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In this paper, we consider the multivariate Bernoulli distribution as a model to estimate the

structure of graphs with binary nodes. This distribution is discussed in the framework of the

exponential family, and its statistical properties regarding independence of the nodes are demon-

strated. Importantly the model can estimate not only the main effects and pairwise interactions

among the nodes but also is capable of modeling higher order interactions, allowing for the

existence of complex clique effects. We compare the multivariate Bernoulli model with existing

graphical inference models-the Ising model and the multivariate Gaussian model, where only

the pairwise interactions are considered. On the other hand, the multivariate Bernoulli distri-

bution has an interesting property in that independence and uncorrelatedness of the component

random variables are equivalent. Both the marginal and conditional distributions of a subset of

variables in the multivariate Bernoulli distribution still follow the multivariate Bernoulli distri-

bution. Furthermore, the multivariate Bernoulli logistic model is developed under generalized

linear model theory by utilizing the canonical link function in order to include covariate infor-

mation on the nodes, edges and cliques. We also consider variable selection techniques suchas

LASSO in the logistic model to impose sparsity structure on the graph. Finally, we discuss ex-

tending the smoothing spline ANOVA approach to the multivariate Bernoulli logistic model to

enable estimation of non-linear effects of the predictor variables.

Keywords: Bernoulli Distribution, Generalized Linear Models, LASSO, Smoothing Spline.

1. Introduction

Undirected graphical models have been proved to be useful in a variety of applications in
statistical machine learning. Statisticians and computer scientists devoted resources to
studies in graphs with nodes representing both continuous and discrete variables. Such
models consider a graph G = (V,E), whose nodes set V represents K random variables
Y1, Y2, . . . , YK connected or disconnected defined by the undirected edges set E. This
formulation allows pairwise relationships among the nodes to be described in terms of
edges, which in statistics are defined as correlations. The graph structure can thus be
determined under the independence assumptions on the random variables. Specifically,
variables Yi and Yj are conditionally independent given all other variables if the asso-
ciated nodes are not linked by an edge. Two important types of graphical models are
the Gaussian model, where the K variables are assumed to follow a joint multivariate
Gaussian distribution, and the Markov model, which captures the relationships between
categorical variables.

However, the assumption that only the pairwise correlations among the variables are
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considered may not be sufficient. When the joint distribution of the nodes is multivariate
Gaussian, the graph structure can be directly inferred from the inverse of the covariance
matrix of the random variables and in recent years a large body of literature has emerged
in this area for high dimensional data. Researchers mainly focus on different sparse struc-
ture of the graphs or, in other words, the covariance matrix for high-dimensional obser-
vations. For example, [11] proposes a consistent approach based on LASSO from [16] to
model the sparsity of the graph. Due to the fact that the Gaussian distribution can be
determined by the means and covariance matrix, it is valid to consider only the pair-
wise correlations, but this may not true for some other distributions. The multivariate
Bernoulli distribution discussed in [20], which will be studied in Section 3, has a probabil-
ity density function involving terms representing third and higher order moments of the
random variables, which is also referred to as clique effects. To alleviate the complexity
of the graph, the so-called Ising model borrowed from physics gained popularity in the
machine learning literature. [19] introduces several important discrete graphical models
including the Ising model and [1] discussed a framework to infer sparse graph structure
with both Gaussian and binary variables. In this paper, higher than second interactions
among a group of binary random variables are studied in detail.

What’s more, in some real applications, people are not only interested in the graph
structure but also want to include predictor variables that potentially have influence on
the graph structure. [6] considers a multivariate Bernoulli model which uses a smoothing
spline ANOVA model to replace the linear predictor ([10]) for main effects on the nodes,
but set the second and higher order interactions between the nodes as constants. Higher
order outcomes with hierarchical structure assumptions on the graph involving predictor
variables are studied in [4].

This paper aims at building a unified framework of a generalized linear model for
the multivariate Bernoulli distribution which includes both higher order interactions
among the nodes and covariate information. The remainder is organized as follows. Sec-
tion 2 starts from the simplest multivariate Bernoulli distribution, the so-called bivariate
Bernoulli distribution, where there are only two nodes in the graph. The mathematical
formulation and statistical properties of the multivariate Bernoulli distribution are ad-
dressed in Section 3. Section 4 serves to get a better understanding of the differences
and similarities of the multivariate Bernoulli distribution with the Ising and multivariate
Gaussian models. Section 5 extends the model to include covariate information on the
nodes, edges and cliques, and discusses parameter estimation, optimization and associ-
ated problems in the resulting multivariate Bernoulli logistic model. Finally Section 6
provides conclusion of the paper and some proofs are deferred to Appendix.

2. Bivariate Bernoulli Distribution

To start from the simplest case, we extend the widely used univariate Bernoulli distribu-
tion to two dimensions in this section and the more complicated multivariate Bernoulli
distribution is explored in Section 3. The Bernoulli random variable Y , is one with binary
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outcomes chosen from {0, 1} and its probability density function is

fY (y) = py(1 − p)1−y.

Next, consider bivariate Bernoulli random vector (Y1, Y2), which takes values from (0, 0),
(0, 1), (1, 0) and (1, 1) in the Cartesian product space {0, 1}2 = {0, 1} × {0, 1}. Denote
pij = P (Y1 = i, Y2 = j), i, j = 0, 1, then its probability density function can be written
as

P (Y = y) = p(y1, y2)

= py1y2

11 p
y1(1−y2)
10 p

(1−y1)y2

01 p
(1−y1)(1−y2)
00 (2.1)

= exp

{

log(p00) + y1 log

(

p10

p00

)

+ y2 log

(

p01

p00

)

+ y1y2 log

(

p11p00

p10p01

)}

,

where the side condition p00 +p10 +p01 +p11 = 1 holds to ensure it is a valid probability
density function.

To simplify the notation, define the natural parameters f ’s from general parameters
as follows:

f1 = log

(

p10

p00

)

, (2.2)

f2 = log

(

p01

p00

)

, (2.3)

f12 = log

(

p11p00

p10p01

)

, (2.4)

and it is not hard to verify the inverse of the above formula

p00 =
1

1 + exp(f1) + exp(f2) + exp(f1 + f2 + f12)
, (2.5)

p10 =
exp(f1)

1 + exp(f1) + exp(f2) + exp(f1 + f2 + f12)
, (2.6)

p01 =
exp(f2)

1 + exp(f1) + exp(f2) + exp(f1 + f2 + f12)
, (2.7)

p11 =
exp(f1 + f2 + f12)

1 + exp(f1) + exp(f2) + exp(f1 + f2 + f12)
. (2.8)

Here the original density function (2.1) can be viewed as a member of the exponential
family, and represented in a log-linear formulation as:

P (Y = y) = exp
{

log(p00) + y1f
1 + y2f

2 + y1y2f
12
}

. (2.9)

Consider the marginal and conditional distribution of Y1 in the random vector (Y1, Y2),
we have
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Proposition 2.1. The marginal distribution of Y1 in a bivariate Bernoulli vector (Y1, Y2)
following density function (2.1) is univariate Bernoulli with density

P (Y1 = y1) = (p10 + p11)
y1(p00 + p01)

(1−y1). (2.10)

What’s more, the conditional distribution of Y1 given Y2 is also univariate Bernoulli with
density

P (Y1 = y1|Y2 = y2) =

(

p(1, y2)

p(1, y2) + p(0, y2)

)y1
(

p(0, y2)

p(1, y2) + p(0, y2)

)1−y1

. (2.11)

The proposition implies that the bivariate Bernoulli distribution is similar to the
bivariate Gaussian distribution, in that both the marginal and conditional distributions
are still Bernoulli distributed. On the other hand, it is also important to know under
what conditions the two random variables Y1 and Y2 are independent.

Lemma 2.1. The components of the bivariate Bernoulli random vector (Y1, Y2) are
independent if and only if f12 in (2.9) and defined in (2.4) is zero.

The Lemma 2.1 is a special case for Theorem 3.1 in Section 3, and the proof is
attached in Appendix. It is not hard to see from the log-linear formulation (2.9) that
when f12 = 0, the probability density function of the bivariate Bernoulli is separable in
y1 and y2 so the lemma holds. In addition, a simple calculation of covariance between Y1

and Y2 gives

cov(Y1, Y2) = E[Y1 − (p11 + p10)][Y2 − (p11 + p01)]

= p11p00 − p01p10, (2.12)

and using (2.4), the disappearance of f12 indicates that the correlation between Y1 and
Y2 is null. When dealing with the multivariate Gaussian distribution, the uncorrelated
random variables are independent as well and Section 3 below shows uncorrelatedness
and independence is also equivalent for the multivariate Bernoulli distribution.

The importance of Lemma 2.1 was explored in [20] where it was referred to as propo-
sition 2.4.1. The importance of f12 (denoted as u-terms) is discussed and called cross-
product ratio between Y1 and Y2. The same quantity is actually log odds described for
the univariate case in [10] and for the multivariate case in [9].

3. Formulation and Statistical Properties

3.1. Probability Density Function

As discussed in Section 2, the two dimensional Bernoulli distribution possesses good
properties analogous to the Gaussian distribution. This section is to extend it to high
dimensions and construct the so-called multivariate Bernoulli distribution.
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Let Y = (Y1, Y2, . . . , YK) be a K-dimensional random vector of possibly correlated
Bernoulli random variables (binary outcomes) and let y = (y1, . . . , yK) be a realization
of Y . The most general form p(y1, . . . , yK) of the joint probability density is

P (Y1 = y1, Y2 = y2, . . . , YK = yK) = p(y1, y2, . . . , yK)

= p(0, 0, . . . , 0)
[
∏

K

j=1
(1−yj)]

p(1, 0, . . . , 0)
[y1

∏

K

j=2
(1−yj)]

p(0, 1, . . . , 0)
[(1−y1)y2

∏

K

j=3
(1−yj)]

. . . p(1, 1, . . . , 1)
[
∏

K

j=1
yj ]
,

or in short

p(y) = p
[
∏

K

j=1
(1−yj)]

0,0,...,0 p
[y1

∏

K

j=2
(1−yj)]

1,0,...,0 p
[(1−y1)y2

∏

K

j=3
(1−yj)]

0,1,...,0 . . . p
[
∏

K

j=1
yj ]

1,1,...,1 (3.1)

To simplify the notation, denote the quantity S to be

Sj1j2...jr =
∑

1≤s≤r

f js +
∑

1≤s<t≤r

f jsjt + · · · + f j1j2...jr , (3.2)

and in the bivariate Bernoulli case S12 = f1 + f2 + f12. To eliminate the product in the
tedious exponent of (3.1), define the interaction function B

Bj1j2...jr(y) = yj1yj2 . . . yjr
, (3.3)

so correspondingly in the bivariate Bernoulli distribution for the realization (y1, y2) of
random vector (Y1, Y2), the interaction function of order 2 is B12(y) = y1y2. This is the
only available order two interaction for the bivariate case. In general, there are

(

K
2

)

=
K(K−1)

2 different second interactions among the binary components of the multivariate
Bernoulli random vector.

The log-linear formulation of the multivariate Bernoulli distribution induced from
(3.1) is

l(y, f) = − log[p(y)]

= −





K
∑

r=1





∑

1≤j1<j2<...<jr≤K

f j1j2...jrBj1j2...jr(y)



− b(f)



 , (3.4)

where f = (f1, f2, . . . , f12...K)T is the vector of the natural parameters for multivariate
Bernoulli, and the normalizing factor b(f) is defined as

b(f) = log
K
∑

r=1



1 +





∑

1≤j1<j2<...<jr≤K

exp[Sj1j2...jr ]







 . (3.5)

As a member of the exponential distribution family, the multivariate Bernoulli distri-
bution has the fundamental ‘link’ between the natural and general parameters.
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Lemma 3.1. (Parameter transformation). For the multivariate Bernoulli model, the
general parameters and natural parameters have the following relationship.

exp(f j1j2...jr) =

∏

p(even # zeros among j1, j2 . . . , jr components and other components are all zero)
∏

p(odd # zeros among j1, j2 . . . , jr components and other components are all zero)
,

where # refers to the number of zeros among the superscript yj1 . . . yjr
of f . In addition,

exp(Sj1j2...jr) =
p(j1, j2 . . . , jr positions are one, others are zero)

p(0, 0, . . . , 0)
(3.6)

and conversely the general parameters can be represented by the natural parameters

p(j1, j2 . . . , jr positions are one, others are zero) =
exp(Sj1j2...jr)

exp (b(f))
(3.7)

Based on the log-linear formulation (3.4) and the fact that the multivariate Bernoulli
distribution is a member of the exponential family, the interactions functions Bj1j2...jr(y)
for all combinations j1j2 . . . jr define the sufficient statistics. In addition, the log-partition
function b(f) as in (3.5) is useful to determine the expectation and variance of the suffi-
cient statistics to be addressed in later sections.

3.2. Independence, Marginal and Conditional Distributions

One of the most important statistical properties for the multivariate Gaussian distribu-
tion is the equivalence of independence and uncorrelatedness. As a natural multivariate
extension of the univariate Bernoulli distribution, it is of great interest to explore in-
dependence among components of the multivariate Bernoulli distribution and it is the
topic for this section.

The independence of components of a random vector is determined by separability of
coordinates in its probability density function and it is hard to get directly from (3.1).
However, based on the relationship between the natural parameters and the outcome
in the log-linear formulation (3.4), the independence theorem of the distribution can be
derived as follows with proof deferred to Appendix.

Theorem 3.1. (Independence of Bernoulli outcomes) For the multivariate Bernoulli
distribution, the random vector Y = (Y1, . . . , YK) is independent element-wise if and only
if

f j1j2...jr = 0, ∀ 1 ≤ j1 < j2 < . . . < jr ≤ K, r ≥ 2. (3.8)

In addition, the condition in equation (3.8) can be equivalently written as

Sj1j2...jr =
r
∑

k=1

f jk , ∀ r ≥ 2 (3.9)
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The importance of the theorem is to link the independence of components of a random
vector following the multivariate Bernoulli distribution to the natural parameters. Notice
that to ensure all the single random variable to be independent of all the others is a strong
assertion and in graphical models, researchers are more interested in the independence
of two groups of nodes, so we have the following theorem

Theorem 3.2. (Independence of Groups) For random vector Y = (Y1, . . . , YK) fol-
lowing the multivariate Bernoulli distribution, without of loss of generality, suppose two
blocks of nodes Y ′ = (Y1, Y2, . . . , Yr), Y

′′ = (Yr+1, Yr+2, . . . , Ys) with 1 ≤ r < s ≤ K,
and denote index set τ1 = {1, 2, . . . , r} and τ2 = {r + 1, r + 2, . . . , s}. Then Y ′ and Y ′′

are independent if and only if

fτ = 0, ∀ τ ∩ τ1 6= ∅ and τ ∩ τ2 6= ∅ (3.10)

The proof of Theorem 3.2 is also deferred to Appendix. The theorem delivers the
message that the two groups of binary nodes in a graph are independent if all the natural
parameters f ’s corresponding to the index sets that include indices from both groups
disappear.

Furthermore, analogous to the multivariate Gaussian distribution, researchers are in-
terested in statistical distributions of marginal and conditional distributions for the mul-
tivariate Bernoulli distribution. Likewise, the multivariate Bernoulli distribution main-
tains the good property that both the marginal and conditional distributions are still
multivariate Bernoulli as stated in the following proposition.

Proposition 3.1. The marginal distribution of the random vector (Y1, . . . , YK) which
follows multivariate Bernoulli distribution with density function (3.1) to any order is still
a multivariate Bernoulli with density

P (Y1 = y1, Y2 = y2, . . . , Yr = yr) =
∑

yr+1

. . .
∑

yK

p(y1, . . . , yK) (3.11)

for some r < K.
What’s more, the conditional distribution of (Y1, Y2, . . . , Yr) given the rest is also mul-

tivariate Bernoulli with density

P (Y1 = y1 . . . , Yr = yr|Yr+1 = yr+1, . . . , YK = yK) =
p(y1, . . . , yK)

p(yr+1, . . . , yK)
. (3.12)
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3.3. Moment Generating Functions

The moment generating function for the multivariate Bernoulli distribution is useful
when dealing with moments and proof of Theorem 3.1.

ψ(µ1, µ2, . . . , µK) = E [exp (µ1Y1 + µ2Y2 + · · · + µKYK)]

= p00...0e
0 + p10...0e

µ1 + · · · + p11...1e
µ1+µ2+···+µK

=
K
∑

r=1

∑

j1≤j2≤...≤jr

exp[Sj1j2...jr ]

exp[b(f)]
exp

[

r
∑

k=1

µjk

]

. (3.13)

Hence, from the formula the moment generating function is solely determined by the S
functions, which are the transformation of the natural parameters f ’s.

3.4. Gradient and Hessian

As a member of the exponential family, the gradient and Hessian (Fisher information)
are the mean and covariance of the random vector (Y1, Y2, . . . , YK). Therefore, they are
important in statistics but also crucial for model inference when the proper optimiza-
tion problem is established. To examine the formulation of gradient and Hessian for the
logarithm of the multivariate Bernoulli distribution (3.1), let us define some notations.

Denote T to be the set of all possible superscripts of the f ’s including the null super-
script with f∅ = 0, so it has 2K elements. In other words, T is the power set of indices
{1, 2, . . . ,K}. Let | · | be the cardinality of a set then |T | = 2K . We can define the relation
subset ⊂ for τ1, τ2 ∈ T as follows.

Definition 3.1. For any two superscripts τ1 = {j1, j2, . . . , jr} such that τ1 ∈ T and
τ2 = {k1, k2, . . . , ks} with τ2 ∈ T and r ≤ s, we say that τ1 ⊆ τ2 if for any j ∈ τ1, there
is a k ∈ τ2 such that j = k.

Based on the definition, the S’s in (3.2) can be reformulated as

Sτ =
∑

τ0⊆τ

fτ0 , (3.14)

specifically, S∅ = 0. Consider the gradient of the log-linear form (3.4) with respect to the
f ’s, for any τ ∈ T ,

∂l(y, f)

∂fτ
= −Bτ (y) +

∂b(f)

∂fτ

= −Bτ (y) +

∑

τ0⊇τ exp[Sτ0 ]

b(f)
. (3.15)
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The derivation of partial derivative of b with respect to fτ in (3.15) is

∂b(f)

∂fτ
=

1

exp[b(f)]
·
∂ exp[b(f)]

∂fτ

=
1

exp[b(f)]
·
∂
∑

τ0∈T exp[Sτ0 ]

∂fτ

=

∑

τ0⊇τ exp[Sτ0 ]

exp[b(f)]
(3.16)

= E[Bτ (y)],

and the result can also be derived from the moment generating function (3.13) by taking
derivatives with respect to the µ’s.

A simple example of (3.15) in the bivariate Bernoulli distribution (2.9) is

∂l(y, f)

∂f1
= −y1 +

exp(f1) + exp(S12)

b(f)
,

Further, the general formula for the second order derivative of (3.4) with respect to
any two natural parameters fτ1 and fτ2 is

∂2l(y, f)

∂fτ1∂fτ2
=

∂2b(f)

∂fτ1∂fτ2

=
∂

∂fτ1

(

∑

τ0⊇τ2
exp[Sτ0 ]

exp[b(f)]

)

=

∑

τ0⊇τ1, τ0⊇τ2
exp[Sτ0 ] exp[b(f)] −

∑

τ0⊇τ1
exp[Sτ0 ]

∑

τ0⊇τ2
exp[Sτ0 ]

exp[2b(f)]

= cov (Bτ1(y), Bτ2(y)) . (3.17)

In the bivariate Bernoulli distribution,

∂2l(y, f)

∂f1∂f2
=

exp[S12] exp[b(f)] − (exp[f1] + exp[S12])(exp[f2] + exp[S12])

exp[2b(f)]

4. The Ising and the Multivariate Gaussian Models

As mentioned in Section 1, the Ising and the multivariate Gaussian distributions are
two main tools to study undirected graphical models, and this section is to compare the
multivariate Bernoulli model introduced in Section 3 with these two popular models.

4.1. The Ising Model

The Ising model, which originated from [8], becomes popular when the graph structure is
of interest with nodes taking binary values. The log-linear density of the random vector
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(Y1, . . . , YK) is

log[f(Y1, . . . , YK)] =
K
∑

j=1

θj,jYj +
∑

1≤j<j′≤K

θj,j′YjYj′ − log[Z(Θ)], (4.1)

where Θ = (θj,j′)K×K is a symmetric matrix specifying the network structure, but it is
not necessarily positive semi-definite,. The log-partition function Z(Θ) is defined as

Z(Θ) =
∑

Yj∈{0,1},1≤j≤K

exp





K
∑

j=1

θj,jYj +
∑

1≤j<j′≤K

θj,j′YjYj′



 , (4.2)

and notice that it is not related to Yj due to the summation over all possible values of
Yj for j = 1, 2, . . . ,K.

It is not hard to see that the multivariate Bernoulli is an extension of the Ising model,
which assumes all Sτ = 0 for any τ such that |τ | > 2 and θj,j′ = Sjj′

. In other words, in
the Ising model, only pairwise interactions are considered. [13] pointed out that the higher
order interactions, which is referred to as clique effects in this paper, can be converted
to pairwise ones through the introduction of additional variables and thus retain the
Markovian structure of the network defined in [19].

4.2. Multivariate Gaussian Model

When continuous nodes are considered in a graphical model, the multivariate Gaussian
distribution is important since, similar to the Ising model, it only considers interactions
up to order two. The log-linear formulation is

log[f(Y1, . . . , YK)] =

(

−
1

2
(Y − µ)T Σ(Y − µ)

)

− log[Z(Σ)], (4.3)

where Z(Σ) is the normalizing factor which only depends on the covariance matrix Σ.

4.3. Comparison of Different Graphical Models

The multivariate Bernoulli (3.4), Ising (4.1) and multivariate Gaussian (4.3) are three
different kinds of graphical models and they share many similarities

1. All of them are members of the exponential family.
2. Uncorrelatedness and independence are equivalent.
3. Conditional and marginal distributions maintain the same structure.

However, some differences do exist. the multivariate Bernoulli and the Ising models
both serve as tools to model graph with binary nodes, and are certainly different from
the multivariate Gaussian model which formulates continuous variables. In addition,
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the multivariate Bernoulli specifies clique effects among nodes whereas the Ising model
simplifies to deal with only pairwise interactions and the multivariate Gaussian essentially
is uniquely determined by its mean and covariance structure, which is also based on first
and second order moments. Table 1 illustrates the number of parameters needed to
uniquely determine the distribution for these models as the number of nodes K in the
graph increases.

Graph dimension multivariate Bernoulli Ising multivariate Gaussian

1 1 1 2

2 3 3 5

3 7 6 9

· · · · · · · · · · · ·

K 2K
− 1

K(K+1)
2

K +
K(K+1)

2
Table 1. The number of parameters in the multivariate Bernoulli, the Ising and the multivariate

Gaussian models.

5. Multivariate Bernoulli Logistic Models

5.1. Generalized Linear Model

As discussed in Section 3, the multivariate Bernoulli distribution is a member of the
exponential family and as a result, the generalized linear model theory in [10] applies.
The natural parameters (f ’s) in Lemma 3.1 can be formulated as a linear predictor in
[10] such that for any τ ∈ T with T = {1, 2, . . . ,K}

fτ (x) = cτ0 + cτ1x1 + · · · + cτpxp, (5.1)

where the vector cτ = (cτ0 , . . . , c
τ
p) for τ ∈ T is the coefficient vector to be estimated

and x = (x1, x2, . . . , xp) is the observed covariate. Here p is the number of variables and
there are 2K − 1 coefficient vectors to be estimated so in total p × (2K − 1) unknown
parameters. (5.1) is built on the canonical link where natural parameters are directly
modeled as linear predictors, but other links are possible and valid as well.

When there are n samples observed from a real data set with outcomes denoted as
y(i) = (y1(i), . . . , yK(i)) and predictor variables x(i) = (x1(i), . . . , xp(i)), the negative
log likelihood for the generalized linear model of the multivariate Bernoulli distribution
is

l(y, f(x)) =
n
∑

i=1

[

−
∑

τ∈T

fτ (x(i))Bτ (y(i)) + b(f(x))

]

, (5.2)

where, similar to (3.5) the log partition function b is

b(f(x)) = log

[

1 +
∑

τ∈T

exp[Sτ (x(i))]

]

.
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When dealing with the univariate Bernoulli distribution using formula (5.2), the re-
sulting generalized linear model corresponding to the multivariate Bernoulli model is the
same for logistic regression. Thus the model is referred to as the multivariate Bernoulli
logistic model in this paper.

5.2. Gradient and Hessian

To optimize the negative log likelihood function (5.1) with respect to the coefficient vector
cτ , the efficient and popular iterative re-weighted least squares algorithm mentioned in
[10] can be implemented. Nevertheless, the gradient vector and Hessian matrix (Fisher
Information) with respect to the coefficients cτ are still required.

Consider any τ ∈ T , the first derivative with respect to cτj in the negative log likelihood
(5.2) of the multivariate Bernoulli logistic model, according to (3.15) and ignoring index
i, is

∂l(y, f)

∂cτj
=

∂l(y, f)

∂fτ

∂fτ

∂cτj

=

n
∑

i=1

[

−Bτ (y) +

∑

τ0⊇τ exp[Sτ0(x)]

exp[b(f(x))]

]

xj (5.3)

Further, the second derivative for any two coefficients cτ1
j and cτ2

k is

∂2l(y, f)

∂cτ1
j ∂c

τ2

k

=
∂

∂cτ1
j

(

∂l(y, f)

∂fτ2

∂fτ2

∂cτ2

k

)

=
∂fτ1

∂cτ1
j

∂2l(y, f)

∂fτ1∂fτ2

∂fτ2

∂cτ2

k

=
n
∑

i=1

∂2l(y, f)

∂fτ1∂fτ2
xjxk

=

∑

τ0⊇τ1, τ0⊇τ2
exp[Sτ0(x)]

exp[b(f(x))]
xjxk −

∑

τ0⊇τ1
exp[Sτ0(x)]

∑

τ0⊇τ2
exp[Sτ0(x)]

exp[2b(f(x))]
xjxk (5.4)

5.3. Parameters Estimation and Optimization

With gradient (5.3) and Hessian (5.4) at hand, the minimization of the negative log
likelihood (5.2) with respect to the coefficients cτ can be solved with Newton-Raphson
or the Fisher’s scoring algorithm (iterative re-weighted least squares) when the Hessian
is replaced by the Fisher information matrix. Therefore, in every iteration, the new step
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size for current estimate ĉ(s) is computed as

△c = −

(

∂2l(y, f)

∂cτ1
j ∂c

τ2

k

∣

∣

∣

∣

c=ĉ(s)

)−1

·

(

∂l(y, f)

∂cτj

∣

∣

∣

∣

c=ĉ(s)

)

. (5.5)

The process continues until the convergence criterion is met.

5.4. Variable Selection

Variable selection is important in modern statistical inference. It is also crucial to select
only the significant variables to determine the structure of the graph for better model
identification and prediction accuracy. The pioneering paper [16] introduced the LASSO
approach to linear models. Various properties of the method were demonstrated such as
in [22] and extensions of the model to different frameworks were discussed in [11], [23],
[12] etc.

The approach can be extended to the multivariate Bernoulli distribution since it is a
member of the exponential family. What we have to do is to apply the l1 penalty to the
coefficients in (5.1), and the target function is

Lλ(x, y) =
1

n

n
∑

i=1

l(y(i), f(x(i))) +
∑

τ∈T

λτ

p
∑

j=1

|cτj |, (5.6)

where λτ are the tuning parameters need to be chosen adaptively. The superscript τ
allows flexibility to have natural parameters with different levels of complexity. For tun-
ing in penalized regression problems, the randomized generalized approximate cross-
validation (GACV) designed for smoothing spline models introduced in [21] can be de-
rived for LASSO problem, such as in [15]. The widely used information criterion AIC and
BIC can also be implemented, but the degrees of freedom cannot be calculated exactly. [9]
demonstrates that the number of nonzero estimates can serve as a good approximation in
the multivariate Bernoulli logistic model. There are several efficient algorithms proposed
to optimize the problem (5.6), for example, the LASSO-patternsearch introduced in [15]
can handle large number of unknowns provided that it is known that at most a modest
number are non-zeros. Recently, [14] has extended the algorithm in [15] to the scale of
multi-millions of unknowns. Coordinate descent [5] is also proven to be fast in solving
large p small n problems.

5.5. Smoothing Spline ANOVA Model

The smoothing spline model gained popularity in non-linear statistical inference since it
was proposed in [2] for univariate predictor variables. More importantly, multiple smooth-
ing spline models for generalized linear models enable researchers to study complex real
world data sets with increasingly powerful computers as described in [18].
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As a member of the exponential family, the multivariate Bernoulli distribution can
be formulated under smoothing spline ANOVA framework. [6] considers the smoothing
spline ANOVA multivariate Bernoulli model but the interactions are restricted to be
constant. However, in general the natural parameters or linear predictors f ’s can be
relaxed to reside in a reproducing kernel Hilbert space. That is to say, for the observed
predictor vector x, we have

fτ (x) = ητ (x), with ητ ∈ Hτ , τ ∈ T , (5.7)

where Hτ is a reproducing kernel Hilbert space and the superscript τ allows a more
flexible model such that the natural parameters can come from different reproducing
kernel Hilbert spaces. Further, Hτ can be formulated to have several components to
handle multivariate predictor variables, that is Hτ = ⊕p

β=0H
τ
β and details can be found

in [7].
As a result, the ητ is estimated from the variational problem

Iλ(x, y) =
1

n

n
∑

i=1

l(y(i), η(x(i))) + λJ(η), (5.8)

where η is the vector form of ητ ’s. The penalty is seen to be

λJ(η) = λ
∑

τ∈T

θ−1
τ ||P τ

1 η
τ ||2 (5.9)

with λ and θτ being the smoothing parameters. This is an over-parameterization adopted
in [7], as what really matters are the ratios λ/θτ . The functional P τ

1 projects function ητ

in Hτ onto the smoothing subspace Hτ
1 .

By the argument of smoothing spline ANOVA model in [7], the minimizer ητ has the
expression as in [17],

ητ (x) =
m
∑

ν=1

dτ
νφ

τ
ν(x) +

n
∑

i=1

cτiR
τ (xi, x), (5.10)

where {φτ
ν}

m
ν=1 is a basis of Hτ

0 = Hτ ⊖Hτ
1 , the null space corresponding to the projection

functional P τ
1 . Rτ (·, ·) is the reproducing kernel for Hτ

1 .
The variational problem (5.8) utilizing the smoothing spline ANOVA framework can

be solved by iterative re-weighted least squares (5.5) due to the linear formulation (5.10).
More on tuning and computations including software will appear in [3].

6. Conclusion

We have shown that the multivariate Bernoulli distribution, as a member of the expo-
nential family, is a way to formulate the graph structure of binary variables. It can not
only model the main effects and pairwise interactions as the Ising model does, but also
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is capable of estimating higher order interactions. Importantly, the independence struc-
ture of the graph can be modeled via significance of the natural parameters. The most
interesting observation of the multivariate Bernoulli distribution is its similarity to the
multivariate Gaussian distribution. Both of them have the property that independence
and uncorrelatedness of the random variables are equivalent, which is generally not true
for other distributions. In addition, the marginal and conditional distributions of a subset
of variables still follow the multivariate Bernoulli distribution.

Furthermore, the multivariate Bernoulli logistic model extends the distribution to a
generalized linear model framework to include effects of predictor variables. Under this
model, the traditional statistical inferences such as point estimation, hypothesis test and
confidence intervals can be implemented as discussed in [10].

Finally, we consider two extensions to the multivariate Bernoulli logistic model. First,
the variable selection technique using LASSO can be incorporated to enable finding
important patterns from a large number of candidate covariates. Secondly, the smoothing
spline ANOVA model is introduced to consider non-linear effects of the predictor variables
in nodes, edges and cliques level.

Appendix A: Proofs

Proof. of Proposition 2.1

With the joint density function of the random vector (Y1, Y2), the marginal distribution
of Y1 can be derived

P (Y1 = 1) = P (Y1 = 1, Y2 = 0) + P (Y1 = 1, Y2 = 1)

= p10 + p11.

Similarly,

P (Y1 = 0) = p00 + p11.

Combining the side condition of the parameters p’s,

P (Y1 = 1) + P (Y1 = 0) = p00 + p01 + p10 + p11 = 1.

This demonstrates that Y1 follows the univariate Bernoulli distribution and its density
function is (2.1).

Regarding the conditional distribution, notice that

P (Y1 = 0|Y2 = 0) =
P (Y1 = 0, Y2 = 0)

P (Y2 = 0)

=
p00

p00 + p10
,

and the same process can be repeated to get

P (Y1 = 1|Y2 = 0) =
p10

p00 + p10
.
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Hence, it is clear that with condition Y2 = 0, Y1 follows a univariate Bernoulli distri-
bution as well. The same scenario can be examined for the condition Y2 = 1. Thus, the
conditional distribution of Y1 given Y2 is given as (2.11).

Proof. of Lemma 2.1

Expand the log-linear formulation of the bivariate Bernoulli distribution (2.9) into
factors

P (Y1 = y1, Y2 = y2) = p00 exp(y1f
1) exp(y2f

2) exp(y1y2f
12). (A.1)

It is not hard to see that when f12 = 0, the density function (A.1) is separable to two com-
ponents with only y1 and y2 in them. Therefore, the two random variables corresponding
to the formula are independent. Conversely, when Y1 and Y2 are independent, their den-
sity function should be separable in terms of y1 and y2, which implies y1y2f

12 = 0 for
any possible values of y1 and y2. The assertion dictates that f12 is zero.

Proof. of Lemma 3.1

Consider the log-linear formulation (3.4), the natural parameters f ’s are combined
with products of some components of y. Let us match terms in the f j1...jrBj1...jr(y) from
log-linear formulation (3.4) with the coefficient for the corresponding product yj1 . . . yjr

terms in (3.1). The exponents of p’s in (3.1) can be expanded to summations of different
products Bτ (y) with τ ∈ T and all the p’s with yj1 . . . yjr

in the exponent have effect
on f j1...jr so all the positions other than j1, . . . jr must be zero. Furthermore, those p’s
with positive yj1 . . . yjr

in its exponent appear in the numerator of exp[f j1...jr ] and the
product is positive only if there are even number of 0’s in the positions j1, . . . , jr. The
same scenario applies to the p’s with negative products in the exponents.

What’s more, notice that p00...0 = b(f) and

exp[Sj1...jr ] = exp[
∑

1≤s≤r

f js +
∑

1≤s<t≤r

f jsjt + · · · + f j1j2...jr ]

=
∏

1≤s≤r

exp[f js ]
∏

1≤s<t≤r

exp[f jsjt ] · · · exp[f j1j2...jr ] (A.2)

and apply the formula for exp[f j1...jr ] with cancellation of terms in the numerators and
the denominators. The resulting (3.6) can then be verified.

Finally, (3.7) is a trivial extension of (3.6) by exchanging the numerator and the
denominator.

Proof. of Theorem 3.1

Here, we take use of the moment generating function (3.13) but it is also possible to
directly work on the probability density function (3.1). The mgf can be rewritten as

ψ(µ1, . . . , µK) =
1

exp[b(f)]

K
∑

r=1

∑

j1≤j2≤...≤jr

exp[Sj1j2...jr ]

r
∏

k=1

exp [µjk
] . (A.3)
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It is not hard to see that this is a polynomial function of the unknown variables exp(µk)
for k = 1, . . . ,K. The independence of the random variables Y1, Y2, . . . , YK is equivalent
to that (A.3) can be separated into components of µk or equivalently exp(µk).

(⇒) If the random vector Y is independent, the moment generating function should
be separable and assume the formulation is

ψ(µ1, . . . , µK) = C
K
∏

k=1

(αk + βk exp[µk]), (A.4)

where αk and βk are functions of parameters S’s and C is a constant. If we expand (A.4)
to polynomial function of exp[µk] and determine the corresponding coefficients, (3.8) and
(3.9) will be derived.

(⇐) Suppose (3.9) holds, then we have

exp[Sj1j2...jr ] =

r
∏

k=1

exp[f jk ],

and as a result, the moment generating function can be decomposed to a product of
components of exp[µk] like (A.4) with the following relations

C =
1

exp[b(f)]

αk = 1,

βk = exp[fk],

Proof. of Theorem 3.2

The idea of proving the group independence of multivariate Bernoulli variables are sim-
ilar to Theorem 3.1. Instead of decomposing the moment generating function to products
of µk, we only have to separate them into groups with each only involving the dependent
random variables. That is to say, the moment generating function with two separately
independent nodes in the multivariate Bernoulli should have the form

ψ(µ1, . . . , µK) = (α0 + α1 exp[µ1] + · · · + αr exp[µr]) · (β0 + β1 exp[µr+1] + · · · + βs exp[µK ]).

Matching the corresponding coefficients of this separable moment generating function
and the natural parameters leads to the conclusion (3.10).
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