)?,

where (n)k=(ﬁ)k!. As n»«, the ahove guantity converages
to (Je2(x)ax)2.  Since 0<hfK(x-u)X(x-v)dx<h[k? (v)dy<e,
the contribution from all the remaining terms is at most
(IKz(y)dy}zn_4h_2[n4-(n)4] which tends to 0, as n-+eo,

Hence we have

(2.7 limE[fe2(xax1? = (Jefmax? .

{2.5) and (2.7) together comolete the proof of the theorem.

As an immediate consequence of the ahove two theorems

we have

Corollary 2.2. Under the conditions (2), (Bl) and (Bz)

the estimate &(én) is consistent for A(F) in quadratic

mean.,
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éEfgffgﬂfigﬂ,ﬁﬂgégfﬂffkﬁf A simple extension of our

estimation procedure is considered here for the case of
several samples from populations differing only in loca-
tion. For i=1,2,...,c, consider random samples xi =

a [}
(Yil'YiZ""'Yini) of sizes n; from cdf's F1531

Denote the complete set of n=2§_lni observations hv

X = (Xl,xz,...,xc). For the case c¢=2 and Fi(x)=

F(x—ei), i=1,2 Lehmann [2] derived a confidence interwval

for (92—81} using the Wilcoxon test. If D(1)<D(2)<...
(n,n3)
<D 172 denote the ordered differences (YZﬁ_vli)' the
100(1l-a)% confidence interval is given by [n,.,n;.] where
LU
(b) (n1n2+1—b)
nL=D R nU=D , and for large ny and n,, h =

_ 1/2 1/2 .
nln2/2 Ta/z[nnlnz/IZI +o(nnln2) . It is further

proved in [2] that

172, ay1l/2..2 -1
(3.1) n S ngmng) T, (310 ] [£9 (x)ax]
in probability, if nl/n =i, 0<A<1, Hence
1/2 -1
Ta/z[n/(3“1n2)] (ny-ng)
provides a consistent estimate of ffz(x)dx. An exten-

sion of this method to the case ¢>2 was consgidered bhv
Senl4] c¢f. . 1768. No other propvertv of the estimate

besides consistency in probability is known, Por o>2,
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the method is computationally cumbrous due to the fact
that the solution of the system of equations (5.11) of [4]

requires repeated ranking of (Yll""'Yln ,Y21+a2,...,

1
Y2n2+a2,...,Yc1+ac,...,chc+ac) with different trial
combinations of Ao rlgreesrgs This is extremelvy tedious

when c and the ni's are even moderately large.

The extension of our estimate (1.3) to the above

gsituation is straightforward. From each sample Ii one
can construct an estimate A =If§ (x)dx, where
i i
-1 -1
(3.2) fni(x) = (n;h) Zj=lK[(x-Xij)h 1.

~

Due to translation invariance, An , i=1,2,...,c all
i

estimate A(F)=ff2(x)dx, if the model F, (x)=F(x-0.),

i=l1,2,...,¢ holds, Moreover, these are independently

distributed. As the natural combined estimate, we

propose

(3.3) 5. () = n"t5$_in.a

Using Theorems 2.1 and 2.2, we have at once the followine:

Corollary 3.1. 1If, for every i=1,2,...,c, n,+w, as

n+», and X and h satisfv the conditions (%) and (Bl),

r

respectively, then An(x} given in {(3.3) converges in
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the mean to A(F). If, in addition, h satisfies (Bz),

the convergence holds also in quadratic mean.

Finally, we remark that if the individual cdf Fs
are not, in fact, translates of one another, it is hard
to interpret the estimates in [2] and {4], in the sense
that one has no idea of what these are estimatinca. The
properties of En(x) given by (3.3), however, remain
clear even when the translation model does not hold.

If, as n-eo, ni/n+Ai, i=1,2,...,c, then gn(x) esti-

c 2 . .
A.Ifio(x)dx, where fio is the density of P

mates Zi=1 i

Consistency in the mean and mean sguare still hold under
reqularity conditions stated in Corollarvy 3.1.

Estimates of more complicated functionals of f
which also often occur in the same situations as those
described in Section 1, will bhe discussed in a forth-

cominao paper.
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