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nations of t and x . The top 2 rows are 8 random selections for baseline age of 70.
The bottom 2 rows are 8 random selections for baseline age of 50. . . . . . . . . 57



viii

4.1 Simulated data fromTi = 1+2Xi +N(0, (1+Xi
2 )2)with about 50% right censoring.

The plots in the top row correspond to sample size of 50. The bottom row is
for sample size of 300. Red crosses and black pluses are for observed survival
times and censored times respectively. . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Simulated data from Ti = 1 − 2X 2
i + N(0, (1+Xi

2 )2) with about 50% right cen-
soring and sample size of 50. Red crosses and black pluses are for observed
survival times and censored times respectively. . . . . . . . . . . . . . . . . . . . 61

4.3 Simulated data from Ti = 1 + 4Xi sin(πXi) +N(0, (1+Xi
2 )2) with about 50% right

censoring and sample size of 50. Red crosses and black pluses are for observed
survival times and censored times respectively. . . . . . . . . . . . . . . . . . . . 61

4.4 Summary of results for modelTi = 1+2Xi +N(0, (1
2 +ρXi)

2)with ρ = 0, 0.2, 0.4, · · · , 1. 62
4.5 Summary of results for modelTi = 1−2X 2

i +N(0, (1
2 +ρXi)

2)with ρ = 0, 0.2, 0.4, · · · , 1. 63
4.6 Summary of results for model Ti = 1 + 4Xi sin(πXi) + N(0, (1

2 + ρXi)
2) with

ρ = 0, 0.2, 0.4, · · · , 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 T5 mismatch score and age versus log survival times for Stanford heart trans-

plantation data. Red crosses and black pluses are for observed survival times
and censored lifetimes respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Age and Karnofsky score versus log survival times for veteran’s administration
lung cancer data. Red crosses and black pluses are for observed survival times
and censored lifetimes respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 66



ix

abstract

This thesis includes 4 pieces of work, focusing on topics including distance correlation,
smoothing spline ANOVA models and lifetime expectancy function with applications to
Beaver Dam eye study data and the Cancer Genome Atlas ovarian cancer data. The follow-
ing displays a general picture for each part of the dissertation with a brief introduction.

In Chapter 1, we present the work in Kong et al. (2012) with a method for examining
mortality as it is seen to run in families, and lifestyle factors that are also seen to run in
families, in a subpopulation of the Beaver Dam Eye Study that has died by 2011. We
observe that pairwise distance between death age in related persons is on average less than
pairwise distance in death age between random pairs of unrelated persons. Our goal is
to examine the hypothesis that pairwise differences in lifestyle factors correlate with the
observed pairwise differences in death age that run in families. Szekely and coworkers,
Székely et al. (2007), have recently developed a method called distance correlation, that is
suitable for this task with some enhancements relevant to the particular task at hand. We
build a Smoothing Spline ANOVA (SS-ANOVA) model for predicting death age based on
four major lifestyle factors generally known to be related to mortality and four of the major
diseases contributing to mortality, to develop a lifestyle mortality risk vector and a disease
mortality risk vector. We then examine to what extent pairwise differences in these scores
correlate with the pairwise differences in mortality as they occur between family members
and between unrelated persons. We find significant distance correlations between death
ages, lifestyle factors, and family relationships. Considering only sib pairs compared to
unrelated persons, distance correlation between siblings and mortality is, not surprisingly,
stronger than that between more distantly related family members and mortality. The
overall methodological approach here easily adapts to exploring relationships between
multiple clusters of variables with observable (real-valued) attributes, and other factors for
which only possibly nonmetric pairwise dissimilarities are observed.

Chapter 2 introduces a feature screening procedure in Kong et al. (2015) with the use of
distance correlation and covariance in Székely et al. (2007). With Pearson’s correlation, Fan
and Lv proposed the sure independence screening (SIS) in Fan and Lv (2008) and showed
that the Pearson correlation ranking procedure possessed a sure screening property for
linear regression with Gaussian predictors and responses. Distance correlation generalizes
Pearson’s correlation in that it captures multivariate and nonlinear dependence and hence
can be used for feature screening with general relationship between the response and
predictors and is robust to model mis-specification. A new feature screening procedure
for high dimensional data based on distance correlation, named DC-SIS, was presented



x

in Li et al. (2012). However, both SIS and DC-SIS rely on a user-specified model size d

which decides the number of predictors being selected and may influence the screening
results. To address this problem, we demonstrate a property for distance covariance, which
is incorporated in a novel feature screening procedure based on distance correlation as a
stopping criterion. The approach is further implemented to two real examples. The first
one is the famous small round blue cell tumors (SRBCT) data, which have been extensively
studied and are relatively easy to deal with due to the significant distinguish among the 4
types of tumor. The second is the Cancer Genome Atlas (TCGA) ovarian cancer data, which
are much more challenging due to the large number of genes and limited sample size. We
illustrate the selected genes out of our procedure though prediction power using support
vector machine with reject option (SVM-R), Wegkamp et al. (2011), to adapt a subgroup of
hard-to-classify patients.

Chapter 3 pays attention to the right censored human longevity data and the estimation
of lifetime expectancy. The conditional lifetime expectancy function (LEF) is the expected
lifetime of a subject given survival past a certain time point and the values of a set of
explanatory variables. This function is attractive to researchers since it summarizes the
entire residual life distribution and has an easy interpretation compared to the popular used
hazard function. In this chapter, we propose a general framework of backward multiple
imputation for estimating the conditional LEF and the variance of the estimator in the right
censoring setting. We prove that the proposed method is equivalent to estimating the LEF
with Kaplan-Meier estimator for the survival function in the case without any covariate.
Moreover, when covarites information is available, using our backward imputation method
with kernel regression gives the nonparametric estimation for the conditional LEF proposed
in McLain and Ghosh (2011). Simulation studies are conducted to investigate the empirical
properties of the proposed estimator and the corresponding variance estimator. With
the recently updated survival information up to December 31, 2013, the Beaver Dam eye
study data again provide us an excellent opportunity to study human longevity, where
the expected human lifetime are modeled with smoothing spline ANOVA based on the
covariates including baseline age, gender, lifestyle factors and disease variables. The effects
of different risky components towards human lifetimes are explicitly illustrated with plots
and are observed to vary with the time that one individual survives past.

Chapter 4 compares two imputation methods for right censored data, namely the famous
Buckley-James estimator and the backward imputation method proposed in Chapter 3.
Buckley-James estimator introduced in Buckley and James (1979) is a popular alternative to
Cox’s proportional hazard model as the usual least square regression adapted to censored
data. Simulated data demonstrate that the original Buckley-James method fails when
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its two assumptions, namely linearity and homoscedasticity, are moderately violated.
To make things worse, checking these assumptions under censoring is difficult, if at all
possible. Backward imputation, however, are shown to be less biased and more robust with
nonlinear and heterogeneous data in the conducted simulation studies, especially under
small sample size and high censoring rate. To further compare the two methods in real
examples, we evaluate the performances on two well-known survival data, the Stanford
heart transplantation data and the veteran’s administration lung cancer data. It turns out
that backward imputation with SS-ANOVA model outperforms Buckley-James with linear
model or SS-ANOVA with respect to the mean squared error of predicted censored times
and the bias in linear coefficients estimated from the imputed data.
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1 using distance correlation and ss-anova to assess
associations of familial relationships, lifestyle factors,
diseases and mortality

1.1 Introduction

Multiple studies have reported that collectively lifestyle factors, including smoking, low or
high body mass index (bmi), low educational attainment and low socio-economic status,
are associated with earlier mortality. Diseases, such as diabetes, cardiovascular disease,
cancer and chronic kidney diseases, are leading causes of death. Longevity is generally
believed to run in families. Furthermore, there is evidence showing that the lifestyle factors
all tend to run in families. The goal of this paper is to capture the association of familial
relationships, lifestyle factors, diseases and mortality. It is possible that some of the lifestyle
variables may be or turn out to be related to genetic factors. Current research interest
involves searches for “longevity genes" but this work is not related to that quest. We are
not assessing to what extent genetics is involved in longevity.

The Beaver Dam Eye Study (BDES), Klein et al. (1991), is an ongoing population-based
study of age-related ocular disorders. Subjects at baseline, examined between 1988 and 1990,
were a group of 4926 people aged 43-86 years who lived in Beaver Dam, WI. Many group
members have relatives in the study, and pedigree information was collected. Mortality
information was updated to March 2011. BDES provides an excellent opportunity to
attempt to examine and quantify the above associations.

A pair of landmark papers ,Székely et al. (2007, 2009) proposed the distance correlation
as a measurement of multivariate independence, and others have recently built upon
it, see Tran et al. (2012); Li et al. (2012); Khoshgnauz (2012); Lyons et al. (2013). The
method is extremely general in that it is applicable to random vectors of arbitrary and
not necessarily equal dimension and only involves Euclidean pairwise distance. If the
two variables are sampled from a bivariate normal distribution, the distance correlation
behaves very much like the Pearson’s correlation coefficient. Since only Euclidean pairwise
distances enter, the method may be applied to inherently unobservable variables with
only Euclidean pairwise distances observable. The “genetic distances" defined on pairs of
persons representing their familial relationships are generally not Euclidean. However, it
is shown that the use of genetic dissimilarity in the distance correlation is still validated
since the genetic dissimilarity can be well approximated by Euclidean pairwise distances
obtained by embedding the subjects into Euclidean spaces through Regularized Kernel
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Estimation (RKE), see Lu et al. (2005); Bravo et al. (2009).
Smoothing Spline ANOVA (SS-ANOVA) models have a successful history for modeling

various aspects of BDES data, two examples are Wahba et al. (1995); Gao et al. (2001). In
this study, we focus on modeling the mortality (death ages) of the form

death agei =g0(baseline agei , genderi)+

g1(lifestyle factori) + g2(diseasei),

where g0 is a term involves fixed characteristics, baseline age and gender, for the individuals,
g1 is a term that includes only lifestyle factors and g2 is a term containing only disease
variables, namely diabetes, cancer, cardiovascular disease and chronic kidney disease. In
the paper, the fitted values of g1 and g2 are treated as scores for the individuals and to be
used to assess the association with familial relationships.

1.2 Pedigrees

The genetic relationships between pedigree members can be described by Malecot’s Malécot
et al. (1948) kinship coefficient ϕ which defines a pedigree dissimilarity measure. The
kinship coefficientϕ between individuals i and j in the pedigree is defined as the probability
that a randomly selected pair of alleles, one from each individual, is identical by descent,
that is, they are derived from a common ancestor. For a parent-offspring pair, ϕij = 0.25
since there is a 50% chance that the allele inherited from the parent is chosen at random
for the offspring, and a 50% chance that the same allele is chosen at random for the parent.

Pedigree Dissimilarity

The pedigree dissimilarity between individuals i and j is defined for this study as dij =

1 − 2ϕij , where ϕ is the kinship coefficient. Thus, for i 6= j , the pedigree dissimilarity here
falls in the interval [1

2 , 1]. Note that Bravo et al. (2009) define pedigree dissimilarity for that
study as −log2(2ϕ), which ranges from 1 to∞ for i 6= j , which is not appropriate for the
way we will be using pedigree dissimilarity.

In BDES, not all family members are included in the study and not all the subjects have
pedigree records.
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1.3 Smoothing-Spline ANOVA Models

SS-ANOVA models, Wahba (1990); Gu (2013); Wang (2011), estimate the responses yi , i =
1, ..., n to be a function of the covariates f (xi), by assuming that f is a function in a reproduc-
ing kernel Hilbert space (RKHS) of the form H = H0

⊕
H1. H0 is a finite dimensional space

spanned by a set of functions {φ1, ...,φm}, and H1 is an RKHS induced by a given kernel
function k(·, ·) with the property that 〈k(xi , ·), k(xj , ·)〉H1 = k(xi , xj). Thus, the function f

has a semiparametric form of

f (x) =
m∑
j=1

djφj(x) + g(x),

for some coefficients dj , where the functions φj ’s are of parametric linear form and g ∈ H1.
H1 is further decomposed by assuming that it is the direct sum of multiple RKHSs. Hence,
g ∈ H1 is defined to be

g(x) =
∑
α

gα(xα) +
∑
α<β

gαβ(xα, xβ) + · · ·,

where {gα} and {gαβ} satisfy side conditions that generalize the standard ANOVA side
conditions. Functions gα are the “main effects" and gαβ are the “second-order interactions",
and so on. The RKHS Hα is associated with each component in the above sum, along with
its corresponding kernel function kα. In this case, the reproducing kernel function for H1

is defined to be
k(·, ·) =

∑
α

θαkα(·, ·) +
∑
α<β

θαβkαβ(·, ·) + · · ·,

where the coefficients θ’s are tuning parameters that weigh the relative importance of each
term in the decomposition.

The SS-ANOVA estimates f given data {(xi , yi), i = 1, ..., n} by the solution of a penalized
likelihood problem of the form

min
f ∈H

1
n

n∑
i=1

l(yi , f (xi)) + Jλ,θ(f ), (1.1)

where l(yi , f (xi)) = (yi − f (xi))
2 and

Jλ,θ(f ) = λ[
∑
α

θ−1
α ‖Pαf ‖2

Hα
+
∑
α<β

θ−1
αβ‖Pαβf ‖

2
Hαβ

+ · · ·],
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with Pαf the projection of f into RKHS Hα and λ a non-negative regularization parameter.
The penalty Jλ,θ(f ) is a seminorm in RKHS H and penalizes the complexity of f using the
norm of RKHS H1 to avoid overfitting f to the training data.

According to Kimeldorf and Wahba (1971), the minimizer of the problem in equation
[1] has a finite representation taking the form of

f (·) =
m∑
j=1

djφj(·) +
n∑

i=1
cik(xi , ·),

where ‖P1f ‖2
H1

= cTKc for kernel matrix K with Kij = k(xi , xj). Therefore, for a given
value of the regularization parameter λ, the minimizer fλ can be estimated by solving the
following convex optimization problem:

min
c∈Rn,d∈Rm

n∑
i=1

(yi − f (xi))
2 + nλcTKc , (1.2)

where f = [f (x1), ..., f (xn)]T = Td +Kc with Tij = φj(xi). The hyperparameters, λ and θ’s,
are to be chosen by the generalized cross validation (GCV) as described in Golub et al.
(1979); Craven and Wahba (1977).

1.4 Distance Correlation

For a random sample (X ,Y ) = {(Xk ,Yk) : k = 1, ..., n} of n i.i.d random vectors (X ,Y )

from the joint distribution of random vectors X in Rp and Y in Rq, the Euclidean distance
matrices (aij) = (|Xi − Xj |p) and (bij) = (|Yi − Yj |q) are computed. Define the double
centering distance matrices

Aij = aij − ai · − a·j + a··, i , j = 1, ..., n,

where

ai · =
1
n

n∑
j=1

aij , a·j =
1
n

n∑
i=1

aij , a·· =
1
n2

n∑
i ,j=1

aij ,

similarly for Bij = bij − bi · − b·j + b··, i , j = 1, ..., n.
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Sample Distance Covariance

The sample distance covariance Vn(X ,Y ) is defined by

V2
n(X ,Y ) =

1
n2

n∑
i ,j=1

AijBij .

Sample Distance Correlation

The sample distance correlation Rn(X ,Y ) is defined by

R2
n(X ,Y ) =


V2
n(X ,Y )√

V2
n(X )V2

n(Y )
, V2

n(X )V2
n(Y ) > 0;

0, V2
n(X )V2

n(Y ) = 0,

where the sample distance variance is defined by

V2
n(X ) = V2

n(X ,X ) =
1
n2

n∑
i ,j=1

A2
ij .

The nonnegativity ofV2
n andR2

n is guaranteed, see Székely et al. (2009). The theory in Székely
et al. (2009) is based on dissimilarities being actual distances between objects embedded in
a Euclidean space, although it is mentioned in the rejoinder to the discussion there that
the results hold in certain other metric spaces, see also Lyons et al. (2013). The pedigree
dissimilarity (dij) cannot be considered as coming from some metric space, however, since,
at least in our study, it does not satisfy the triangle inequality. But we could still treat the
pedigree dissimilarity as though it were a distance, since we will see that it can be well
approximated by a Euclidean distance obtained by RKE, which we discuss in the next
section.

1.5 Regularized Kernel Estimation

The Regularized Kernel Estimation (RKE) framework was introduced in Lu et al. (2005)
as a robust method for estimating dissimilarity measures between objects from noisy,
incomplete, inconsistent, and repetitious dissimilarity data. RKE is useful in settings where
object classification or clustering is desired but objects do not easily admit description by
fixed-length feature vectors, but instead, there is access to a source of noisy and incomplete
dissimilarity information between objects. It estimates a symmetric positive semidefinite
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kernel matrix K which induces a real squared distance admitting of an inner product
d2
ij = Kii +Kjj − 2Kij .

Assume dissimilarity information is given for a subset Ω of the
(
n

2

)
possible pairs

occurring in a training set of n objects, with the dissimilarity between objects i and j denoted
as dij ∈ Ω. RKE estimates an n× n symmetric positive semidefinite kernel matrix K of size
n such that the fitted squared distance between objects induced by K , d̂2

ij = Kii +Kjj − 2Kij ,
is as close as possible to the square of the observed dissimilarities dij ∈ Ω. RKE solves the
following optimization problem with semidefinite constraints:

min
K�0

∑
dij∈Ω

wij |d
2
ij − d̂2

ij |+ λrketrace(K ). (1.3)

The parameter λrke > 0 is a regularization parameter that trades off fit of the dissimilarity
data, as given by absolute deviation, and a penalty, trace(K ), on the complexity of K . The
trace may be seen as a proxy for the rank of K . Thus, RKE is regularized by penalizing high
dimensionality of the space spanned by K . RKE requires that Ω satisfies a connectivity
constraint that the undirected graph consisting of objects as nodes and edges between them,
such that an edge between nodes i and j is included if dij ∈ Ω, is connected. Additionally,
optional weights wij may be associated with each dij ∈ Ω. A method for choosing the
regularization parameter λrke is required. In this work λrke is fixed at 1. Unlike in many
regularization models, results in the RKE tend to be remarkably insensitive to λrke over a
wide range of values, as can be seen in Figure 1.1 of Lu et al. (2005).

The solution to the RKE problem is a symmetric positive semidefinite matrix K from
which an embedding Z ∈ Rn×r in r−dimensional Euclidean space is obtained by decom-
posing K as K = ZZT with Z = ΓrΛ

1
2
r , where the n× r matrix Γr and the r × r diagonal

matrix Λr contains the r leading eigenvalues and eigenvectors of K respectively. The ith
row of Z is regarded as the vector of “pseudo" coordinates z(i) for subject i . A method for
choosing r is required.

The fact that RKE operates on inconsistent dissimilarity data, rather than distances, fits
into pedigree studies significantly where the distance correlation depends on Euclidean
distances. The pedigree dissimilarity defined above does not satisfy the triangle inequality
for general pedigrees, thus is not Euclidean distance. The Euclidean distances induced
by the embedding resulting from RKE provides an approximation of the pedigree dis-
similarities in our case. This allows us to validate our result of involving the non-metric
pedigree dissimilarity in distance correlation by comparing with that obtained by using
the embedded Euclidean distances.
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1.6 Beaver Dam Eye Study

The Beaver Dam Eye Study (BDES) is an ongoing population-based study of age-related
ocular disorders. Subjects at baseline, examined between 1988 and 1990, were a group of
4926 people aged 43-86 years. Pedigree information was available for 2356 of the subjects.
Although we will only use data from the baseline study for our experiments, five, ten,
fifteen and twenty year follow-ups were also obtained. Familial relationships of participants
were ascertained and pedigrees of different sizes were constructed for the subset of 1004
subjects who were dead prior to March 2011 with death ages ranging from 46 to 101 years.

Our goal is to use the data to study the association of familial relationships, lifestyle
factors, diseases and mortality. The strategy is to first estimate the effects of lifestyle
factors and diseases on mortality, i.e. death ages, based on the 1004 subjects using an
SS-ANOVA model. The distance correlation is then applied to capture the associations with
the estimated effects for a subgroup of 843 people coming from pedigrees containing two
or more members. This results in 222 pedigrees in the data set, with sizes ranging from
2 to 23 subjects. Note that it is possible for two persons in one pedigree to be genetically
unrelated. They become relatives because of their relationships with other members in the
pedigree. The pedigree dissimilarity for such a pair is 1 as previously defined.

It is necessary to notice that the covariates can be continuous, binary and of different
magnitude. In addition, the effects of the variables may not be linear in mortality, in
which case a large pairwise distance of the covariates values may not result in a large
pairwise distance of the death ages. Body mass index (bmi) is such an example in that both
underweight and obesity are unhealthy and risky to longevity. In this case, the distance of
bmi for two individuals, one with low value and the other with high value, is quite large,
however, their death age distance may be small. Thus, instead of the original covariates,
the estimated effects are preferred in the calculation of distance correlation because the
fitted values are naturally assigned with weights and transformations.

For the above purpose, we fit an SS-ANOVA model of the form

deathage =µ+ f1(baseage) +βgender I{gender=F }

}
fixed

+ f2(edu) + f12(baseage : edu) + f3(bmi)

+βsmoke I{smoke=no} +βinc I{inc>20T }

}
lifestyle

+βdiabetes I{diabetes=no} +βcancer I{cancer=no}

++βheart I{heart=no} +βkidney I{kidney=no}

}
disease
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variable units description

deathage years death age

baseage years age at baseline

gender F/M gender

edu years highest year school/college completed

bmi kg/m2 body mass index

smoke yes/no history of smoking

inc yes/no household personal income > 20T

diabetes yes/no history of diabetes

cancer yes/no history of cancer

heart yes/no history of cardiovascular disease

kidney yes/no history of chronic kidney disease

Table 1.1: Variable description in the SS-ANOVA model

gender = F smoke = no inc > 20T

1.141 1.349 0.546

diabetes = no cancer = no heart = no kidney = no

2.000 0.888 1.131 1.303

Table 1.2: Fitted effects of linear terms in the SS-ANOVA model

with variables being described in Table 1.1 based on 1004 people. The terms in lines one, two
to three, and four to five of the above equation are the fixed characteristics, lifestyle factors
and disease variables respectively. Functions f1, f2 and f3 are cubic splines and f12 uses the
tensor product construction. The remaining covariates are unpenalized and modeled as
linear terms with I{·} as indicator functions. The fitted effects for edu and bmi are shown in
Figure 1.1. The fitted effects of the linear terms are listed in Table 1.2.

Distance correlation, relying on pairwise distances, is the tool for measuring the asso-
ciation among the lifestyle factors, disease variables, mortality and pedigree. The cohort
was restricted to the subgroup of 843 people coming from pedigrees with two or more
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Figure 1.1: f3(bmi) (flipped y-axis) (top), and f2(edu) + f12(baseage, edu) (bottom) are the
fitted effects for bmi and education.

members. Up to now, the pedigree dissimilarities and Euclidean pairwise death age dis-
tances are ready for the calculation of the distance correlation. Lifestyle factors and disease
variables get involved as the form of lifestyle factor scores and disease scores. The lifestyle
factor score for an individual is the vector of the fitted effects for smoke, bmi, edu and inc.
Similarly, the disease score is defined to be the vector of the fitted effects for the four disease
variables. The Euclidean pairwise distances of the lifestyle factor scores and disease scores
are constructed as the input information for lifestyle factors and disease variables in the
distance correlation. Permutation tests are implemented to obtain the p-values of the
distance correlations. The network in Figure 1.2 summarizes the results. Both mortality and
lifestyle factors are associated with familial relationships significantly. Heart disease and
some cancers are known to run in families. However, the relationship between pedigree
and disease variables in this part of the study is not significant at level 0.05. Included here
are some pairs of relatives as distant as second cousins, which may be the cause of the weak
signal. However, lifestyle factors, disease variables and mortality are closely associated
with each other.

The theory of distance correlation is based on Euclidean pairwise distance. However,
three of the above six distance correlations involve the non-Euclidean pedigree dissimilarity.
The strategy is to validate the results by showing that the pedigree dissimilarity can be
well approximated by Euclidean distances through embedding the subjects in Euclidean
spaces by RKE. It is possible to establish the embedding effectively in the RKE framework
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Figure 1.2: The network of lifestyle factors, disease variables, mortality and pedigree with
distance correlations. The p-values obtained from permutation tests with 1000 replicates
are presented in parenthesis. The significance level is distinguished by color: blue for
p-value < 0.001, purple for p-value in (0.001, 0.05), red for p-value > 0.05.

for a moderate sample size of subjects. However, it is too time consuming to solve the RKE
semidefinite problem with the full dissimilarity information for 843 people in our case.

Alternatively, we break down the embedding into two steps. The first step only takes
care of the within-pedigree dissimilarity. That is, we feed the familywise pedigree dis-
similarities to RKE family by family so that it embeds the subjects into Euclidean spaces
pedigree by pedigree. The kernel matrices obtained from RKE are then truncated to those
leading eigenvalues that account for 95% of the matrix trace to create the “pseudo"-attribute
embedding. The resulted familywise coordinates are put together in a way that each pedi-
gree is assigned its own subspace which is orthogonal to the others. This ends up with
a coordinate matrix being a horizontal concatenation of the familywise coordinates. The
second step is to take into account of the out-pedigree dissimilarity, which requires pedi-
gree specific variables. We assign one extra dimension to the coordinate matrix for each
pedigree. The entries of this extra dimension are the pedigree specific variable for the
family members and 0 for the rest of the subjects. This leads to a coordinate matrix being a
function of the pedigree specific variables. Thus, the augmented coordinate matrix for the
r th member in the pth pedigree takes the form of (0, ..., 0, vp, xpr1, ..., xprq, 0, ..., 0), where vp is
the pedigree specific variable for the pth pedigree and q is the dimension of the subspace
for the pth pedigree. The way to choose the pedigree specific variables is to maximize
the Pearson’s correlation between the vector form of the double centered pedigree dis-
similarities and the vector form of the Euclidean pairwise distances resulting from the
above coordinate matrix. The optimal value of the Pearson’s correlation is 0.9907. Figure
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1.3 shows a comparison of the embedded Euclidean pairwise distances and the pedigree
dissimilarities for a subset of 100 subjects. It turns out that the non-Euclidean pedigree
dissimilarities are well approximated by the embedded Euclidean distances.

Figure 1.3: The comparison of the Euclidean pairwise distances by embedding and the
pedigree dissimilarity for a subset of 100 subjects.

We could establish the distance correlations among the lifestyle factors, disease variables,
mortality and pedigree based on the embedded Euclidean pairwise distances. The results
are presented in Figure 1.4 where the p-values are also obtained through permutation
tests with 1000 replicates. Both the values of the distance correlation and the p-values are
similar to those from the pedigree dissimilarity in Figure 1.2. The embedded results are
slightly weaker than the original ones due to the shrinkage of RKE by penalizing high
dimensionality of the space spanned by the kernel.

In addition to the study of all relatives, the analysis focusing on the full siblings shows
that the signal of running in families gets stronger as the familial relationships become
closer. The cohort are further restricted to 462 subjects who had at least one full sibling in
the group of 843 people. To simplify the procedure, we change the pedigree dissimilarity
for the full sibling pairs, which is shown to be Euclidean. The pedigree dissimilarity
is assigned to be 0 for two full siblings and 1 for two unrelated persons. Suppose the
subjects who are full siblings to each other are collected to different clusters and there
are in total m such clusters. The members in the ith full sibling cluster are assigned the
coordinates of length m, (0, ..., 0, 1√

2 , 0, ..., 0), where the i th element is 1√
2 and the rest are 0.

The corresponding Euclidean pairwise distances are unchanged with the above pedigree
dissimilarity being defined for full siblings. The distance correlations and p-values are
summarized in Figure 1.5 for the full siblings study. The three distance correlation values
and related p-values involving familial relationships are strengthened compared to the
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all relatives study, indicating that the signal of running in families is getting stronger as
the subjects are closer. The other three associations are weaker due to the shrinkage of the
sample size.

Figure 1.4: The network of lifestyle factors, disease variables, mortality and pedigree with
distance correlations using the embedded Euclidean distances. The p-values obtained from
permutation tests with 1000 replicates are presented in parenthesis.

Figure 1.5: The distance correlations for full siblings study. The p-values obtained from
permutation tests with 1000 replicates are presented in parenthesis.

For the full siblings study, the pairwise distances for mortality could be separated into
two groups, group 0 collecting all the pairwise death age distances of full sibling pairs and
group 1 for the unrelated pairs. This allows us to compare the difference between the mean
of group 1 and the mean of group 0 and construct 95% Bootstrap percentile confidence
interval for the test statistic with 10000 replicates. In the case of mortality, the average
death age distance of full sibling pairs is 1.571 years less compared to that of two unrelated
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variable mortality lifestyle disease

group 0 mean 8.091 1.405 1.119

group 1 mean 9.662 1.654 1.229

difference 1.571 0.249 0.110

95% CI (0.919, 2.211) (0.167, 0.331) (0.020, 0.202)

Table 1.3: Bootstrap percentile confidence intervals for the mean differences in the full
siblings study

persons in the cohort. The corresponding 95% Bootstrap percentile confidence interval (CI)
for the difference between the mean of group 1 and the mean of group 0 is (0.919, 2.211).
We could establish the analysis for the pairwise distances of lifestyle factors and disease
variables in the same fashion. The observed test statistics and corresponding confidence
intervals are summarized in Table 1.3. All the three mean differences between group 1 and
group 0 are positive and the confidence intervals do not overlap 0, which means that the
full siblings are significantly closer than unrelated people in terms of death age distances,
lifestyle factor scores and disease scores.

1.7 Discussion

The Beaver Dam Eye Study, which began collecting data from a population aged 43 and older
in 1988, and continues to the present, provides an ideal opportunity to apply some emerging
statistical tools to examine questions regarding relationships between various kinds of
information collected at the start of the study and mortality. Since the study contains a
large number of people with relatives in the study, this provided an ideal opportunity
to examine the correlations between familial relationships, lifestyle factors, disease and
mortality. The methodological approach we have proposed here is easily adaptable to
other studies for exploring relations between attributes of subjects with multiple clusters of
observable attributes, simultaneously with other factors for which pairwise dissimilarities
are observed. Some caveats with respect to the mortality data here are worth mentioning.
The mortality data is censored at both ends, that is, we do not see cohorts of the oldest
subjects who have died before the study began, and, at the other end, we have access to
death ages only to those in the study who have died by March 2011. The left censoring
is, to some extent accounted for in the presence of baseage in the SS-ANOVA model for
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deathage–note that there is an interaction term for baseage and education, since it was
observed that the oldest cohort in the study clearly had fewer years of formal education
than younger members. This study does not use the subjects who would otherwise be
included who do not have a recorded death age prior to March 2011. This is, of course a
possible source of bias in the conclusions, and we hope to continue following this group as
time goes on. Further research concerning residual lifetimes is ongoing, and the results may
be able to utilize in addition the partial information contributed by subjects that are known
to be alive past a particular time. Other information that is not used here includes attributes
collected in the followup examinations. We cannot in this study exclude possible genetic
effects behind the lifestyle factors - we only observe that our lifestyle factors significantly
run in families, exactly why is beyond the scope of this project. We have shown that
pairwise differences in lifestyle factors that run in families correlate well with pairwise
differences in death age that also run in families, partially accounting for the familial death
age effect. This leads to new questions to be asked about the complex relations between
genetics, family structure, lifestyle factors, and other variables. We provide here an overall
metholological approach which shows promise to help in answering these questions.
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2 using distance covariance for improved variable
selection with application to learning genetic risk models

2.1 Introduction

The idea of feature screening came along as high dimensional data were collected in modern
technology. It was aimed at dealing with the challenges of computational expediency,
statistical accuracy and algorithmic stability due to high dimensionality. Fan and Lv
proposed the sure independence screening (SIS), Fan and Lv (2008) and showed that the
Pearson correlation ranking procedure possessed a sure screening property for linear
regression with Gaussian predictors and responses. A new feature screening procedure
for high dimensional data based on distance correlation, Székely et al. (2007), named
DC-SIS, was presented in Li et al. (2012). DC-SIS retained the sure screening property of
the SIS, and additionally possessed new advantages of handling grouped predictors and
multivariate responses by using distance correlation. Moreover, since distance correlation
was applicable to arbitrary distributions, DC-SIS could also be used for screening features
without specifying a regression model between the response and the predictors, and thus
was robust to model mis-specification.

However, both SIS and DC-SIS relied on a user-specified model size d which decided
the number of predictors being selected. Let the sample size be n, d was chosen to be
multipliers of the integer part of n/ log n in Fan and Lv (2008) and Li et al. (2012) which
did not depend on any other characteristics of the data. As pointed out by a referee of Li
et al. (2012), the choice of d was of great importance in practical implementation and might
influence the screening results significantly. Our study is aimed at fixing this shortcoming
by including an automatic stopping criteria for DC-SIS based on the property of distance
covariance.

The screening procedures may fail if a feature is marginally uncorrelated, but jointly
correlated with the response, or in the reverse situation where a feature is jointly uncorre-
lated but has higher marginal correlation than some important features. An iterative SIS
was proposed in Fan and Lv (2008) to fix this problem. Current research interest involves
dealing with this drawback but this work is not related to this quest.

We demonstrate our improved method through two real examples. The small round
blue cell tumors (SRBCT) data were relatively easy to classify and had been studied ex-
tensively. The Cancer Genome Atlas (TCGA) ovarian cancer data, however, were much
more challenging due to the large number of genes and limited sample size. The target
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was to identify the important genes that contribute to the sensitive or resistant status after
receiving a particular chemotherapy treatment. A substantial fraction of the population
was difficult to classify and a “withholding decision" option is allowed in the support
vector machine with reject option model to adapt to this fact. A multiple cross validation
is used to quantify uncertainty given a humongous number of candidates, and we see a
commonly observed dilemma that different variables are selected by using different subsets
of the data. Comparison between the results from the original data and those from the
data obtained by randomly permuting the response provide further justification on our
conclusions. Furthermore, the multiple cross validation on the permuted data discloses
the existence of spuriously correlated variables in high dimensional data and thus failure
of variable selection and model building based on training data.

2.2 Some Preliminaries

Distance correlation

Székely et al. (2007) proposed distance correlation as a measurement of dependence between
two random vectors. The method has been successfully applied to various problem, see
Kong et al. (2012) for example. To be specific, the authors defined the distance covariance
between X ∈ Rp and Y ∈ Rq to be

V2(X ,Y ) =
1

cpcq

∫
Rp+q

|fX ,Y (s , t) − fX (s)fY (t)|
2

|s |1+p
p |t |1+q

q

dt ds

where fX ,Y (s , t), fX (s), and fY (t) are the characteristic functions of (X ,Y ),X , and Y respec-
tively, and cp, cq are constants chosen to produce scale free and rotation invariant measure
that doesn’t go to zero for dependent variables. The idea is originated from the property
that the joint characteristic function factorizes under independence of the two random
vectors. This leads to the remarkable property that V 2(X ,Y ) = 0 if and only if X and Y

are independent.
The sample version of distance covariance and distance correlation involves pairwise

distances. For a random sample (X ,Y ) = {(Xk ,Yk) : k = 1, ..., n} of n i.i.d random vectors
(X ,Y ) from the joint distribution of random vectors X in Rp and Y in Rq, the Euclidean
distance matrices (aij) = (|Xi −Xj |p) and (bij) = (|Yi −Yj |q) with i , j = 1, . . . , n are computed.
Define the double centering distance matrices

Aij = aij − ai · − a·j + a··, i , j = 1, . . . , n,
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where

ai · =
1
n

n∑
j=1

aij , a·j =
1
n

n∑
i=1

aij , a·· =
1
n2

n∑
i ,j=1

aij ,

similarly for Bij = bij − bi · − b·j + b··, i , j = 1, . . . , n. Then, the sample distance covariance
Vn(X ,Y ) is defined by

V 2
n (X ,Y ) =

1
n2

n∑
i ,j=1

AijBij .

The sample distance correlation Rn(X ,Y ) is defined by

R2
n(X ,Y ) =


V 2
n (X ,Y )√

V 2
n (X )V 2

n (Y )
, V 2

n (X )V 2
n (Y ) > 0;

0, V 2
n (X )V 2

n (Y ) = 0,

where the sample distance variance is defined by

V 2
n (X ) = V 2

n (X ,X ) =
1
n2

n∑
i ,j=1

A2
ij .

Feature screening via distance correlation (DC-SIS)

Fan and Lv (2008) proposed sure independence screening (SIS) procedure based on the
Pearson correlation for feature selection. The distance correlation version of this technique
(DC-SIS) was studied in Li et al. (2012). With a user-specific model size d , the variables
whose distance correlations with the response ranking from 1st to d th in decreasing order
were selected. The authors explored the theoretic properties of the DC-SIS and proved
that the DC-SIS kept the desired sure screening property established in Fan and Lv (2008).
Moreover, due to the property of distance correlation, DC-SIS procedure was robust to
model mis-specification, which was demonstrated in their simulations.

2.3 Improving DC-SIS using distance covariance

Theorem 2.1. Suppose random vectors X ,Z ∈ Rp and Y ∈ Rq, and assume Z is independent of
(X ,Y ), then

V 2(X + Z ,Y ) 6 V 2(X ,Y ), (2.1)

where V is the population distance variance defined in Székely et al. (2007).
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Proof.

V 2(X + Z ,Y ) =‖ fX+Z ,Y (t, s) − fX+Z (t)fY (s) ‖2

=
1

cpcq

∫
Rp+q

1
|t |1+p

p |s |1+q
q

|fX+Z ,Y (t, s) − fX+Z (t)fY (s)|
2dtds .

The following fact follows from the definition of characteristic function and independence
assumption.

|fX+Z ,Y (t, s) − fX+Z (t)fY (s)|
2

=|Ee it
T (X+Z )+isTY − Ee it

T (X+Z )Ee is
TY |2

=|Ee it
TX+isTYEe it

TZ − Ee it
TXEe it

TZEe is
TY |2

=|fX ,Y (t, s)fZ (t) − fX (t)fZ (t)fY (s)|
2

=|fZ (t)|
2|fX ,Y (t, s) − fX (t)fY (s)|

2,

Since |fZ (t)| 6 1 by the property of characteristic function1, we have

|fX+Z ,Y (t, s) − fX+Z (t)fY (s)|
2 6 |fX ,Y (t, s) − fX (t)fY (s)|

2,

which implies

V 2(X + Z ,Y ) 6
1

cpcq

∫
Rp+q

1
|t |1+p

p |s |1+q
q

|fX ,Y (t, s) − fX (t)fY (s)|
2dtds

=‖ fX+Z ,Y (t, s) − fX+Z (t)fY (s) ‖2

= V 2(X ,Y ).

We know that if E |X |p <∞,E |X + Z |p <∞ and E |Y |p <∞, then almost surely

lim
n→∞V 2

n (X + Z ,Y ) = V 2(X + Z ,Y ),

lim
n→∞V 2

n (X ,Y ) = V 2(X ,Y ).

Thus, for the sample distance covariance, if n is large enough, we should have

V 2
n (X + Z ,Y ) 6 V 2

n (X ,Y ),
1In Kosorok (2009), the author obtained equality here which is incorrect.
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under the assumption of independence between (X ,Y ) and Z .
In the case where (X ,Z ) is of interest, which is the usual situation for variable selection

setting, we could use the above theorem by incorporating degenerated random vectors as
follows. Suppose X ∈ Rp1 and Z ∈ Rp2 , then we augment X and Z to be X̃ = (X , 0p2) and
Z̃ = (0p1 ,Z ) respectively. X̃ and Z̃ are therefore of the same dimension and X̃ + Z̃ = (X ,Z ).

We implemented the above theorem as a check for stopping for DC-SIS. For the original
DC-SIS, it required a user-specified model size d , which was always chosen as multipliers of
the integer part of n/ log n. For our improved screening procedure with distance correlation,
we first ranked the importance of xi , i = 1, ..., p using the marginal distance correlations
with the response as DC-SIS did and initialized S as the singleton including the index of
the top one variable. Instead of selecting the top d variables, we kept adding variables
to xS = {xi : i ∈ S} according to the ordered list of variables until observing a decrease in
the distance covariance between xS and y . The procedure took the following steps and we
denoted the procedure as DCOV method.

1. Calculate marginal distance correlations for xi , i = 1, ..., p with the response.

2. Rank the variables in decreasing order of the distance correlations. Denote the ordered
variables as x(1), x(2), ..., x(p). Start with xS = {x(1)}.

3. For i from 2 to p, include x(i) to xS, i.e., updating xS by the concatenated variables
(xS, x(i)), if V 2

n (xS, y) does not decrease. Stop otherwise.

2.4 Real application on SRBCT data

The small round blue cell tumors (SRBCTs) are 4 different childhood tumors named so
because of their similar appearance on routine histology, which makes correct clinical diag-
nosis extremely challenging. However, accurate diagnosis is essential because the treatment
options, responses to therapy and prognoses vary widely depending on the diagnosis. They
include Ewing’s family of tumors (EWS), neuroblastoma (NB), non-Hodgkin lymphoma
(in our case Burkitt’s lymphoma, BL) and rhabdomyosarcoma (RMS). The SRBCT data
being published in Khan et al. (2001) included the expression of 2308 genes measured on
63 samples (23 EWS, 8 BL, 12 NB and 20 RMS). This data are known as an easy-classified
example and have been studied by many. Lee et al. (2004) using the multicategory SVM is
one of several methods that have excellent classification results on this data set. Hence, we
focus more on the selected genes.

We applied our improved feature screening procedure on this dataset and compared our
selection of genes with the 96 top genes reported in Khan et al. (2001). This is a multicategory
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Figure 2.1: Comparison of pairwise distances between the two selections of genes. Left
and right panel present the pairwise distances of the 63 samples over the improved DC-SIS
selection of 176 genes and the 96 reported genes in Khan et al. (2001) respectively.

classification and the genes were screened in a one-versus-rest fashion. Specifically, for each
of the four different types of tumors, we generated a response indicator vector taking value
of 0 if the sample came from the current interested type and 1 otherwise. This allowed
us to implement our screening procedure and obtained the genes which showed high
distance correlation with the current type of tumor. The four groups of selected genes were
combined as a whole collection of in total 176 genes. 47 genes turned out to be in common
for the DCOV selection and the top 96 genes used in Khan et al. (2001).

We further examined the power of these two groups of genes in differentiating the 4
types of tumors by presenting the pairwise distances of the 63 samples (Figure 2.1). As
shown in the plot, the samples were arranged in the order of EWS, BL, NB and RMS. The
pairwise distances resulted from the two selections of genes were scaled to maximum of 1
respectively so that they shared the same magnitude. Both groups of genes could tell the
4 types of tumors apart. Compared with the 96 genes from Khan et al. (2001), however,
the 176 DCOV selected genes show better distinguishability and clearer contrast over the 4
classes. Moreover, the right panel almost missed the samples labeled from 57 to 62 in the
class of RMS but the 176 DCOV genes could recognize them with big differences between
the in and out class pairwise distances. The dataset were known to be easy for classification
and both sets of genes were able to classify the testing set of 20 samples perfectly via
k-nearest neighbor method with k = 3.
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2.5 Real application on TCGA ovarian cancer data

Data description

Ovarian cancer is the fifth-leading cause of cancer death among women in the United
States; 22,240 new cases and 14,030 deaths were estimated to have occurred in 2013, see
website; Bell et al. (2011). The standard treatment for high-grade serous ovarian cancer
is aggressive surgery followed by chemotherapy. Despite treatment, a vast majority of
ovarian cancer patients eventually relapse and die of their disease with a major cause of
chemotheraphy resistance ,Selvanayagam et al. (2004). Identification and prediction of
patients with chemoresistant thus become important for improving the outcome of ovarian
cancer.

The Cancer Genome Atlas (TCGA) collected high-quality, high-dimensional, and multi-
modal genetic data from women with ovarian cancer. There were 279 samples with explicit
chemostatus and gene expression (Affymetrix HT-HGU133a) data in the public set. among
which 191 subjects were sensitive to chemotherapy and 88 were chemoresistant. Expression
data for 12042 genes after log transformation are used for analysis. The issue is to explore
whether there are genes whose expression pattern is strongly correlated with the response
indicating chemotherapy status.

DCOV gene selection results based on all the observations

Our feature screening procedure on the gene expression data for the 279 patients selected
82 genes, among which 5 were reported to be related to ovarian cancer in the literature.
IGFBP5 ranked as the 5th is one of the six members of insulin-like growth factor-binding
protein (IGFBP) family and is known to be important for cell growth control, induction
of apoptosis and other IGF-stimulated signaling pathways. IGFBP5 expression is shown
to prevent tumor growth and inhibited tumor vascularity in a xenograft model of human
ovarian cancer and is suggested that IGFBP5 plays a role as tumor suppressor by inhibiting
angiogenesis, Rho et al. (2008). GPR3, the 7th, is a member of a family of G-protein couple
receptors whose activation of PKA and subsequent increase of cyclic AMP level, promotes
meiotic arrest in the oocyte, Mehlmann et al. (2004). Mice deficient in GPR3 display
premature ovarian aging and loss of fertility Ledent et al. (2005). MAPK4, the 18th, is a
member of MAPK signaling pathway. MAPK signal transduction cascade is dysregulated
in a majority of human tumors, Basu et al. (2009). It is suggested playing an important role
in molecular diagnostics and molecular therapeutics for lowgrade ovarian cancer, Bast and
Mills (2010). FZD5 ranked as the 22th encodes Frizzled-5 protein, which is believed to be
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the receptor for the Wnt5A ligand, Thiele et al. (2011). The Wnt5A ligand plays a context-
dependent role in human cancers. It has been demonstrated that Wnt5a is expressed
at significantly lower levels in human Epithelial ovarian cancer (EOC) cell lines and in
primary human EOCs compared with either normal ovarian surface epithelium or fallopian
tube epithelium, Bitler et al. (2011). FGF22, the 56th, is a member of Fibroblast Growth
Factors (FGFs) family, whose members possess broad mitogenic and cell survival activities,
and are involved in a variety of biological processes, including embryonic development,
cell growth, morphogenesis, tissue repair, tumor growth and invasion. The inhibition of
FGFR2, which is a member of this family, has been found to increase cisplatin sensitivity in
ovarian cancer, Cole et al. (2010).

39 pathways were found to be associated with the 82 genes, among which 3 pathways
are known to be important for ovarian cancer. MAPK signaling pathway is suggested
playing an important role in molecular diagnostics and molecular therapeutics for lowgrade
ovarian cancer, Bast and Mills (2010). Wnt signaling pathway is best known for its role
in tumorigenesis. Bast and Mills (2010) demonstrated the difference in Wnt signaling
pathway between normal ovarian and cancer cell lines and between benign tissue and
ovarian cancer. They also pointed out that those differences implicate that Wnt signaling
leads to ovarian cancer development despite the fact that gene mutations are uncommon.
Yin et al. (2011) suggested that genetic variants in TGF-β signaling pathway are associated
with ovarian cancer risk and may facilitate the identification of high-risk subgroups in the
general population.

Support vector machine with reject option

We estimated the probabilities of being chemosensitive or chemoresistant by a penalized
Bernoulli likelihood main effect spline model using the R package gss in Gu (2007). Aside
from the additive expression effects of the selected 82 genes, we also included two more
covariates, namely the cancer grade and cancer stage of the subjects. Cancer grade is an
indicator for grade 2 and grade 3. Cancer stage indicates whether the subject is in stages IIIC
and IV or not. As shown in Figure 2.2, the estimated probabilities have high density around
small and large values for sensitive and resistant patients respectively, with overlapping in
the middle values. This suggested that we were less confident about the chemostatus for
the patients in the middle range and so we sought a principled approach which withholds
decision for such cases.

Wegkamp et al. (2011); Bartlett and Wegkamp (2008) investigated the support vector
machines with a built-in reject option for binary classification where the results of classifi-
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Figure 2.2: Fitted probabilities by penalized Bernoulli likelihood model with the 82 genes.

cation could be −1,+1 or withhold decision. Given a discriminant function f : X→ R, the
method only reports sgn(f (x)) ∈ {−1, 1} if |f (x)| > δ and withholds decision if |f (x)| 6 δ.
Suppose that the cost of making a wrong decision is 1 and that of rejecting to make a
decision is d ∈ [0, 1

2 ], then an proper risk function is

Ld ,δ(f ) = Eld ,δ(Yf (X )) = P{Yf (X ) < −δ}+ dP(|Yf (X )| 6 δ)

with the discontinuous loss function

ld ,δ(z) =


1, if z < −δ;

d , if |z | 6 δ;

0, otherwise.

The classifier associated with the discriminant function

f ∗d (x) =


−1, if η(x) < d ;

0, if d 6 η(x) 6 1 − d ;

+1, if η(x) > 1 − d ,

with η(x) = P{Y = +1|X = x} minimizes the risk Ld ,δ(f ) with

L∗d = Ld ,δ(f
∗
d ) = E min{η(X ), 1 − η(X ), d }.
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To avoid working with the discontinuous loss ld ,δ, Wegkamp et al. (2011); Bartlett and
Wegkamp (2008) proposed a convex surrogate loss, which is the generalized hinge loss,

φd(z) =


1 − az , if z < 0;

1 − z if 0 6 z < 1;

0, otherwise,

where a = (1 − d)/d > 1. It followed that f ∗d also minimizes the risk associated with φd

over all measurable f : X→ R.
The discriminant functions f took the form fλ(x) =

∑M
j=1 λj fj(x) based on a set of known

functions fj : X → R and coefficients λj ∈ R, 1 6 j 6 M . The coefficients were chosen to
minimize the empirical risk

R̂φ(fλ) =
1
n

n∑
i=1
φ(Yi fλ(Xi)).

To reflect the preference for sparse solutions, which is desirable when M is large compared
to the sample size n, an l1 type restriction ‖λ‖1 =

∑M
j=1 |λj | was incorporated in Wegkamp

et al. (2011) and fλ is estimated by fλ̂r , where

λ̂(r) = arg min
λ∈RM

R̂φ(fλ) + r‖λ‖1 (2.2)

and r > 0 is a tuning parameter. We followed Wegkamp et al. (2011) to call this model
support vector machines with reject option(SVM-R).

The authors in Bartlett and Wegkamp (2008) also showed that the choice of δ = 1/2
gives the optimal bound established by the excess risk of φd on the excess risk Ld ,δ − L∗d for
any fixed d ∈ [0, 1/2) and measurable function f . For this reason, we fixed δ = 1/2 for our
practical use of the method. Furthermore, we took the set of known functions fj : X→ R to
be linear functions of the log transformation on the 12024 genes. The optimization problem
(2) was formulated into a linear programming task and solved using MATLAB.

Figure 2.3 presents the 82 genes for the 279 subjects in groups according to the SVM-R
classification results. The results correspond to the particular choice of d = 1/4 and r = 4
to illustrate the benefits of SVM-R. As shown in the plot, there is a big difference in the
gene expression between the subjects assigned to be resistant and sensitive. The behavior
of the 82 genes for those without a certain decision tends to be in-between.



25

PRTN3
PHOX2B
CACNA1F
CRHBP
OPRM1
SERPINB13
THPO
LILRA1
PURG
HOXD12
MAPK4
MC3R
PNLIP
BLK
GABRB3
NAT8B
FAM5C
RYR3
FLJ22655
GPR3
SOX21
DUOX1
RPS28
RPL36
GPR6
OPRL1
ANGPTL7
OTOR
STEAP4
ABCC2
SMPD2
FGF22
MLL2
HTR4
KLHL1
CSHL1
TBX1
TEX12
SLC17A2
MMP8
NEUROD1
BRDT
SCRIB
PTP4A3
SHANK2
CX3CL1
CAPN5
KCNH2
TRIM24
UBAP2L
JARID1C
SOBP
IGFBP5
SHROOM2
PHF16
LOC137886
NSMAF
CLSTN2
PDZD2
PLXND1
SMAD7
HYPE
SLAMF7
ZCCHC2
ZNF271
ACBD3
EWSR1
PES1
HIRA
AFG3L2
USP18
FZD5
LIMS1
LARP4
TMEM30A
ISOC1
RP11.217H1.1
YIPF6
SLC3A2
TLOC1
MMP1
TARS

Gene Expression Data for 279 Patients and 82 Selected Genes

−3 −2 −1 0 1 2 3
Value

0
50

00
15

00
0

Color Key
and Histogram

C
ou

nt

Figure 2.3: Gene expression data for the 82 selected genes and 279 subjects with SVM-R
classification for d = 1/4 and r = 4. The subjects are grouped according to their assigned
decisions by the SVM with a reject option. The left group involves 15 patients (1 sensitive
and 14 resistant) classified to be resistant. The middle group is assigned to be sensitive
and contains 123 sensitive and 8 resistant subjects. 67 sensitive patients and 66 resistant
patients with a withhold decision are shown in the right group.

Five fold cross validation

In order to choose the tuning parameter in SVM-R, we need to hold aside a tuning set before
selecting the genes. Leaving out different observations leads to different gene selection
results. Here we applied a five fold cross validation analysis to examine the variations
of selections of genes and SVM-R model fitting results across different partitions of the
dataset. The implementation followed the steps below.

1. Randomly partition the 279 subjects into 5 non-overlapping folds.

2. Select genes from the 12024 genes based on 4 folds as the training set.

3. Build SVM-R model with the selected genes and the two cancer status variables based
on the training set.
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S1 S2 S3 S4 S5
S1 53
S2 16 77
S3 23 21 87
S4 18 16 15 33
S5 27 30 31 21 94

82 genes 38 38 44 28 50

Table 2.1: Pairwise intersections of S1, . . . , S5 and the 82 genes. The diagonal numbers are
the numbers of selected genes in each Si .

4. Use the leaving-out fold as the tuning set to choose the tuning parameter for SVM-R
with mean l−loss, defined below, as the criteria.

5. Repeat 2. − 4. for the 5 folds.

The l−loss for a subject is 1 if a misclassification occurs, d if a withholding decision is
made and 0 otherwise. The mean l−loss is the average over the l−losses for all the subjects
in a given set of data. We looked for tuning parameter values minimizing the mean l−loss.

The above procedure produced 5 selections of genes before SVM-R, namely S1, . . . , S5.
In addition, we also have the 82 genes selected from all the subjects previously. Table
2.1 presents the pairwise intersections of these 6 sets with each other. The union of the 5
selections includes 211 genes, which covers 77 genes in the 82 genes. 73 out of 211 genes
have frequency more than 1 where 63 of them appear in the 82 genes. After implementing
SVM-R, the union of genes is reduced to 98 genes. Figure 2.4 displays the histogram of these
211 genes colored by the frequency after SVM-R runs for d = 1/5. The pink region denotes
the parts further eliminated by SVM-R, which is consistent with the DCOV selection in
that SVM-R further rules out the genes with low frequency in the union.

Multiple cross validation

In order to consider uncertainty in variable selection and model building due to different
partitions of the dataset, we further extended the five fold cross validation to multiple cross
validation (MCV) and assessed the prediction power through the following procedure.
The results were summarized in the upper part of Table 2.2.

1. Randomly partition 279 samples into a 1/5 tuning set, a 2/3× 4/5 = 8/15 training
set and a 1/3× 4/5 = 4/15 testing set.

2. Select genes from the 12024 genes using the proposed method on the training set.
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Figure 2.4: Frequency for the union of S1, · · · , S5, colored by frequencies after SVM-R for
d = 1/5.

3. Build SVM-R model using the selected genes and the two cancer status variables
based on the training set.

4. Use the tuning set to choose the tuning parameter for SVM-R with mean l−loss as
the criteria.

5. Use the model with chosen parameter to predict labels for the testing set.

6. Repeat 1. − 5. for 50 times.

To understand more about the 50 models, we further explored the prediction results
for d = 1/5. The prediction labels from the 50 models were aggregated, following the idea
of ensemble methods. The result for each individual was recorded in a vector of three
frequencies, namely the frequency of being classified as sensitive subjects, the frequency of
obtaining a withholding and the frequency of being assigned to be resistant out of the 50
models. Let (si ,wi , ri) be the vector for the i th patient.

A finer analysis was conducted by looking at the strength of being sensitive or resistant
according to (si ,wi , ri). A voting score vi was defined as (si − ri)/wi . Hence, a positive vi

indicated a tendency of being sensitive whereas a negative vi suggested more possibility of
being resistant.

To understand the meaning of vi , we first divided the voting scores into 4 consecutive
intervals, each covering about 1/4 of the population. The last interval was further par-
titioned into two to identify a subgroup of patients with extremely large vi ’s and high
homogeneity in the class label. Table 2.3 (upper part) presents the 5 intervals and describes
the distribution of vi ’s as well as the proportion of sensitive subjects within each range of vi ,
compared to the overall proportion of sensitive patients, i.e. 191/279, in the population. It
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turned out that the trend of being sensitive weakened monotonically as the voting score de-
creased. The stratification specified a subgroup of 15 patients, who possessed the greatest
voting scores, with very high accuracy to be chemosensitive. The next highest voting score
subgroup of 47 subjects also showed strong confidence of being sensitive compared to the
sample proportion. The conclusion from partitioning the voting scores was conservative
but led to more convincing and steady classification results.

voting score
(−0.1, 0] (0, 0.1] (0.1, 0.2] (0.2, 0.4] (0.4, 1.5]

original frequency 76 74 67 47 15
proportion 0.5658 0.6486 0.7164 0.8085 0.9333

permuted frequency 145 67 43 24 0
proportion 0.6759 0.6866 0.7209 0.6667 NA

Table 2.3: Frequency of voting score vi ’s and proportion of sensitive subjects in each
subinterval for d = 1/5. The upper and lower parts correspond to the original and permuted
data respectively.

Each replication of the 50 multiple cross validations gave rise to a different collection of
selected genes. This issue is common to selecting variables from a humongous number
of candidates, in the not-low-hanging-fruit situation. The union of the 50 gene selections
before SVM-R consisted of 1245 genes and included all the 82 genes discussed previously.
34 out of 1245 genes were chosen at least 10 times, where 33 of them appeared in the 82
genes, but very few appeared in more than 25 runs. The l1 penalty provided additional
elimination, and for d = 1/5, 498 out of 1245 genes remained after SVM-R runs. Figure 2.5
displays the histogram for the 1245 genes before SVM-R. We distinguished their frequency
after SVM-R by different colors. It is shown that a large number of genes with low frequency
are further deleted by SVM-R model, i.e. pink color.

Permutation of the response

Our method involved several components, including variable selection, SVM-R, MCV and
the voting score, which were interacting with each other, and led to 15 patients with over
93% accuracy to be sensitive for d = 1/5. To further understand the mechanism and to
demonstrate that the outcomes were not produced by noises, we randomly permuted the
response and went through the whole procedure to compare the results with those for the
original data.
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Figure 2.5: Frequency for 1245 genes being selected by DCOV method, colored by frequen-
cies after SVM-R for d = 1/5.

It followed that the DCOV method selected genes spuriously correlated with the per-
muted response based on the training data in each replication of the 50 MCVs. The
maximum distance correlation value of the selected genes in each repetition was very
close to that for the original data. The highly correlated genes appeared due to the high
dimensionality of over 12000 genes and less than 200 training samples.

However, the MCV step played the role of a safeguard against the fake signals. As Table
2.2 depicted, the mean training accuracies for the original and permuted data showed
similar behavior for the original and permuted data, meaning that the selected genes were
indeed important for the training data. Thus, the chosen genes in the permutation set
should provide little prediction power for the tuning and testing data. Hence, the validation
sets selected large tuning parameter values driving all the patients with no decision for
many of the 50 replications for d = 1/4 and 1/5. This did not happen for d = 1/3 since
the sample ratio 191/279 is slightly greater than 1/3. For the rest of the replications with
decision making, the mean testing accuracies for the permuted data remained at the level
of the sample proportion of sensitive subjects for all three values of d , which deviated
much from the increasing pattern in the original data.

These suggested that the MCV procedure was able to provide double fail-secure for
fake signals. On one hand, SVM-R placed a cap on the conditional probability of misclass-
fication and eliminated the replications where the selected genes could not produce results
achieving the specified confidence on the validation set. On the other hand, the mean
testing accuracies on the replications passing through the safeguard of tuning sets would
be no better than assigning everyone to the sensitive class when there was no real signal.
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Furthermore, the poor prediction performance of the 50 individual models ended up
with unsurprisingly disappointing voting score results for the permuted data, as shown in
the lower part of Table 2.3. Many of the patients obtained a relatively small value of the
voting score and nobody got a score in the range where the original data had the highest
accuracy, meaning that the confidence was quite low. Moreover, the stratified ratios of
sensitive subjects for different ranges of the voting scores did not show anything insightful
other than being around the sample proportion.

2.6 Summary of procedures in TCGA Ovarian Cancer data

Several components were included in the TCGA Ovarian cancer data. Here we summarize
the pieces in the algorithm below so that potential users are able to follow the procedure
with new datasets.

1. Set replication number N for MCV and ptrain, ptest ∈ (0, 1) with ptrain + ptest 6 1 for
the proportion of training and testing set.

2. For i runs from 1 to N

a) Randomly partition the data into a ptrain training set, a ptest testing set and a
1− ptrain− ptest tuning set. (If the model in mind does not need parameter tuning,
one can omit the tuning set with ptrain + ptest = 1.)

b) Select variables using DCOV on the training set:

• Calculate marginal distance correlations for xj , j = 1, · · · , p with the response
on the training set.

• Rank the variables in decreasing order of the distance correlations. Denote
the ordered variables as x(1), x(2), · · · , x(p). Start with xS = {x(1)}.

• For j from 2 to p, include x(j) to xS, i.e., updating xS by the concatenated
variables (xS, x(i)), if V 2

n (xS, y) on the training set does not decrease. Stop
otherwise.

c) Build models, for example SVM-R in the TCGA Ovarian case, using the selected
variables on the training set.

d) Use the tuning set to select parameters for the model.

e) Use the model with chosen parameter to predict the response value for the
testing set.

3. Aggregate the predicted results for N replications:
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• For classification task, one may use majority vote to obtain the final labels. The
voting scores for the distinct labels can be used to evaluate the strength of being
classified to each category for every observation.

• For regression task, one may take the average of the N predicted values as the
final prediction.

2.7 Discussion

The paper introduced a new variable selection procedure based on the property of distance
covariance and demonstrated the application through two examples. The small round blue
cell tumors data played a role of a toy example to show that the performance of the proposed
method worked well in easy cases. The TCGA ovarian cancer data, however, were much
more challenging to deal with due to the humongous number of variables and very limited
sample size. The uncertainty of variable selection was discussed through gene selection
results using random subsets of the data. The support vector machine with reject option
was used to withhold decision for subjects who were difficult to classify. An ensemble
method of combining models built on random subsets of the data was implemented to
assess the prediction performance. Although we had applied these tools (DCOV, SVM-
R, MCV) to biomedical data in the paper, we argue that they are quite portable across
disciplines.

As shown in Table 2.3, a small portion of the model building population got classified
for d = 1/5. Is it worthwhile to attempt the classification in such cases? It depends on the
application, for example differential costs of two types of misclassification, and subjective
considerations including quality of life influenced by the treatment, therapy expense and
expected survival time.

Both the analysis of five fold cross validation and multiple cross validation showed
the uncertainty of gene selection results based on different subsets of the data. The large
number of variables that appeared only in a small number of runs suggested noises in
the data and the difficulty caused by limited training sample size in the high dimensional
scenario. It could also suggest the conundrum that the “true” model consists of a large
number of variables with modest effects of which different subsets gives rise to roughly
equal prediction ability. Options for further study in this and other difficult problems
include allowing the DCOV stopping criteria to be modified by some amount ε, and
allowing the greedy variable selection algorithm to be doubly greedy by testing the next
best m of the remaining variables rather than just the next variable. It remains to obtain
theoretical results to guide exploration in alternate scenarios.
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The analysis of random permutation on the response served as both a validation of
our results and a discussion of what one is likely to obtain without any true signal. If
someone started with an entirely different data set having the same proportions for the two
classes with that in the original data but no real signal at all, as what one might get from
scrambling, and went through every step, and finally obtained a subgroup of patients with
large voting score values, the result was no better than just guessing that everyone was
sensitive. This experiment was also a cautionary tale that if one had not held out validation
sets, the analyst could be easily fooled by spurious correlated variables and perfect training
accuracy. Our proposed multiple cross validation and analysis through the voting scores
provided protection against finding fake signals.
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3 backward multiple imputation estimation of the
conditional lifetime expectancy function with application
to censored human longevity data

3.1 Introduction

Survival analysis has been focusing on the popular hazard function for decades, and one
of most famous models is the Cox’s proportional hazard model, Cox (1972). However, the
hazard function, defined as the risk of immediate failure, can be conceptually difficult to
understand. The expected or remaining lifetimes are intuitively more attractive because of
the easy interpretation and turns out to be a more relevant metric under many circumstances.
For example, it is more transparent to patients if the doctor explains it as “on average,
the lifetime is expected to be 80 years if one also at 70 with similar demographic and
healthy background like you takes this treatment" rather than in the language of “the
average hazard is expected to decrease by 25% among the treated patients similar to you."
Furthermore, in the analysis of reliability and actuarial data, a life insurance company may
care more about the life expectancy of a person, and an engineering firm might want to
know the expected remaining lifetime of a system given survival past certain time. These
motivates us to put more attention to directly estimate key summary measures regarding
to remaining lifetimes. This paper targets at lifetime expectancy function and the mean
residual life function.

The lifetime expectancy function(LEF) of a survival time T (with T > 0), denoted by
e(t), is defined as

e(t) = E (T |T > t) = t +

∫τT
t

S(u)

S(t)
du,

where S(t) = P(T > t) is the survival function and τT = inf{t : S(t) = 0}. Denote m(t) the
mean residual life function(MRLF) which is the expected remaining lifetime given survival
up to time t and

m(t) = e(t) − t = E (T − t |T > t).

Both e(t) and m(t) uniquely determine S(t) as the following equation showsHall and
Wellner.

S(t) =
e(0)

e(t) − t
exp
{
−

∫ t
0
[e(u) − u]−1du

}
=

m(0)
m(t)

exp
{
−

∫ t
0
m(u)−1du

}
.

Hall and Wellner provides necessary and sufficient conditions, such that m(t) is a proper
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MRLF (or that e(t) is a proper LEF). That is, F (t) = P(T 6 t) is a proper continuous
distribution function if and only if m(t) satisfies:

1. m(t) > 0 for all t > 0;

2. e(t) = m(t) + t is nondecreasing in t;

3. if there exists a τ such that m(τ) = 0 then m(t) = 0 for all t > τ, otherwise,∫∞
0 m(t)−1dt =∞;

4. m(t) is a right continuous function and has a left limit with positive increments at
discontinuities.

In practice, real data always contain additional information besides the survival time
itself and researchers are interested in how the variables contribute to lifetimes. This is
when the conditionality of LEF or MRLF plays a role. For example, in the context of mobile
devices, modeling the conditional LEF that the users keep active with certain Apps or
games after installation helps the providers target and stratify their customers, and offers
insights about the effectiveness of different features related to the product. In the situation
of property purchase, it is of the interest to both sell and buy sides to know how long it
takes the house to be sold after being listed for sale by a certain agent or on a real estate
website considering the size, building year, location and estimated price of the houses.
Moreover, as we will depict in our real data analysis, lifestyle factors such as smoking
and socioeconomic status, disease and healthy metrics are all informative towards one’s
expected lifespan.

In this paper, we propose a framework for estimating the conditional LEF e(t |x) =

E (T |T > t,X = x) when covariates X information is available and the survival times are
subject to right censoring. Following the same idea with the Buckley-James estimator in
Buckley and James (1979) to address censoring by imputation, our method replaces the
censored survival times in backward order with a heuristic guess of a fitted LEF using a user-
specific base model and the covariates. One is then able to model LEF with a completely
imputed dataset. We provide variance estimation and confidence interval for the estimated
LEF based on the idea of multiple imputation in Rubin (2004). When there is no covariate,
our estimator is proven to be the same as the one derived by inverting the Kaplan-Meier
estimator for the survival function, Kaplan and Meier (1958). Considerable research has
been done on estimation of the conditional MRLF. Chen and Cheng (2006); Sun and Zhang
(2009) and Oakes and Dasu (1990) discussed different semiparametric conditional MRLF
estimations. McLain and Ghosh (2011) covered nonparametric estimation for MRLF with
covariates and we show that this method is equivalent to our framework by choosing kernel
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regression as the base model. We investigate the behaviors of our proposed estimator in
practical settings via different simulation studies. Finally, we demonstrate our method to
model human lifetimes with the Beaver Dam Eye Study data, Klein et al. (1991), where
survival information and a number of useful variables, from demographic records to
medical measurements, are included.

3.2 Semiparametric and nonparametric estimation of
conditional MRL function

There are several papers in the literature discussing how to estimate MRL function m(t |x)

with right censoring conditional on x = (x1, · · · , xp)T which is the p−dimentional vec-
tor of explanatory variables. It is easy to obtain the corresponding lifetime expectancy
function e(t |x) by t +m(t |x). First, Oakes and Dasu (1990) considered the semiparametric
proportional MRL model

mp(t |x) = mp
0(t) exp(βT x),

where mp
0(t) is a baseline MRL function and β is a p−dimentional vector of regression

coefficients. Chen and Cheng (2006) proposed to estimate m(t |x) as an additive expectancy
regression model. The model takes a semiparametric form of

ma(t |x) = ma
0(t) + γ

T x ,

where ma
0(t) is a baseline MRL function and γ is a p−dimentional vector of regression coef-

ficients. Sun and Zhang (2009) framed the general family of semiparametric transformation
models

mg (t |x) = g {m0(t) +β
T x}

that include the previous proportional and additive models as special cases.
As discussed in McLain and Ghosh (2011), the nondecreasing property of e(t |x) may

be violated under the existing semiparametric models. The authors in McLain and Ghosh
(2011) considered taking a different perspective to satisfy this natural constraint. They
first calculate the nonparametric estimation ŜP(t |x) of the conditional survival function
using generalized Kaplan-Meier estimator according to Dabrowska et al. (1989); Gonzalez-
Manteiga and Cadarso-Suarez (1994), and then take the inversion to obtain the nonpara-
metric estimator m̂P(t |x) for the conditional MRL function. A smoothed estimation of
MRL is available by inverting the smoothed ŜP(t |x) based on Bernstein polynomials. It is
straightforward that m̂P(t |x) is a valid MRL function since ŜP(t |x) is a well defined survival
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function.

3.3 Backward multiple imputation framework for
estimating LEF

Backward imputation without covariates

Idea and method

Let’s first consider the cases without any covariate to intuitively understand the idea. Let
T be a continuous nonnegative random variable and C be the censoring variable. We
assume that T and C are independent. The observed data set consists of n independent
and identically distributed replicates of (Yi , δi), i = 1, · · · , n where Yi = min(Ti ,Ci), and
δi = I{Ti6Ci }

is the censoring indicator. Let y(1) < · · · < y(M) be the distinct ordered values
of the n observations and n1, · · · , nM be the corresponding number of observations taking
each specific values of y(i), i = 1, · · · ,M . Denote t(1) < · · · < t(K ) and c(1) < · · · < c(J) the
distinct ordered event times and censored times respectively. The notation n(t(k)) or n(c(j))
takes the number of observations at t(k) or c(j).

The c(j)’s are right censored and we know that the true values should be greater than
the censored times c(j). One reasonable guess for the true values is the lifetime expectancy
at c(j), i.e. e(c(j)) = E (T |T > c(j)). This is the same idea as the single imputation of Little
and Rubin, Little and Rubin (2014) and as the Buckley-James estimator, Buckley and James
(1979). We could use the sample lifetime expectancy, which is the mean of the observations
greater than c(j), as an estimate for e(c(j)). However, this does not work if there still exists
censored data to the right of the targeted c(j). We can address this problem by processing
our guessing regime for c(j)’s backwardly from J to 1. After imputing the censored values,
it is easy to obtain sample lifetime expectancy at any time point t. The detailed steps are as
follows:

Algorithm 1. Backward imputation without covariates

1. We do nothing if c(J) is the largest value in the dataset, i.e. c(J) = y(M). Otherwise, we
estimate e(c(J)) by the sample mean of the observations beyond c(J), i.e.

êB(c(J)) =

∑n
i=1 yi I{yi>c(J)}∑n
i=1 I{yi>c(J)}

=

∑M
i=1 y(i)ni I{y(i)>c(J)}∑M
i=1 ni I{y(i)>c(J)}

=

∑K
k=1 t(k)n(t(k))I{t(k)>c(J)}∑K
k=1 n(t(k))I{t(k)>c(J)}

.

Replace c(J) by êB(c(J)) and treat it as observed.
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2. Repeat the above procedure backwardly for j = J − 1, · · · , 1 to replace c(j) by êB(c(j)) which
is the sample mean of the observations beyond c(j) in the imputed data. Since the process runs
for j from J to 1, we will have imputed all the censored values greater than c(j) and there is no
missingness to estimate e(c(j)) by the sample mean of the observations larger than c(j).

3. Let ỹ1, · · · , ỹn be the data after backward imputation procedure. If yi is observed or it is the
largest observation and is censored, then ỹi = yi . Otherwise, yi is one of the censored time
and ỹi = êB(yi). The backward procedure only obtains estimates of e(t) at the censored times.
In general, we estimate e(t) for t > 0 by the following formula

êB(t) =

∑n
i=1 ỹi I {yi > t}∑n
i=1 I {yi > t}

.

Relationship with Kaplan-Meier estimator

Another way to obtain an estimator for e(t) is by inverting an estimator for S(t). We know
that Kaplan-Meier estimator ŜKM(t) is the MLE for S(t) w.r.t the empirical likelihood.
Denote êKM(t) the estimate for e(t) by inverting ŜKM(t). The following theorem proves the
equivalence between êB(t) and êKM(t). This also demonstrates the equivalence between
the spirit of backward imputation and the idea of redistribution-to-the-right to estimate
survival function established by Efron (1967).

Theorem 3.1. Let T be a continuous nonnegative random variable which is independent of the
censoring variable C . We observe n i.i.d replicates of (Yi , δi), i = 1, · · · , n where Yi = min(Ti ,Ci),
and δi = I{Ti6Ci }

. Denote êB(t) the backward imputation estimator for e(t) as described in Algorithm
1 and êKM(t) the inverted Kaplan-Meier estimator for e(t) which takes the following explicit form:

êKM(t) =



t(k) +
1

ŜKM(t(k−1))

K∑
l=k+1

(t(l) − t(l−1))ŜKM(t(l−1)), t(k−1) < t < t(k)

t(k) +
1

ŜKM(t(k))

K∑
l=k+1

(t(l) − t(l−1))ŜKM(t(l−1)), t = t(k), k = 1, · · · ,K − 1

0, t > t(K ).

Then êB(t) = êKM(t) for t > 0.

Backward imputation with covariates

We want to make use of the covariates information for estimating life expectancy function.
We assume the censoring to be conditionally independently of of the survival time given
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the covariates X = x . Now our observations are n i.i.d samples (Yi , δi , xi), i = 1, · · · , n,
where Yi = min(Ti ,Ci), and δi = I{Ti6Ci }

. Suppose we have a base regression model

f (x) = E (T |X = x)

that uses the covariates information to predict the mean survival times when there is no
censoring. We substitute the sample mean in the previous backward imputation procedure
by the base regression model. This means that we treat the estimate for e(c(j)|x) = E (T |T >

c(j),X = x) as our guess for the censored case c(j) with its covariates x . The following
algorithm illustrates the detailed steps.

Algorithm 2. Backward imputation with covariates

1. We do nothing if c(J) is the largest response value in the dataset, i.e. c(J) = y(M). Otherwise,
we obtain the fitted model f̂ using the observations {(yi , xi)|yi > c(J)}. Note that all the
observations with yi > c(J) should be uncensored in this step by the definition of c(J). Replace
c(J) by f̂ (x0) where x0 represent the observed covariates values for cJ), and treat it as observed.

2. Repeat the above procedure backwardly for j = J − 1, · · · , 1 with the imputed data.

3. Let ỹ1, · · · , ỹn be the data after backward imputation procedure. Obtain the fitted base model
f̂ using the data {(ỹi , xi)|yi > t} and we estimate e(t |x) by f̂ (x).

There are several advantages of this framework. One is that it allows time-varying
effects of the covariates since we obtain the fitted e(t |x) restricting to the subset of the
data with the original censored survival time greater than the time point t. Another
flexibility about this procedure is the freedom to choose the base model f that describes
the data the best. The following result states that using kernel regression as the base model
in backward imputation procedure is equivalent to the nonparametric estimator êP(t |x)
proposed by McLain and Ghosh, McLain and Ghosh (2011). This also implies that êP(t |x)
shares the similar pros and cons to kernel regression. For example, one has to take care
of the choice of kernel, the contamination in the distance due to irrelevant variables and
curse of dimensionality. One is able to address these issues by applying more appropriate
base models in backward imputation method to accommodate different datasets.

Theorem 3.2. Let K : Rp → R be the p-dimensional kernel function and hn denotes the bandwidth.
Let êB(t |x) be the estimator for e(t |x) from backward imputation using kernel regression with K

and hn, and êP(t |x) be the nonparametric estimator of the conditional LEF proposed in McLain and
Ghosh (2011) using the same K and hn. Then êB(t |x) = êP(t |x) for t > 0 given x .
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Variance estimation with multiple imputation

The methods illustrated above are in the fashion of single imputation, which does not take
into account the uncertainty about the predictions of the unknown censored values. It is
likely that the variance estimation for êB(t |x) is biased toward zero. We incorporate the
idea of multiple imputation procedure, Rubin (2004), in our proposed method. Instead of
filling in the conditional expected values for each censored value as described above, we
replace by a random sample drawn from the posterior predictive distribution under the
base model each time. It introduces randomness that represent the uncertainty about the
right value to impute. We repeat the backward multiple imputation for a number of times
and the results are combined finally to obtain a valid variance estimation and confidence
interval for the estimate of conditional life expectancy function. The procedures are shown
below.

Algorithm 3. Backward multiple imputation with covariates

1. Set up the number of multiple imputation m. For each replication, repeat 2 - 4.

2. We do nothing if c(J) is the largest response value in the dataset, i.e. c(J) = y(M). Otherwise,
we obtain the fitted model f̂ using the observations {(yi , xi)|yi > c(J)}. Note that all the
observations with yi > c(J) should be uncensored in this step by the definition of c(J). Replace
c(J) by a random sample from the posterior predictive distribution of the fitted model at x0

where x0 represent the observed covariates values for c(J), and treat it as observed.

3. Repeat the above procedure backwardly for j = J − 1, · · · , 1 with the imputed data.

4. Let ỹ1, · · · , ỹn be the data after backward imputation procedure. Obtain the fitted base model
f̂ using the data {(ỹi , xi)|yi > t} and we estimate e(t |x) by f̂ (x). Moreover, keep record of the
estimated variance for f̂ (x).

5. With m imputations, one collects m different sets of the point and variance estimates for e(t |x).
Let Q̂i and Ûi be the point and variance estimates of e(t |x) from the ith imputed data set,
i = 1, · · · ,m. Note that Q̂i and Ûi are functions of x and we eliminates the dependency on x

in the notation for simplicity.

6. The point estimate for e(t |x) from multiple imputations is

Q̄ =
1
m

m∑
i=1

Q̂i .
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7. Let Ū be the within-imputation variance, i.e.

Ū =
1
m

m∑
i=1

Ûi

and B be the between-imputation variance

B =
1

m− 1

m∑
i=1

(Q̂i − Q̄)2.

The the variance estimation for the estimated e(t |x) is the total variance

T = Ū + (1 +
1
m
)B .

8. The statistic (Q − Q̄)T−1/2 is approximately distributed as a t-distribution with degrees of
freedom

vm = (m− 1)[1 +
Ū

(1 +m−1)B
]2.

When vm is large, one may approximate by a normal distribution. Confidence interval for
e(t |x) can be derived accordingly.

3.4 Simulation

In this section, we present results from three simulation studies that were run to evaluate
the performance of the backward multiple imputation method. There were three settings to
generate the data. The first corresponds to an additive model with e(t |x) = t + exp(−t) +

β1x1 +β2x2. The second is a proportional model with e(t |x) = t + exp(−t +β1x1 +β2x2).
The third is a hybrid model with e(t |x) = t + β1x1 + β2x2 + exp(−t + β3x3 + β4x4). We
generated the censoring variable C from exponential distribution with rate parameter
that resulted in 30% right censoring rate. The sample size was n = 300 for the first two
settings and was 400 for the third one. The covariates are mutually independent. x1 and
x3 were drawn from Bernoulli(1/2) and x2 and x4 were drawn from Uniform(0, 2) with
β1 = 1,β2 = 0.5,β3 = −1 and β4 = −0.5. The base model was linear regression for
simulation 1 and was SS-ANOVA for the remaining two settings. We assumed the errors
followed a normal distribution for all three cases. This means our posterior predictive
distribution from which we drew samples to impute the censored cases is also a normal
distribution. The multiple imputation number was set to be 20 and we repeated for 300 times
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target point Q0.1 Q0.25 Q0.5 Q0.75 Q0.9

Additive
mean bias -0.0095 -0.0160 -0.0167 -0.0257 -0.0423
mean std. 0.1656 0.1770 0.2194 0.3346 0.6199

coverage prob 0.946 0.948 0.948 0.950 0.950

Proportional
mean bias 0.0061 0.0030 -0.0047 -0.0181 -0.0235
mean std. 0.0346 0.0369 0.0430 0.0566 0.0813

coverage prob 0.973 0.963 0.983 0.970 0.987

Hybrid
mean bias 0.0207 0.0122 0.0047 -0.0225 -0.0578
mean std. 0.1893 0.2057 0.2489 0.3490 0.5504

coverage prob 0.963 0.963 0.943 0.947 0.940

Table 3.1: Summary of results for estimated life expectancy function using backward
imputation method with three different settings.

for all three settings. The life expectancy functions were estimated for 0.1, 0.25, 0.5, 0.75
and 0.9 quantiles of the censored survival time Y given all covariates values fixed at 1. We
examined the estimated bias, standard deviation and empirical coverage of 95% confidence
intervals. (We used normal approximation since vm’s calculated according to algorithm
3 are large.) Table 3.1 summarized the results and it showed that the backward multiple
imputation framework with tailored base model performed pretty well for estimating
e(t |x). Moreover, it also gave the desired coverages for the true e(t |x) using the 95% normal
confidence interval with the variance estimation based on the multiple imputation idea.

3.5 Application to Beaver Dam Eye Study data

Data description

The Beaver Dam Eye Study (BDES), Klein et al. (1991), is an ongoing population-based
study of age-related ocular disorders with five, ten, fifteen and twenty year follow-ups.
Subjects at baseline, examined between 1988 and 1990, were a group of 4926 people aged
43-86 years from Beaver Dam, WI. The survival statuses, including ages at death, for this
population were updated by 12/31/2013 with 2014 individuals who were alive. BDES
provides us an excellent opportunity to study the lifetime expectancy with our proposed
methods.

A number of variables, including measurements on individual health and lifestyles,
were recorded in the study. We took advantages of a couple of the most important ones
which were used in Kong et al. (2012) to examine the association with human mortality.
To maintain the largest sample sizes, we focused on the baseline data. Table 3.2 lists the
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variable units description
lastage years censored age at death

survflag yes/no survival indicator
baseage years age at baseline
gender F/M gender

edu years highest year school/college completed
bmi kg/m2 body mass index

smoke yes/no history of smoking
inc yes/no household personal income > 20K

diabetes yes/no history of diabetes
cancer yes/no history of cancer
heart yes/no history of cardiovascular disease

kidney yes/no history of chronic kidney disease

Table 3.2: Variable description in the SS-ANOVA model

description of all the variables involved in the study. A number of variables with weak
signals for longevity are discussed in the supplementary material.

Model fitting

SS-ANOVA modelWahba (1990); Gu (2013); Wang (2011) has a successful history in model-
ing BDES dataLu et al. (2005); Kong et al. (2012). Our base model is an SS-ANOVA model
with the following form.

(imputed) lastage = µ+ f1(baseage) +βgender I{gender=F } + (∗)

f2(edu) + f12(baseage : edu) + f3(bmi)+

βsmoke I{smoke=no} +βinc I{inc>20K }+

βdiabetes I{diabetes=no} +βcancer I{cancer=no}+

βheart I{heart=no} +βkidney I{kidney=no}

Functions f1, f2 and f3 are cubic splines and f12 uses the tensor product construction. The
remaining covariates are unpenalized and modeled as linear terms with I{·} as indicator
functions. We incorporated this base model in Algorithm 3 with multiple imputation repli-
cations m = 200 to estimate the conditional lifetime expectancy function in the population
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of BDES. One adjustment we applied for Algorithm 3 was that we used model (∗) if the
sample size involved in step 2 of Algorithm 3 was greater than 100 otherwise we simply used
sample mean of ages of death among all the samples involved in this step. We observed that
both the estimations for LEF and the variance estimation became stable after 20 multiple
imputations.

Results for cohort of baseline age 70 in BDES

Figure 3.1-3.4 display the predicted conditional lifetime expectancy functions for the cohort
with baseline age of 70. In Figure 3.1, we present how the expected lifetime changes with
BMI, education and gender for nonsmoking rich and healthy individuals with baseage
of 70. The natural constraint of monotonic nondecreasing over t for e(t |x) is very well
satisfied. The plots suggest that females tend to have longer lifespans compared with
males. Higher education and mid-valued BMI are protective for longevity. The covariates
effects fade out as t gets large with several possible reasons. First, the sample size is limited
when restricting to subjects over 85. Second, it is likely that those long-lived individuals
have survived from the hist risk factors so that we could not find the significance for the
covariates.

In Figure 3.2, we examine the effects of smoking, cardiovascular disease and income
for the subgroup of females with mid-valued BMI, education and no other disease. From
the plots, it appears that smoking and having a history of heart disease have negative
influences on longevity in this population. Higher household income slightly protects
longevity. Figure 3.3 discovers how diabetes and chronic kidney disease change expected
survival given the rest of covariates. It turns out that diabetes is a strong risk factor that
reduces human longevity. Chronic kidney disease, though not as harmful as diabetes, also
exerts a negative effects on survival times among this subgroup of people.

Figure 3.4 takes a different perspective from the previous 3 plots and focuses on the two
continuous variables BMI and education for a cohort of rich and healthy female nonsmokers
who entered the study when they were 70. The five surfaces correspond to 5 time points,
t = 70, 75, 80, 85 and 90. Each surface represent the estimated expected lifetime across
different values of BMI and education. When t is small, we observe the quadratic influence
of BMI where very low BMI values are very harmful and the optimal value happens at
around 26 or 27 and tails down slowly for higher values. Note that Beaver Dam is a small
town in the Midwest and may not be representative of some population groups in other
areas of the country. The education displays a monotonic increasing effect on lifetime
in this cohort. The higher the completed education is, the longer the expected lifetime
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is. When t gets large, we again find that the influences of BMI and education disappear.
More results about some other weakly related variables and other baseline age cohorts are
discussed in supplementary material.

Results for cohort of baseline age 50 in BDES

We examined the fitted LEF for the group with baseline age of 70 in BDES data previously.
Let’s further look at another cohort with baseline age of 50, which contains around 80% of
censoring compared to a censoring rate of about 20% for the cohort of baseline age at 70.
Figure 3.5 presents the effects of BMI, education and gender for the subgroup of rich and
healthy nonsmokers of baseline age 50. In comparison with Figure 3.1, it is obvious that the
confidence intervals from the multiple imputation method are much wider, resulting in the
insignificance of gender although the estimated LEF for males and females are still apart
given the rest of the covariates. In addition, the percentage of observed death ages with
education greater than 20 is about 10% lower than that the average in this cohort, which
further explains why the widths of the confidence intervals correspond to education of
20 are much more inflated in Figure 3.5. Similar behaviors are also observed in Figure 3.6
which explores the effects of income, smoking and heart disease. The heavy censoring rate
among subjects with baseline age of 50 gives rise to the statistical insignificance of these
important covariates.

Additional variables in BDES

We have discussed the most important variables associated with longevity in BDES. There
are a couple of medical measurements weakly correlated with the survival times in addi-
tional to the ones already in the model (∗). The variables we further took into accounts are
listed in Table 3.4, and the new SS-ANOVA model are shown in (∗∗). Functions f1 to f8 are
cubic splines, and f12 and f17 use the tensor product construction.

(imputed) lastage = µ+ f1(baseage) +βgender I{gender=F } + (∗∗)

f2(edu) + f12(baseage : edu) + f3(bmi)+

βsmoke I{smoke=no} +βinc I{inc>20K }+

βdiabetes I{diabetes=no} +βcancer I{cancer=no}+

βheart I{heart=no} +βkidney I{kidney=no}+

f4(hdl) + f5(hgb) + I{gender=F }f6(hgb)+

f7(glucose) + f17(baseage : glucose) + f8(crp).
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variable units description
hdl mg/dL high-density lipoprotein cholesterol (serum)
hgb g/dL hemoglobin (blood)

glucose mg/dL glucose (serum)
crp mg/L C-reactive protein

Table 3.3: Additional variables in the SS-ANOVA model

Again, we use the cohorts with baseline age of 70 to demonstrate the results, illustrated
in Figure 3.7-3.8. In Figure 3.5, we observed the positive influence of HDL as well as the
harm of high glucose on longevity given all the rest of covariates. Hgb has a quadratic
effects when time point t is small with larger sample size, and is interactive with gender as
captured in Figure 3.7. The optimal hgb range is from 12 to 14 and 14 to 18 for females and
males respectively. High level of C-reactive protein is a sign in response to inflammation
and turns out to be decrease survival as expected. The changes in the corresponding
estimated life expectancy are small when the values of these 4 variables run from the best to
the worst scenarios, demonstrating their weak effects in addition to the important variables
appeared in (∗).

Validation using bootstrapped samples

This is an observational study and the true e(t |x) is unknown. We used bootstrap method to
get the empirical distributions of e(t |x) for different values of t and x to check if the results
coming from backward multiple imputation matches the mean and standard deviation of
the empirical distribution. The following steps cover the bootstrap details.

1. Obtain bootstrap samples by resampling with replacement.

2. Use backward imputation, i.e. Algorithm 2, with SSANOVA on the bootstrapped
samples.

3. Estimate e(t |x) with the imputed bootstrap data for the combinations of t and x used
to generate Figure 3.1-3.3.

4. Repeat steps 1-3 for 1000 times to get empirical distribution of e(t |x) for each combi-
nation of t and covariates values.

From the above bootstrap procedure, we obtained estimated mean and standard error
of e(t |x) from the empirical distributions, denoted as êBOOT (t |x) and ŝtd {êBOOT (t |x)}. We
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quantiles of the ratios Q0.1 Q0.25 Q0.5 Q0.75 Q0.9
êBM(t |x)

êBOOT (t |x)
0.9971 0.9987 1.0006 1.0031 1.0053

ŝtd {êBM(t |x)}

ŝtd {êBOOT (t |x)}
0.7561 0.8694 0.9897 1.0929 1.1959

Table 3.4: Comparison of the estimates of e(t |x) and its estimated standard deviation by
bootstrap and backward multiple imputation.

could compare those with the ones derived from the previous backward multiple im-
putation, denoted as êBM(t |x) and ŝtd {êBM(t |x)}. For baseline age of 70, there were 6400
combinations of t and covariates values where t runs from 70 to 93. Table 3.3 summarizes the
differences between the ratios of the two estimators and the ratios of the two corresponding
estimated standard deviations. The ratios between the estimators are closely centered at 1.
The ratios between the two standard deviations spread out a little bit but still concentrated
around 1, meaning that êBM(t |x) and ŝtd {êBM(t |x)} match the empirical distribution pretty
well. Furthermore, Figure 3.9 randomly picks 8 cases for the bootstrapped distributions of
êBOOT (t |x) and displays the histograms. It turns out the bootstrapped distributions are all
alike normal distributions. It means that a normal confidence interval derived from the
bootstrapped distribution is satisfactory. Therefore, the normal confidence intervals by the
multiple imputation procedure are justified since êBM(t |x) and ŝtd {êBM(t |x)} are close to
êBOOT (t |x) and ŝtd {êBOOT (t |x)} as shown in Table 3.3.

3.6 Discussion

In this article, we presented our backward multiple imputation framework for estimating
the conditional lifetime expectancy function. In the case without covariates, our estimator
is proven to be equivalent to the estimation for LEF by inverting the Kaplan-Meier survival
function estimator. In the case with covariates, one is free to select a base model that best
capture the data. One is able to recover the nonparametric estimator for conditional LEF
proposed in McLain and Ghosh (2011) based on the generalized Kaplan-Meier estimator
by using kernel regression in our framework. The simulation studies demonstrated the
performance of our methods and validated the use of multiple imputation for variance
estimation under three different settings. The application to the Beaver Dam Eye Study data
illustrated the use of SS-ANOVA model together with our backward multiple imputation
method. We presented the fitted results for the cohorts with baseline age of 70 where a
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number of variables, including gender, smoking, education level, BMI values and several
diseases, were shown to be significantly associated with the human longevity.

There are a couple of issues that we will consider as our future direction. First, as
pointed out by McLain and Ghosh (2011), lots of existing models for estimating MRLF or
LEF do not satisfy the nondecreasing property of e(t |x). We know that kernel regression
ensures the validation of this condition. The real application results in BDES data also
seemed to be validated with nondecreasing curves. However, it is of our practical and
theoretical interest to explore what base models guarantee this property as well. In this
paper, we discussed the use of multiple imputation to obtain the variance estimation for the
estimated LEF. Still more research about the other ways to construct the variance estimator
under certain base models, including asymptotic distributions of the LEF estimator, is
needed in order to reduce the burden in computation.
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Figure 3.1: Lifetime expectancy function estimation by bmi, edu, and gender for the subgroup
with baseage = 70, smoke = no, income > 20K and no disease. The x-axis is time t from 70 to
93. The y-axis is ê(t |X = x). The shaded area presents 95% normal confidence intervals.
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Figure 3.2: Lifetime expectancy function estimation by smoking, heart disease, and income for
the group with baseage = 70, gender = F, bmi = 28(median of the population), edu = 12(median
of the population) and no other disease. The x-axis is time t from 70 to 93. The y-axis is
ê(t |X = x). The shaded area presents 95% normal confidence intervals.
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Figure 3.3: Lifetime expectancy function estimation by diabetes and chronic kidney disease for
subjects with baseage = 70, gender = F, smoke = no, income > 20K, bmi = 28, edu = 12 and no
heart disease, cancer or stroke. The x-axis is time t from 70 to 93. The y-axis is ê(t |X = x).
The shaded area presents 95% normal confidence intervals.
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Figure 3.5: Lifetime expectancy function estimation by bmi, edu, and gender for the subgroup
with baseage = 50, smoke = no, income > 20K and no disease. The x-axis is time t from 50 to
74. The y-axis is ê(t |X = x). The shaded area presents 95% normal confidence intervals.



54

Baseline age = 50

Time

Li
fe

 e
xp

ec
ta

nc
y

75

80

85

90

50 55 60 65 70 75

cvd = no
income < 20K

cvd = yes
income < 20K

cvd = no
income >= 20K

50 55 60 65 70 75

75

80

85

90

cvd = yes
income >= 20K

smoke = no smoke = yes

Figure 3.6: Lifetime expectancy function estimation by smoking, heart disease, and income for
the group with baseage = 50, gender = F, bmi = 28(median of the population), edu = 12(median
of the population) and no other disease. The x-axis is time t from 50 to 74. The y-axis is
ê(t |X = x). The shaded area presents 95% normal confidence intervals.
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Figure 3.9: Bootstrapped distributions for randomly selected êBOOT (t |x) out of 6400 com-
binations of t and x . The top 2 rows are 8 random selections for baseline age of 70. The
bottom 2 rows are 8 random selections for baseline age of 50.
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4 comparison between backward imputation method and
buckley-james method

4.1 Introduction

When it comes to survival analysis, Cox proportional hazard model dominates statistical
modeling. While there are many good reasons for using it, other models exist and can be
a better choice under some circumstances. For example, Cox’s model is seldom used if
there is no censoring in the data in which case linear regression prevails. Buckley-James
estimator, Buckley and James (1979) is a popular alternative to Cox’s model as the usual
least square regression adapted to censored data, which also tries to impute the censored
times as the backward imputation method introduced in Chapter 3. This section delivers
some preliminary results in simulation and real data comparing the backward imputation
method and Buckley-James estimator. More investigation on the relationship between the
two methods is being conducted and will be included as the results come up.

4.2 Buckley-James Method

Let Ti denote the transformed survival time, for instance, the logarithm of the failure time
corresponding to the accelerated failure time model. Assuming that the true survival time
is linearly related with the covariates Xi , then we can describe the relationship through the
model

Ti = α+ XT
i β+ εi , i = 1, · · · , n, (4.1)

where εi ’s are i.i.d random errors and are independent from the covariates. When Ti is
subject to right censoring, what we observe is (Yi , δi ,Xi), where Yi = min(Ti ,Ci), Ci is
the transformed censoring time by the same transformation for Ti , and δi = I{Ti6Ci }

is the
censoring indicator.

The above model reduces to linear regression model when no censoring exists and
one can estimate the parameters by least-square method. When right censoring exists,
Buckley-James methods tries to make a reasonable guess for the true values of the censored
times Ti . It turns out it carries the same idea as the widely-used single imputation in
missing data in Little and Rubin (2014). Putting together the intercept α and the error εi ,
we define the new error term

ξi = α+ εi = Ti − XT
i β,
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with the true coefficients β. When Ti is right censored, we observe Yi and know that the
true survival time Ti must be greater than Yi . Hence, an intuitive imputation for Yi is

E (Ti |Ti > Yi ,Xi) = XT
i β+ E (ξi |ξi > Yi − XT

i β) (4.2)

= XT
i β+

∫∞
Yi−XT

i β

tdF (t)

1 − F (Yi − XT
i β)

, (4.3)

where F is the c.d.f. of ξ. Buckley-James method obtains an estimation F̂ of F by the
Kaplan-Meier estimator for the corresponding survival function. Then one could plug in F̂

in (4.3) to have an imputed value of Yi given a value of β. We could rewrite the imputed
response as

Y ∗i = δiYi + (1 − δi)E (Ti |Ti > Yi ,Xi), (4.4)

and model (4.1) becomes

Y ∗i = α+ XT
i β+ ε∗i , i = 1, · · · , n, (4.5)

where ε∗i ’s are independent with mean zero. Least-square methods can be applied to (4.5)
for estimating β. Buckley-James method iteratively solves for β and estimates α after the
iteration converges.

4.3 Requirements of Buckley-James method

There are two main assumptions behind model (4.1) for Buckley-James estimator, namely
linearity and homogeneity. Linearity comes in since model (4.1) explicitly assumes linear
relationship between the covariates and the survival times. Homogeneity is the reason
for dropping of Xi in the conditional expectations E (ξi |ξi > Yi − XT

i β) in (4.2). These
assumptions are easily to be violated in real data and are hard to detect due to censoring.

Here we simulated cases when linearity and homogeneity are not satisfied and display
the data to tell the audiences that checking these assumptions under censoring is difficult
and sometimes impossible. The first simulation violated homoscedasticity with the true
model as Ti = 1 + 2Xi + N(0, (1+Xi

2 )2) and Xi ’s were randomly drawn from U(0, 2). The
censoring variable was independently drawn from uniform distribution resulting in about
50% of censoring. Figure 4.1 presents two cases, namely sample size n = 50 and 300. It turns
out that the inflated variance with increasing X is hardly observed even with a moderate
sample size of n = 300 when the information of survival times is partly censored.

Simulations 2 and 3 have both nonlinearity and heteroscedasticity. In these two cases,
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Figure 4.1: Simulated data fromTi = 1+2Xi +N(0, (1+Xi
2 )2)with about 50% right censoring.

The plots in the top row correspond to sample size of 50. The bottom row is for sample size
of 300. Red crosses and black pluses are for observed survival times and censored times
respectively.

we generated survival times from Ti = 1− 2X 2
i +N(0, (1+Xi

2 )2) and Ti = 1+ 4Xi sin(πXi) +

N(0, (1+Xi
2 )2) with Xi ’s independently from U(0, 2) and sample size of 50. The censoring

variables were independently drawn from uniform distribution resulting in about 50%
of censoring. With the existence of censoring, the true nonlinear relationship between
T and X is not clearly captured from the plots, shown in Figure 4.2-4.3. So is the hidden
heterogeneity.

4.4 Comparing Buckley-James method and backward
imputation method in simulation studies

We further investigated the performances of Buckley-James method and backward imputa-
tion method in the three simulation settings above. We included a parameter ρ controlling
the degree of heterogeneity in the variance of the error so that the errors were drawn
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Figure 4.2: Simulated data from Ti = 1 − 2X 2
i +N(0, (1+Xi

2 )2) with about 50% right censor-
ing and sample size of 50. Red crosses and black pluses are for observed survival times
and censored times respectively.
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Figure 4.3: Simulated data from Ti = 1+ 4Xi sin(πXi) +N(0, (1+Xi
2 )2) with about 50% right

censoring and sample size of 50. Red crosses and black pluses are for observed survival
times and censored times respectively.

from N(0, (1/2 + ρX )2) with rho = 0, 0.2, 0.4, · · · , 1. For each of the three simulations, we
implemented four imputation methods, namely Buckley-James with linear model, Buckley-
James with SS-ANOVA model, backward imputation with linear model and backward
imputation with SS-ANOVA model. In addition, we had the sample sizes n = 50 or 300
and the censoring rate to be approximately 30%, 50% and 70%. For every combination of
the sample size and censoring rate, we took the average of mean squared error(MSE) of the
imputed times and true survival times for the censored cases in 500 replications to evaluate
the performance.

Figure 4.4 summarizes the simulation results for the first scenario when only homogene-
ity is violated. MSE increases almost linearly in the size of heteroscedasticity. When ρ is
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close to 0, i.e., no or minor violation of homogeneity, there is almost no difference among
the 4 methods in term of MSE of the imputed censored times. When ρ gets larger, the two
Buckley-James methods result in worse imputation than the two backward imputation
methods. Moreover, backward imputation methods seem to be less affected by higher
censoring rate and smaller sample size. When the model is no longer linear, Buckley-James
with linear model turns out to be more biased compared with the other three methods as
depicted in Figure 4.5-4.6. The differences between Buckley-James and backward imputa-
tion under SS-ANOVA are exaggerated for censoring rate at 70% with heterogeneity in the
variance of the error.

Based on the observations from the simulations, we found that the original Buckley-
James linear model is very fragile with model mis-specification. Buckley-James method
using SS-ANOVA model usually succeeds in imputation when nonlinearity exists. Back-
ward imputation method with SS-ANOVA model is more robust to both nonlinearity
and heteroscedasticity especially under circumstances with high censoring rate and small
sample sizes compared to Buckley-James methods.
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Figure 4.4: Summary of results for model Ti = 1 + 2Xi + N(0, (1
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2) with ρ =
0, 0.2, 0.4, · · · , 1.
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Figure 4.5: Summary of results for model Ti = 1 − 2X 2
i + N(0, (1

2 + ρXi)
2) with ρ =

0, 0.2, 0.4, · · · , 1.

4.5 Comparing Buckley-James method and backward
imputation method with real data

Stanford heart transplantation data

In this section, we implemented the two methods in two well-known datasets, namely
the Stanford heart transplantation data in Miller and Halpern (1982) and the veteran’s
administration lung cancer trial data in Prentice (1973), to explore the behaviors of the
two in real data. Let’s first focus on the heart transplantation data. The time-to-event
outcome of this dataset is the lifetime since first heart transplantation between October
1967 and February 1980. 55 out of 157 patients were censored with two covariates, age at
the time of first transplant and the T5 mismatch score which measures the degree of tissue
incompatibility between the hearts of the initial donor and recipient with respect to HLA
antigens. Figure 4.7 describes the relationship between the logarithm of lifetimes versus
the the variables. Although the censoring hides the true relationship, we don’t observe
obvious nonlinear patterns. It does seem that the variance is slightly inflated when T5
mismatch score is large and age is small.

Random samples were drawn from the uncensored subjects as test set and the rest data
were treated as training data. We implemented Buckley-James with linear and SS-ANOVA
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Figure 4.6: Summary of results for model Ti = 1 + 4Xi sin(πXi) + N(0, (1
2 + ρXi)

2) with
ρ = 0, 0.2, 0.4, · · · , 1.

models and backward imputation with SS-ANOVA model on the training data with log
survival times where main effects for T5 mismatch score and age were fitted.(Backward
imputation with linear model for comparison was not included here since the previous
simulation studies indicate that SS-ANOVA is probably a better choice combining with
backward imputation.) With the censored times being imputed in the training data, models
were fitted on the three imputed training data to predict the lifetimes in the test set. Then, the
mean squared error of the predicted lifetimes in the test set can be used as a measurement
of performance. Moreover, we also fitted linear regressions to the three imputed training
data to see how far away the estimated coefficients were from the ones out of an accelerated
failure time(AFT) model on the whole dataset. If the coefficients of the AFT model are
assumed to be the ground truth, then the l2 norm between the coefficients from the imputed
training data and the whole data evaluates the success of the imputation procedure as well.
In order to create different censoring rate, we generated test sets of sizes 30, 50 and 70 with
500 replications for each test sample size. Table 4.1 displays the averages of MSE and l2

norm for the three methods under different test sample sizes. The fact that Buckley-James
with linear model outperforms Buckley-James with SS-ANOVA model confirms the linear
relationships between the two covariates and the survival. With all three test sample sizes,
backward imputation is in the leading place under the two evaluation metrics. The use of
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Figure 4.7: T5 mismatch score and age versus log survival times for Stanford heart trans-
plantation data. Red crosses and black pluses are for observed survival times and censored
lifetimes respectively.

testsize MSE BI-S MSE BJ-L MSE BJ-S l2 BI-S l2 BJ-L l2 BJ-S
30 4.945 5.309 5.411 0.556 0.614 0.606
50 5.582 6.123 6.437 0.552 1.103 1.029
70 6.778 8.041 8.890 0.815 2.229 2.135

Table 4.1: Comparisons of Buckley-James method and backward imputation method for
Stanford heart transplantation data.

backward imputation further improves the imputed result if the censoring rate is relatively
high (testsize of 70 leads to about 2/3 of censoring).

Veteran’s administration lung cancer data

The veteran’s administration lung cancer data include 137 patients with 9 censored survival
times. Information of age, treatment type (standard or test), tumor type (4 types), prior
therapy (yes or no) and Karnofsky score was collected on each patient at the time of entry
into the study. Karnofsky score is a measure between 10 to 100 of general health with
10 indicating that the patient is completely hospitalized and 100 suggests the patient is
able to take care of him or herself. Figure 4.8 displays age and Karnofsky score versus the
logarithm of survival times. Both variables seem to be nonlinearly related with the survival
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times and variance of the response declines as the age and Karnofsky score increase.
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Figure 4.8: Age and Karnofsky score versus log survival times for veteran’s administration
lung cancer data. Red crosses and black pluses are for observed survival times and censored
lifetimes respectively.

Only 9 patients were censored, thus one has to leave out most part of the data as
testing set if the analysis in the previous transplant data is desired. Here we created
pseudo censoring variables from U(0,V ) with V = 100, 300 or 500 to generate different
censoring rate with 500 replication for each value of V . We always kept the 9 originally
censored patients as censored. Again, we compared Buckley-James with linear and SS-
ANOVA models and backward imputation with SS-ANOVA model on the pseudo data
with log scaled censored survival times. All three methods fitted main effects for the 5
covariates with an additional interaction term between prior therapy and Karnofsky score
as discovered in McLain and Ghosh (2011). Two measurements were used to evaluate the
performance of the three methods. First, we calculated the MSE for the imputed censored
times for pseudo censored cases. Second, linear regression models were ran on the imputed
data sets out of the three methods and the coefficients were compared to the ones estimated
from AFT on the original dataset with 9 censored subjects by l2 norm of the difference.
Table 4.2 takes averages of the 500 replications for each values of V . As we expected by
looking at the scatterplots, the nonlinearity influences the results of Buckley-James with
linear model. Backward imputation with SS-ANOVA model performs the best under all
three censoring rate and is more robust towards nonlinearity and heterogeneity.
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V MSE BI-S MSE BJ-L MSE BJ-S l2 BI-S l2 BJ-L l2 BJ-S
500 0.447 0.587 0.452 0.108 0.241 0.184
300 0.480 0.618 0.498 0.165 0.301 0.238
100 0.681 0.979 0.839 0.343 0.616 0.542

Table 4.2: Comparisons of Buckley-James method and backward imputation method for
veteran’s administration lung cancer data.
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5 concluding remarks

This thesis contains 4 individual parts studying different problems. The first piece of
work focused on the question how familial relationships, the sharing lifestyles and diseases
intertwine with each other to influence longevity. The Beaver Dam eye study contains a large
number of people with relatives in the study, this provided an ideal opportunity to examine
the pairwise associations among the different components. We used the recently developed
statistical tool distance correlation to fulfill this goal since the familial relationships can be
treated as pairwise distances which is appropriate for distance correlation but not other
kinds of correlations. We have shown that pairwise differences in lifestyle factors and
diseases that run in families correlate well with pairwise differences in death age that also
run in families, partially accounting for the familial death age effect. The signal of running
in families gets stronger if the relationship among people are closer as we observed by
restricting the analysis to full siblings in the study.

The second work introduced a new variable selection procedure based on the property
of distance covariance and demonstrated the application through two examples. The
procedure first ranks the importance of the predictors by distance correlation between
individual predictors and the response. Then it decides if a new predictor should be
accepted by looking at whether adding it to the calculation of distance covariance increases
the value of distance covariance sequentially. The small round blue cell tumors data played
a role of a toy example to show that the performance of the proposed method worked
well in easy cases. The TCGA ovarian cancer data, however, were much more challenging
to deal with due to the humongous number of variables and very limited sample size.
The uncertainty of variable selection was discussed through gene selection results using
random subsets of the data. The support vector machine with reject option was used
to withhold decision for subjects who were difficult to classify. An ensemble method of
combining models built on random subsets of the data was implemented to assess the
prediction performance.

In the third part, we presented our backward multiple imputation framework for
estimating the conditional lifetime expectancy function. In the case without covariates,
our estimator is proven to be equivalent to the estimation for LEF by inverting the Kaplan-
Meier survival function estimator. In the case with covariates, one is free to select a base
model that best captures the data. One is able to recover the nonparametric estimator
for conditional LEF proposed in McLain and Ghosh (2011) based on the generalized
Kaplan-Meier estimator by using kernel regression in our framework. The simulation
studies demonstrated the performance of our methods and validated the use of multiple
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imputation for variance estimation under three different settings. The application to the
Beaver Dam Eye Study data illustrated the use of SS-ANOVA model together with our
backward multiple imputation method. We showed the fitted results for the cohorts with
baseline age of 70 where a number of variables, including gender, smoking, education level,
BMI values and several diseases, were shown to be significantly associated with the human
longevity. Moreover, the effects of the covariates on expected lifetime seem to diminish as
the conditional time one already survives increases.

The last part targets at comparing our backward imputation method and the well-known
Buckley-James method for imputing right censored survival data. First, we discussed that
the linear Buckley-James method fails when nonlinearity and heterogeneity exist through
simulated data. The results suggest that backward imputation with SS-ANOVA is less
biased for nonlinear and heterogenous data, especially with small sample size and high
censoring rate. The comparison through two real examples, namely the Stanford heart
transplantation data and the veteran’s administration lung cancer data, both convince the
better performance of backward imputation with SS-ANOVA over Buckley-James method.
More theoretical research between the two methods are being conducted and will be
included.
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a appendix

A.1 Proof of Theorem 1 for Chapter 3

Proof. It is easy to see that both êB(t) and êKM(t) are step functions. So we only need
to prove that both functions jump at the same t with the same value. From the explicit
expression of êKM(t), we know that êKM(t) is left continuous and is discrete at t(1), · · · , t(K ).
For êB(t) and a particular value t∗:

1. If t∗ /∈ {y1, · · · , yn}, then I{yi>t∗} is continuous in the neighborhood of t∗ for all i and
hence êB(t) is continuous around t∗.

2. If t∗ ∈ {c(1), · · · , c(J)}\{t(1), · · · , t(K )} and denote the number of censored data points
at t∗ by n∗, then I{yi>t∗} = I{yi>t∗+} for all i . Hence,

êB(t
∗) = êB(t

∗+).

In addition, since t∗ ∈ {c(1), · · · , c(J)}\{t(1), · · · , t(K )}, we have

êB(t
∗) =

∑n
i=1 ỹi I{yi>t∗}∑n
i=1 I{yi>t∗}

and

êB(t
∗−) =

∑n
i=1 ỹi I{yi>t∗−}∑n
i=1 I{yi>t∗−}

=
êB(t

∗)n∗ +
∑n

i=1 ỹi I{yi>t∗}
n∗ +

∑n
i=1 I{yi>t∗}

=
êB(t

∗)n∗ + êB(t
∗)
∑n

i=1 I{yi>t∗}
n∗ +

∑n
i=1 I{yi>t∗}

= êB(t
∗).

Hence, êB(t) is continuous at times when only censoring occurs.

3. If t∗ ∈ {t(1), · · · , t(K )} and suppose t∗ = t(k) for some k = 1, · · · ,K . If k = K , it is
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obvious that êB(t(K )) = êKM(t(K )) = 0. For k = 1, · · · ,K − 1,

êB(t(k)) =

∑n
i=1 ỹi I{yi>t(k)}∑n
i=1 I{yi>t(k)}

=

∑n
i=1 ỹi I{yi>t(k+1)} +

∑n
i=1 ỹi I{t(k)<yi<t(k+1)}∑n

i=1 I{yi>t(k)}
,

Note that within (t(k), t(k+1)), one can only have censored observations. By the back-
ward imputation procedure and analysis on censored times above, we know that

ỹi = êB(yi) = êB(t(k+1)−)

for t(k) < yi < t(k+1). Therefore,

êB(t(k)) =
êB(t(k+1)−)

∑n
i=1 I{yi>t(k+1)} + êB(t(k+1)−)

∑n
i=1 I{t(k)<yi<t(k+1)}∑n

i=1 I{yi>t(k)}

= êB(t(k+1)−).

The above result shows that êB(t) jumps only at {t(1), · · · , t(K )} and is left continuous.
Suppose there exists an l such that c(l) = t(k), i.e. there are both events and censoring
happened at t = t(k) (if t(k) is a pure event time point, the following analysis still
applies by deleting all the terms related with c(l)), then

êB(t(k)−) =

∑n
i=1 ỹi I{yi>t(k)}∑n
i=1 I{yi>t(k)}

=

∑n
i=1 ỹi I{yi>t(k)} + n(t(k))t(k) + n(c(l))êB(c(l))∑n

i=1 I{yi>t(k)}

=
êB(t(k))

∑n
i=1 I{yi>t(k)} + n(t(k))t(k) + n(c(l))êB(t(k))∑n
i=1 I{yi>t(k)} + n(t(k)) + n(c(l))

. (A.1)

Now, let’s look at êKM(t). By the explicit formula, we know that for k = 1, · · · ,K − 1,

êKM(t(k)−) = t(k−1) +
1

ŜKM(t(k−1))

K∑
l=k

(t(l) − t(l−1))ŜKM(t(l−1))

êKM(t(k)) = t(k) +
1

ŜKM(t(k))

K∑
l=k+1

(t(l) − t(l−1))ŜKM(t(l−1)),
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Thus, it is easy to see that

êKM(t(k)−) = êKM(t(k))
ŜKM(t(k))

ŜKM(t(k−1))
+ t(k)

[
1 −

ŜKM(t(k))

ŜKM(t(k−1))

]
. (A.2)

By the definition of Kaplan-Meier estimator, we have

ŜKM(t(k))

ŜKM(t(k−1))
=

∏
t(l)6t(k)

[
1 −

n(t(l))∑n
i=1 I{yi>t(l)}

]
∏

t(l)6t(k−1)

[
1 −

n(t(l))∑n
i=1 I{yi>t(l)}

]
= 1 −

n(t(k))∑n
i=1 I{yi>t(k)}

=

∑n
i=1 I{yi>t(k)} + n(c(l))∑n

i=1 I{yi>t(k)}
(A.3)

Putting (2) and (3) together yields the following results:

êKM(t(k)−) =
êKM(t(k))

∑M
i=1 ni I{y(i)>t(k)} + n(t(k))t(k) + n(c(l))êKM(t(k))∑M
i=1 ni I{y(i)>t(j)} + n(t(k)) + n(c(l))

. (A.4)

By the fact that êB(t(K )) = êKM(t(K )) together with (1) and (4), we know that êB(t(k)) =
êKM(t(k)) for k = 1, · · · ,K − 1. With the fact that both functions are left continuous
step functions with same jump locations, we conclude that êB(t) = êKM(t) for all
t > 0.

A.2 Proof of Theorem 2 for Chapter 3

Before we jump into the proof, we present the nonparametric estimation êP(t |x) defined in
McLain and Ghosh (2011). Let K : Rp → R be the p-dimensional kernel function and hn

denotes the bandwidth and

Wni(x |hn) =
K (x−xi

hn
)∑n

j=1 K (
x−xj
hn

)

which is the weight of the i th observation according to the closeness to target point x . Then
the generalized Kaplan-Meier estimatorDabrowska et al. (1989); Gonzalez-Manteiga and
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Cadarso-Suarez (1994) takes the form of

ŜP(t |x) = I{t6Y(n)}

∏
{i :Y(i)6t}

{∑n
j=i+1 Wn(j)(x |hn)∑n
j=i Wn(j)(x |hn)

}δ(i)
,

where Y(i) denotes the ith order statistic, and {δ(i),Wn(i)(x |hn)} denote the corresponding
censoring indicator and weight of the i th observation.

Let t(1) < · · · < t(K ) be the distinct ordered values of the observed survival time. Then
êP(t |x) by inverting SP(t |x , hn) is given by

êP(t |x) =



t(k) +
1

ŜP(t(k−1)|x)

K∑
l=k+1

(t(l) − t(l−1))ŜP(t(l−1)|x), t(k−1) < t < t(k)

t(k) +
1

ŜP(t(k)|x)

K∑
l=k+1

(t(l) − t(l−1))ŜP(t(l−1)|x), t = t(k), k = 1, · · · ,K − 1

0, t > t(K ).

Proof. For a given covariates value x , êB(t |x) is derived by using Kernel regression with K

and hn as the base model in Algorithm 2. This is equivalent to implement a weighted version
of Algorithm 1 with Wni(x |hn) as weights for the n data points. Notice that ŜP(t |x) differs
from ŜKM(t) by imposing weights Wni(x |hn) to the n cases. Therefore, it is straightforward
to prove Theorem 2 by using the proof of Theorem 1 by introducing weights Wni(x |hn)

instead of the uniform weights.
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