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Summary

Recent work by G. E. P. Box, of the University of Wisconsin, and
G. M. Jenkins, of the University of Lancaster has led to simple models for
stationary and non-stationary time series. The approach used is essentially
that proposed by Zadeh and Ragazzini in 1950 [1] and 1952 [2], but Box and

Jenkins have looked at the problem from the point of view of the statistician.

Thus, while Zadeh and Ragazzini were concerned with analytic reduction of

random processes to white noise, Box and Jenkins are concerned with empiri-

cal reduction of time series to uncorrelated residuals [3,4, 5, 6]. Another

important aspect of Box and Jenkins' work is that of developing useful models
for seasonal time series. This paper presents an introduction to parametric

modeling of time series, using the Box-Jenkins approach [3,4,5,6].



1. Introduction

1.1) Approaches to time series analysis

Figures 1.1, 1.2, and 1.3 show three time series which have arisen
in various fields. How would you characterize these series?

The answers given by people confronted with data like that shown in
the figures fit into three main categories. First, how much "memory” exists
in the waveform — that is, does the value of the series at time t depend very
strongly on previous values, say at time t-T? This is basically the corre-
lation analysis approach. The second mode of investigation is to analyze
the "frequency content” of the waveform, the power spectrum approach. Is
the time series composed predominantly of high or low frequencies, or is
their a tendency to oscillate? The third approach is to fit a random pfocess
model to the series. The model, if properly chosen and fitted, can then be
used to forecast future values, so that this third method may be somewhat
more powerful than the previous ones for some uses. All the approaches are
complementary, however, because they all contribute information about the

time series, and because they can be used as mutual corroborators.

1.2) Mathematics of time series analysis

A time series analyst is faced with a formidable problem, and as a con-
sequence, must invoke equally formidable mathematics. In particular, he
must have considerable facility in likelihood and least squares estimation
theory, and in operational and transform calculus. These techniques will be

introduced and developed at appropriate points in the text.
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2. Probability models for time series

The statistician's approach in describing time series such as those
shown in Figures 1.1 to 1.3 is the same one he uses to describe any non-
deterministic phenomena — he invokes a probability model. The big differ-
ence in the time series case, however, is that independence of observations
is not assumed — in fact, it is the dependence between observations which
is of interest! The particular probability model used depends, of course, on

the time series being studied, but there are some general principles which

apply.

Continuous or discrete

First, it is useful to distinguish between continuous and discrete time
series. An example of the former is the fluctuating thickness of paper as a
function of length; an example of the latter is the weight per unit length of
paper. Note that these sets of ordered observations are not direct functions
of time, and yet they are called time series.

Discrete time series may be obtained by sampling continuous time
series. Since much of the computation and analysis is done using digital
methods, the remainder of the paper will assume that the time series are dis-
crete, and for simplicity that the observations are at unit intervals. The
time series is then denoted by {zt}, where the index t runs from 1 to n for

a series of n observations.

Random processes

The time series may be described by a set of n random variables
(rv) 2, t=1,2,...,0, and and n-dimensional probability density function

(pdf) f] 2 n (Zl’ 2oy zn) defined on the n dimensional sample space



.,n. The set of rv's may be written as {z.}, which de-

-c:o(zt <o, t=1,
notes a random process. The pdf fl 2 (zl, Zopye 32y ) may then be
written f{Z ) (z), which denotes the temporal nature of the random process

{Z 1. That is, the pdf f{Z } (z) may depend on the origin of time t. In

such a case, the random process {Z } is called non-stationary, since the

probabilistic characteristics of the process change with time. If the pdf

£ (z) = f1 (z) (2.1)
{Zt} {Z t+k}

for all k, then {Zt} is stationary. It will be seen that stationary processes
may be used to generate and describe non-stationary processes, and so we
shall be concerned mainly with statienary ones. For stationary processes,

the pdf will be written simply as fZ(E)'

A particularly useful random process

A particularly useful probability model for the random process {Z‘t} is
the multivariate Normal pdf. This pdf may be written concisely in matrix

notation as

fp 2) = — e - lz-w ¥ (zop) (2.2)
(2m? v|?

-1 . . .
where V ° is the inverse of the covariance matrix v,

('2 ~

7y %P1 "1%3P13 o0 “1%PIm

2
%P2 %2 0,03Pp3 +orr T2%,Pan
v - 2 (2.3)

T,93P13 929323 93 ceer T304P3y

g.0_p p G0 _p 2

1 nin 2n2n 3 n 3n n




Hence the multivariate Normal pdf is completely specified by the n
parameters By the n parameters 0y and the (n-1){n)/2 correlation coef-
ficients py;, i=1,...,n, ] =i+1,...,n. I {2z} is stationary, the
covariance matrix reduces to

- 2
1 P1 ) e Ph-1
Py ! P e Ppop
2
V= |op, 0y 1 B (2. 4)
Lpn—l pn—2 pn-3 o 1
~

so that knowledge of the parameters u, 02. and the correlation function P,

k=1,2,... implies complete knowledge of the pdi.

3. Linear random processes

A particularly useful class of probability models for time series are
linear random processes. These are important because they are mathematic-
ally tractable, and because they are flexible enough to describe many time
series. The role they play is equivalent to that of the linear differential
equation in the study of deterministic systems such as in mechanics or con-

trol theory or physics.

3.1) Linear discrete random processes

Discrete linear random processes are described by linear difference
equations relating an "output" random process Zt to an "input" random pro-

cess At. That is



Zy = ¢12t-1 +...+ ¢pzt—p+At—elAt—1_"' _qut-q (3. )

This process is an autoregressive-moving average (ar-ma) process of order

(p,q). Special cases of these mixed models are now considered.

3. 1. 1) White noise
As a particularly simple example, consider a random process Zt =A t?
t=0, #1, £2,... where A, is independent of all other values At—l’ At—Z’ e

.., A The random process At is called "a purely random

pe12 By

process, " or "white noise,” and may have any pdf fA {(3). If the process
t

A, 1s stationary, then fA (a) may be written fA(a), and we shall assume

t
that this is the case. As an example of a stationary white noise process, we
could imagine random numbers At being generated by a computer at a constant
rate. An example Is given in Figure 3. 1.

This concept of a white noise signal is of central importance in time
series analysis, just as an independent observational error is in crdinary
statistical analysis. The reason is that the next value of the white noise
process A, is unpredictable even if we know all previous and subsequent

values Bpapr Bpapr e ¢ We shall reserve the symbols At and a, for white

noise processes only,

3.1.2) Moving average processes

The next simplest linear random process is the moving average (ma)}

process. For example, the first order ma process is

Z = At_elAt_l . (3'2)

t

An example of a first order ma process with 01 = .25 1is given in Figure 3.2,

In general, a qth order ma process is
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7 =A, -OA . -0A _-...-8A . (3.3)

3.1.3) Autoregressive processes

Another simple form of linear process is the autoregressive (ar) process.

Tor example, the first order ar process 1s

Z, = o2

¢ Zio1 +At . (3.4)

This states that the next value, Z of the process is given by d)l times the

t’
previous value plus an unpredictable quantity or innovation A £ Realizations
of first order ar processes with d:l = +.9 and ~-.9 are shown in Figures

3.3 and 3.4 respectively. The general pth order ar process 1s

Zt = ¢12t_1 +ci>2.Zt_2 + ... +¢pzt—p+At . {(3.5)
A realization of a second order ar process, with c|>1 = +1. 0, 4)2 = -.5, Is

shown in Figure 3. 5.

3.2) Properties of stationary random processes

3.2.1) White noise

A white noise process At is a random process in which the joint pdf

factors,

= ¥
B a ...a @pageesa)) = £ () (a)- 5 @) (5
t ¢ t t t t
1 2 n 1 2 n

that is, the rv's AL AL .. A, are completely independent. In this case
1 2 n
0 1:1 # tz
Cov (A, ,A = (3.7)
[tl tz] a2 b, =t
ty 1 2

and hence the rv's A . and A ¢ are uncorrelated for all 1:1 and t, not equal.
1 2
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FIGURE 3.3 A REALISATION AND THE AUTOCORRELATK
FUNCTION OF A DISCRETE FIRST ORDER

AUTOREGRESSIVE PROCESS (¢ = + 9)
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FIGURE 3.4 A REALISATION AND THE AUTOCORRELATION

FUNCTION OF A DISCRETE FIRST ORDER
AUTOREGRESSIVE PROCESS (¢ = — .9)



3.2.2) Autocovariance functions

One useful way of characterizing a time series and a random process
is by its autocovariance function (acvf) or its autocorrelation function (acf).
This is particularly true if the random process is Normal since, as stated in
Section 2, knowledge of the acvi implies complete knowledge of the joint

pdf.

For a general random process Z,, the acvi Cov [Zt 1, th] will be a
function of the times t; and t,. For a stationary random process, however,
the acvf will be a function only of the time difference or lag 7 = t2 -ty
For example, for stationary white noise, Var [At] = tri is independent of t,
and the acf p(tl-tz) = p(u) consists of a value unity at u=20, and 0 for

u#0. As a second example, the first order ma process (3.2) has an acvt

and acf of

r r
(1+0%)c% k=0 1 k=0
2 !
YZZ'(k) = 4 —Bltr k=+1 pZZ(k) = ¢ > k=%l (3.8)
1+91
0 k|22 0 lx|z2
respectively.

These may be derived as

Cov [ZtZHk] Yzz (k) = Cov [(At— Opi1h Bpgk” elAt+k—l)]

1]

Cov [At,At_l_k] -6,Cov [At, At+k_l] 3. 9)
-9.C A +0%Cov[a, A
7%V E*t—l’ t+k] T S t+k—l]

But from (3. 7)



0  k#0
Cov [At’ At+1<] = {2

Hence, for example, for k=0, (3.9) becomes

F

2 2 2. 2
V57 (0) = Cov [zt,zt]= 6% +0,(0) +6,(0)+07 0" = (1+07)0

The correlation function pzz(k) for the first order ma process is 1 for
k=0, is between -.5 and +.5 for k=1, and is 0 for |k{>1. Note that
any value of 91 is permissible and yields a stationary process.

th .
For a general g order ma process,

r

1 , k=0
-0, +6.,6 +...40 6
pZZ(k)=J k 1k+12 qlgq, k=x1,%2,...,xq (3.10)
146.+6, +...+6
1 72 a
0 s x| >q

One important point is that pZZ(k) is zero for |k| >q.
Correlation functions may also be derived for ar processes. For example,
for the first order ar process (3.4)
ki 2
ol

5 k= 0, %1, %2,... (3.11)
1- 69

YZZ{k) =

This may also be derived from basic principles as follows. For kz1,

Cov [Zt—k’ Zt] '\{ZZ(k) = Cov [Zt_k, ¢12t_1 +At]

i

$, Cov [zt_k, zt_q $0 = by (k1)

since At is independent of previous Z,. Thus, YZZ(k) satisfies a recursive
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equation. It follows, therefore, that

k
Y Ak) = 41 Y,,(0).

But Yy, (0) = Cov[zt, Zt]
= Cov |[{¢,Z4, ,+A), ($.Z2, . +A) = ¢z (0)-'-(r2
1%6-1" 7 YWr1%-1 1 Y77 .
2
Hence Ypz(ON1-05) = o°.
Finally, since Vyz7(k) = Cov [Zt’zt+k]: Cov [Zt—k’ Zt]
(3.12)

= Cov [Zt, Zt—k]= yzz(—k) ,

the result (3.11) follows.

The theoretical acf's for the ar processes shown in Figures 3.3, 3.4,
and 3.5 are shown in the respective diagrams.

The correlation function for an ar process shows how, on average, the
value of Z‘t depends on previous values Zt—k' For <1>1 near +1 (but <1), Zt
is strongly dependent on Z’t—l’ and hence the process “remembers” well, or
has much "inertia," or is "smooth." This is reflected in the acf, since
pZZ (k) = ¢1 pzz(k—l) and hence the acf is very smooth. (See Figure 3. 3.)
For cbl near -1 (but>-1), Zt is strongly dependent on Zt—l’ but with op-
posite sign. (See Figure 3.4.) Hence this process tends to fluctuate strong-
ly — and so does the acf. For ¢1 near zero, Zt depends little on Zt—l and
as expected the process tends to be very noisy, or white. For |¢1| >1, the
process "blows up" and is said to be "unstable" or non-stationary. For

|¢1| =1, the process is non-stationary in a special peculiar way, and this



FIGURE 3.5 A REALISATION AND THE AUTOCORRELATION
FUNCTION OF A DISCRETE SECOND ORDER
AUTOREGRESSIVE PROCESS (¢h,=1.0, ¢z ~0.5)
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special case will be discussed more fully later.

For a general pth order ar process, the acvi satisfies the following

recursive relationship

Vo (k) = & ¥, (k=1) + dyv, (k=2) 4o+ b vy, (k-P)
(3.13)
k21

with the additional conditions (3.12) and

(- 6302 - = 42045 (0) = 200 byt dpdat o+ o100 ) Vg (1)

2
=0

- 2(¢1¢3+ ¢'2¢4+' .. +¢p_2¢p)\’ZZ(2) T T 2(¢1¢p)‘{zz(p_1)
(3.14)

Note that the acf of an ar process does not truncate, in general, as the acf

of an ma process did.

Of special importance are the first and second order ar processes.

For p=2, the acf may be written in closed form as

k) = a c1|k|+a o, ¥l k=0,%1,%2,. .. (3.15)

Y77 ] 2%2 ’

If the constants ¢y and c, are real and distinct, then yzz(k) is a

sum of two geometrically diminishing terms; if the constants are complex

conjegates, then YZZ(k) is a damped oscillatory function. (See Figure 3.5.)

It is seen that this process, involving only two parameters, can produce a

wide variety of acf's, and hence the process should be able to model many

stationary time series.
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Acvf and acf estimates

Estimates czz(k) of the acvi yzz(k) of a time series Z 4 t=1,2,...,n

may be calculated [7] as

1 Rk _
czz(k) =4 tEl(zt - z)(z

ik z) (3.16)

where

- 1 b
z =g Z z . (3.17)

For example, for the series 1,6,6,4,3 with n=5,

z = %{1+6+6+4+3} = 4

so that
c, (0) = %'{{—3}2+22+22+02+(-1)2} - 3.6
o (1) = ${(-3)2)+2(2)+2(0)+(0)-1)} = -.4
c, (2) = %{(-3)(3)+2(2)+2(—1)} = -1.6
¢,,3) = F{-3)0)+2(-1)} = -.4
o, (4) = E3-1Y = .6
c, (k) = 0, kz5.

Estimates of the acf rzz(k) of pzz(k) may be obtained fromthe acvf esti-

mates czz(k) using
czz(k)

I‘zz(k) = m (3.18)
ZZ
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For the above series of 5 observations, the sample acf is

rzz(l) = %—% =-.,111
r,,(2) ='§1'—% = ,444
r,,(3) = -. 111
rZZ(4) = 167

- >
rZZ(k) - 0 y k=5

3.3) Operational methods

3.3.1) Shiit operators

A very useful way of handling linear models is to use a shift operator.

This is an operator which, when operating on At, produces At—l’ that is

BAy = Ay

and (3.19)

ky o
BA, = A,

(Systems engineers may be more at home with the A -1 notation. ) In the B

notation, the first order ma process (3.2) becomes

Zt = (1—91!3)@;t

and similarly the first order ar process (3.4) becomes

24

o B2, +A,,
or
(1-6BF, = A, . (3.20)

Dividing through by (1 —¢1B) gives Zt in terms of At as
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Expanding the operator

= 1+¢B+ (c§>1B)2 ..

1-¢1B
gives
A =(1+¢B+¢ZBZ+ )A
t 1 1 SRt
= A +oA, L+ A, L+ 3.21
B I't-1 I"t-2 " (3.21)

and hence the ar process can be written equivalently as an infinite ma pro-
cess. Conversely, for the first order ma process (3. 2) we may reverse the roles

of Zt and At and regard At as an ar process driven by the Zt' Hence, by

writing
A, = —— 7 (3.22)
t l-GlB t :
we find
_ - 2
Ap = 2¢F 092 = 9%t (3.23)

Regrouping expresses the ma process At as an infinite ar process

-— —a 2 —
Z, =A -0Z  ~0]% ... (3.24)

For higher order ma, ar, and mixed ar-ma processes the operational

equations become

p - q
(1-¢1B—...—¢pB )Z, = (1—9113-...—qu )A,. (3.25)

These may be rewritten to show Z.t as the result of operating on At as
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(1-0,B-...-0 B8Y)
Z, = 9 = Ay = H(BR, (3.26)
(1- ¢,B-. ..~ ¢ B")

or to show A, as the result of operating on Zt’ as

(1- & B-...- & BP) _
A, = L P_ 7 = H (B, (3.27)
(1-918—...—quq)

It At is considered the input to a system and Z,E is the response of the

system to that input, then H(B) is referred to as the transfer function of the

system.

3.3.2) Weighting functiong

The transfer function H(B), which for linear systems is a ratlo of two

polynomials in B, may be expanded as an infinite polynomial in B, that is

1-9.B-0.B%-... -0 BY

_ 1 2 q

H(B) = > =

1-,B-,B~... - ¢ B

_ 2 k

= 1+h1B+h2B +.. .+th +...
% k

= = hB° . (3.28)
k=0

The set of coefficients hk’ k=0,1,..., so obtained is called the

weighting function or impulse response of the system, and is writien simply

as {hk}‘

For example, for the first order ar process (3.20)

H(B) = l_ilB (3.29)
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If M:l | <1, this may be expanded as

H(B) = 1+¢>1B+¢?B‘2+...
" (3.30)
=z ¢tk
k=0
Thus, {h.} = o , k=0,1,2 (3.31)
2 k 1 ? b ;B B .
Tor the ma process (3.22)
H(B) = 1-96,B
and 1 k=0
{hk} = {-8, k=1 (3.32)
0 k=2,3

The transfer function H(B) and the weighting function {hk} completely
characterize the random process just as the difference equation did. The
weighting function, however, provides a pretty interpretation of the process,
since it shows how well the process "remembers." For example, for the
first order ar process (3.18), the output Zy at some time t is, from (3.31},

[*e]
_ 2 -
Zy = Apt OAp AL gt = B PPy (3.33)

Thus, the value of Z at time t is a weighted sum of past values of the

input Ay If <1>1 is small, say .1, hk 4:1; is very small for kZ 2, and
hence the output Z‘t does not "remember"” or depend strongly on previous values
of the input. For cbl large, say .9, hk is still greater than .5 for k=6,

and hence 7, "remembers” A, . by about . 54.

For a qth order ma process, hk =0 for kZgq+1, and hence the output
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Zt completely forgets inputs which occurred more than (g+1) intervals ago.
The extent to which the weighting function damps out is a measure of

the lack of inertia of the system, and hence of the noisiness of the random

process Zt' Thus, the weighting function conveys the same kind of informa-

tion as does the acf or acvi. In fact, for white noise input

Vzz(K) = B [zt'zt+k]

E [(hOAt FRA, A F A

Q0
_ 2
+hkAt+hk+1At_l+...)] I uz=:0huhu+k (3. 34)

which shows how the acvf and the weighting function are related.

3.4) Non-stationary processes

It was stated in Section 3.1 that a process is termed stationary if the
joint pdf's of the process remain unaltered under a shift of origin. TFor some
time series, such as the one shown in Figure 1.3, itis clearly unrealistic to
attempt to describe them by random processes which are stationary. Hence
we must invent some ways of describing and characterizing non-stationary

time series.

3.4,1) A first order process

One way is already at hand, since our linear models can describe non-
stationary processes as well as stationary ones. To illustrate, consider the

first order ar process (3.4)

t = ®1%e-1 T A (3-33)

where, as before, A, is a stationary white noise process.
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Writing this entirely in terms of the At, as in (3.21), gives

_ 2 k
Zt = At+ ¢1At__1+ ¢1At~1+"'+¢lAt—k+”' (3.36)
Hence Z‘t vremembers" the input of k units before by an amount d:]i. For

stationary processes I¢1 | < 1 and hence past inputs receive weights which
are less than one, and which decrease as the time difference k increases.

If |¢1| Z 1, then Zt "remembers" previous inputs by an amount

k
|7

Z.,c depends overwhelmingly on remote past values and the process diverges

| = 1, and hence the process is nonstationary or unstable. If |¢1| > 1,

or explodes. Hence this linear process may be used to describe the begin-
nings of epidemics where the physical system may be safely assumed linear.
If |¢11 = 1, the process is nonstationary, but in a peculiar, useful
way. Thus, if ¢, = -1, the process tends to act like a noise-driven oscil-
lator whose amplitude of oscillation may vary without bound. A more impor-
tant case is when $; = +1. In this case, the first difference 4 -2, |,

written V.Zt, is stationary white noise. Operationally,

VZ, = (1-BE, = %,-Z, (3.37)

or 1

+ A, = A A, FA, ... = 5By (3.38)

That is, Zt is the sum of the present plus all past inputs.
This random process has no moments in general, but in contrast to the
process for which |<1>1 ! >1 its behavior is not explosive, but "homogeneously"”[4]

nonstationary. In this case, the process Z, = SA, tends to fluctuate about a

discontinuous level. An example is shown in Figure 3.6. Hence the process

Z.t defined by VZt = At is termed nonstationary in the mean.
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3. 4.2} OStability and stationarity regions

The stationarity of an ar process may be very simply determined by in-
vestigating the transfer function H{B). Thus, for a general pth order ar

process,

1
H(B) = (3.39)
1-4,B -¢2B2 ;e qapo

The denominator may be factored into p simple factors

]
HB) = GBI a,B). (=a_B) (3.40)

when the 2 will either be real, or will appear in pairs of complex conjugates.

For example, for p=2,

1 1
H(B) = > = (3.41)
e N s N
1- 5 1- >

and if 4¢2 < -d)?, @, and @, are complex conjugates, while if 4¢>2 > —¢§,

& and @, are real.

When the @ are all distinct, that is no multiple roots, H(B) may be

written as a sum of terms

c, c, C
RB)Y = T By * Toa,m Fooo? (1= B) (3.42)

by using partial fractions. Expanding each term as in (3. 30} and writing

o0
H(B) = ©* h.B
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gives

_ k k k
hk = Clal+cza2 +...+Cpap (3.43)

It is easily seen, therefore, that in order for the system to be stationary (or
stable) all the terms 2, i=1,2,...,p must satisfy |ai| < 1. Hence the

stationarity condition for a general pth order ar process is that the roots,

B, = l/ari of the equation

(1—¢1B-—¢2B2—...—¢po) = 0 (3.44)

must lie outside the unit circle |B| =1, These relationships are well known
to control engineers who have had experience with discrete control systems.

Further, if the roots B, of the equation lie inside the unit circle, the
process is explosive. If the roots lie exactly on the unit circle, the process
is termed homogeneocusly non-stationary.

th

When the r root is repeated d times, say, the same stationarity con-

ditions apply, but now the partial fraction expansion (3.42) becomes

< crl Crz
H(B) = 7r—=7 +...+ 75 + . +. ..
(1-aB) (1-a_B) * (1-a_B)
o (3.45)
r C
S ——p-d
+ d * e tiTe B
(1—-arB) p-d

A term of the form 1/(1—arB )d+1 corresponds to a weighting function hk of

the form
k+d g
= @ (3.46)

d r

For example,
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1
(1-6B)%

It

H(B)

(1+6B+6°B% +... )

1+B(26)+B2(36°)+B (467 ) +. . .

[+ 0] oC
S T
k=01 1 k=0

In the special case of homogeneous nonstationarity of order d,

HB) = —— (3.47)
(1-B)
and
k+d-1
hy =( o ) (3.48)

3.4.3) Integrated ar-ma processes

The above results and the results of Section 3.2 may be combined to
give a very powerful model for nonstationary processes. This model is termed [4]
an integrated-autoregressive-moving average model (i-ar-ma), of order

(p,d,g) and has the operational form

(1-Bf%1—¢1B—...—¢po)Zt = (I—BIB-...—quq)At (3.49)

Thus, the dth difference is a stationary mixed ar-ma model. The transfer

function is

ap.  _ned
(1-0,B-...-0 BY)

1

(3.50)
(1—B)d(1—¢1B—...—¢po)

H(B) =

which may be written
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HB) = —Bl (3.51)
(1-B) ¢(B)

Hence (3.49) may be recast as

¢(B)z, = (TB%:EAt (3.52)

If now values z, of Zt are given for t=0,1,...,d-1, then the value of

Zt may be written as an ar model in terms of a complementary solution which

depends only on initial conditions and which is a polynomial of order {d-1)

in t, and a particular solution which involves weighted sums of the At' That

is, the solution is

_ - d-1, 6(B)
$(B)Z, = C o th...tog jt + 33, (3.53)
(1-B)
t=d, d+1,. ..
A, = a, t=0,1,...,d-1

For example, suppose ¢(B)=1, 6(B)=1, d=2 so that

V®Z, = A,
or 1
H(B) = >
(1-B)
Then if 2,524 Zy =2
t-2
Z, = c topt+ k2=30 (k+1)A, t=2,3,...

where c_ =z
o)



c, = [z

1 ~Z5) -

1

Hence Zt consists of a random component involving the A £ and a

linear deterministic component in t. Hence this random process will fluc-

tuate about a trend line whose initial slope is Cy = 2y~ Zy

It is apparent, therefore, that by using a general i-ar-ma model of

order (p,d,q) we can describe many stationary and nonstationary time series.

4. Titting Models

Having decided that i-ar-ma processes are sufficiently flexible and
physically interpretable models for time series, the remaining problem is to
estimate the parameters for a particular case. This involves a three-stage

iteration procedure consisting of identification, estimation, and diagnostic

checking [5].

Identification consists of using the data and any additional knowledge

to suggest whether the series can be described as stationary or nonstationary,
and as ma, ar, or mixed ma-ar.

Estimation consists of using the data to estimate, and make inferences
about, values of the parameters conditional on the tentatively identified model.

Diagnostic checking involves examination of the residuals from fitted

models, which can result in either
(a) no indication of model inadequacy, or
(b) model inadequacy, together with information on how to

better describe the series.

Thus the residuals a, would be examined for any lack of randomness, and if

t
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the residuals are autocorrelated, this information would be used to modify
the model. The modified model would then be fitted and subjected to diag-

nostic checking.

4.1) Identification

The task is to identify an appropriate model of the form

(I-B)d¢p(B)Z't = 0, +0,(B)a, (4. 1)

which may be used to describe a given time series. The approach is to
difference to produce stationarity, hopefully reducing (4.1) to the mixed

ar-ma model

¢,(B)Y, = 8, +8 (B)a, (4.2)

where vy = (l—B)c1 Zys and then to identify the model. A powerful comple-
mentary identification tool, the partial acf [5], can also be used, as illus-

trated below.

4.1.1) Differencing

Nonstationarity is suggested when the sample acf does not diminish
at large lags. When the original series or acf exhibits nonstationarity,
successive differencing is carried out until the acf of the differenced series
dies out rapidly. It is usually sufficient to look at the sample acf of the

original series and of its first and second differences.

(d)
k

acvi's Yy of the original series, since

The acvi vy of the differenced series may be computed using the
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(1) _ _ -
S S Rla (N S )

and

(2) _ _ _
Yo T Vg M POV A T e,

For finite series, these relationships are approximations, due to loss of
terms from the ends of the series as a result of differencing. For long
series, these end effects are usually small, and hence the sample acvi's
of the first and second difference series may be derived from those of the
original series by simple differencing, with considerable savings in com-
puter time. These autocorrelations are generally calculated up to a max-

imum of 20 lags.

4.1.2) Identification via the autocorrelation function

It was shown in Section 3 that the theoretical acf for the pure ma
process Yt = eq(B)At truncates, being zero after lag q, while that for the pure
ar process cbp(B)Yt = At is of infinite extent. Moving average processes are

thus characterized by truncation of the acf while autoregressive processes are



5.1) Maximum likelihood estimation of autoregressive parameters

Suppose that it is required to fit the autoregressive model

Zy = bg t 0Ty e kST A (5. 1)

to an observed time series z,, Z,,..., 2. The fitting procedure involves

two stages:
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is the sum of squares function

n
- o 2
S(¢o,...,¢plzl,...,zp) = t=2p+1{zt_ b 02~ 0 F ) (504

The maximum likelihood or least squares estimates may then be obtained by

differentiating {(5.4). A special case is now considered.

First order autoregressive process (p=l)

Differentiation of the sum of squares
n

S(6,0) = Z {zm 45 bz, )
fo

gives rise to the normal equations

Mo

z,_ (295927 = 0

t=2

where El’ z, are the means of the first and last n-1 observations. On sub-
stituting the first equation into the second and rearranging, the final form of

the estimation equations is

L

b, =

Mo

(2, - 2)Nz,~ Z,) tfz(zt'l_ 7)) (5. 5)

o+
Il
™~

Since }‘l and 52 will be very close to the overall mean z, the estimate ¢;
may be approximated by Ty

The residual sum of squares
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- - n -~ ~ 2
S(bgrby) = = ootz g}

may be simplified to give

n n

- FS _ — 2 ~ - -—
t=2 t=2

Since there are effectively n-1 observations in S(d)o,c[:l) and two degrees of

freedom are lost in fitting the constants ¢o’ ¢l, the variance of A, may be

estimated from

2 _ 1 ~oo
a = n-3 S(d)o’d’l)

The 100{1-a)% confidence interval for el is approximately

2
Sa fl, I_1_3(1—1:1')

(4,-8))° = (5.7)

n
Z (z,- 5)2
t=1

where fl (l-2) is the (l-a) probability point for the F distribution.
,n-3 1,n-3
The correct order of the ar process can be determined by looking at the
residuals from the fitted model, and by looking at the autocorrelation function

of the residuals, as mentioned in Section 4. 2.

5.2) An example
The data of Figure 1.2 yields the acf and partial aci

shown in Figure 5.1. From the plot of the original data and from the acf's,
the original series may be identified as stationary and autoregressive of order
p=lor2. This identification may be confirmed by using the partial acf test

statistic of Section 4. 1.3,
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Table 5.1: Test statistic for the order of an ar process

p=k Rk 1'96/'\/H
1 -.40 .23

2 .19 .23

3 . 01 .23

4 -. 07 .23

5 -. 07 .23

6 .15 .23

7 . 05 .23

8 . 00 .23

All of the test statistic values lie within the 95% limits of =+I. 96,/Nn except
for p=1. Hence it may be concluded that the series is described adequately
by a model of order p=1. The value for p=2 is quite large, however, and
hence it is wise to fit both a first order and second order model.

The approach of Section 5.1 yields the values &)1 = -.39 for the first
order model, and $1 =-. 32, J:z =+, 18 for the second order model. The sum of
squares contours for the second order fit are shown in Figure 5.2 with the 95%
confidence region. It is concluded that a second order model is necessary to

adequately fit the data.

5 3) Estimation of the parameters of a moving average process

The first question which has to be decided in order to fit a moving average

process

Z, = O +A + OB b0 A, (5.8)

is the appropriate order q for the model. The method of analysis is not as
simple as that for the autoregressive process because it is difficult to write

down an explicit form for the likelihood function of the process. However,



and contours of constant sums of squares sketched in. If the minimum value
of the sum of squares for a fixed value of q is denoted by S(eo,él, .o ,eq)

the confidence region may be obtained by locating that contour for which

~ -~

_ - g+l _
5(8,01,---50,) S(eo’el""’eq)(l+n—(q+1)fq+l,n-q—1(1 @) )
(5.10)
5.4} An example
The data of Figure 1.1 yields the acf and partial acf

shown in Figure 5. 3. From the plot of the original data and from the acf's,

the original series may be identified as stationary and first order ma or ar.



order moving average model can be fitted to these dirferences ol Lhe dala

using the approach of Section 5. 3.
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