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Spatial linear models and the corresponding likelihood-based sta-
tistical inference are important tools for the analysis of spatial lattice
data and have been applied in a wide range of disciplines. However,
understanding of the asymptotic properties of maximum likelihood
estimates is limited. Here we consider a unified asymptotic framework
that encompasses increasing domain, infill, and a combination of in-
creasing domain and infill asymptotics. Under each type of asymp-
totics, we derive the asymptotic properties of maximum likelihood
estimates. Our results show that the rates of convergence vary for
different asymptotic types and under infill asymptotics, some of the
model parameters estimates are inconsistent. A simulation study is
conducted to examine the finite-sample properties of the maximum

likelihood estimates.

1. Introduction. In many fields of the biological, physical, and social sci-
ences, spatial lattice data are becoming increasingly common. For example, many
remotely sensed data in ecological and environmental studies are aggregated at
a certain resolution on a lattice. Spatial linear models and the corresponding
likelihood-based statistical inference are important tools for the analysis of such
data and have been applied in a wide range of disciplines. This paper investi-
gates the asymptotic properties of maximum likelihood estimation under a uni-
fied asymptotic framework, which encompasses increasing domain, infill, and a
hybrid of increasing domain and infill asymptotics.

A spatial linear model generally has two additive components: a linear regres-
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sion component that relates the response variable of interest to covariates and
a random error component that is modeled by a zero-mean Gaussian process.
Spatial dependence in the Gaussian process can be modeled via autoregression
(AR). Two classes of AR models are commonly used in practice: simultaneous au-
toregressive model (SAR) and conditional autoregressive model (CAR) following
a neighborhood structure on the lattice. SAR models are direct generalizations
of the popular autoregressive (AR) models in time series, as the random error at
one site is auto-regressed on the random errors at neighboring sites on the lat-
tice, whereas CAR models are a subclass of the Markov random fields such that
the spatial dependence is induced by conditional distributions of random errors
at individual sites (see, e.g.. Whittle (1954), Cressie (1993); Schabenberger and
Gotway (2005)). It is worth mentioning that Bandyopadhyay and Maity (2011)
combined a CAR model for the random error and a semiparametric additive
model for the mean response. The resulting semiparametric model allows linear
and nonlinear relations between the response and covariates. In this paper, we
focus on SAR models and discuss CAR models in Section 6.

SAR models have been very popular in, for example, economics and epidemiol-
ogy (see, e.g., Anselin (1988); Waller and Gotway (2004)), and are becoming even
more so due to the advances of software capabilities such as the R package spdep
(see, e.g., Bivand, Pebesma and Gomez-Rubio (2008)). The SAR model we con-
sider here is also known as an error SAR model as versus a lag SAR model where
the response variable has two additive components, one is a linear regression but
the other is a linear combination of the response variables at neighboring sites
(Anselin (1988)). Although widely regarded as offering intuitive interpretation
in spatial econometrics, we do not consider lag SAR models here, because the
expected response variable in a lag SAR model is not the linear regression and
it is difficult to interpret the regression coefficients as in most statistical linear
models.

For statistical inference of error SAR models, maximum likelihood estimation

is often adopted. However, in terms of asymptotic properties of the maximum
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likelihood estimates (MLE), the results are rather limited. In a seminal paper,
Mardia and Marshall (1984) established that the MLEs of the parameters are
consistent and asymptotically normal as the sample size tends to infinity for
general spatial linear models. The regularity conditions for the asymptotic results
to hold involve continuity, growth, and convergence of the observed information
matrix. These results are known to be applicable for spatial lattice models under
increasing domain asymptotics, but it is unclear how the approach taken by
Mardia and Marshall (1984) can be extended to deal with infill and a hybrid of
increasing demain and infill asymptotics. Thus, a more general, unified framework
for studying the asyvmptotic properties of the MLEs is critically needed for SAR
models.

In contrast, more research has been conducted on infill asymptotics in geo-
statistics (see, e.g., Ying (1993); Lahiri (1996); Lahiri (2003); Zhang (2004); Loh
(2005); Zhang and Zimmerman (2005); Du, Zhang and Mandrekar (2009)). For
example, Zhang (2004) showed that, under infill, MLEs of the parameters in
the Matérn class of covariance functions are inconsistent. However, Zhang (2004)
considered a model without regression (i.e., with a constant mean) and did not
address estimation of the mean parameter. For hybrid asymptotics, Lahiri, Lee
and Cressie (2002) considered the least-squares estimators of the covariance pa-
rameters for certain spatial variogram models and established their consistency
and asymptotic normality. Recently Matsuda and Yajima (2009) considered hy-
brid asymptotics for observations that are randomly sampled in R? and provided
asymptotic results for the spectral density estimator.

Here we focus on SAR models with statistical inference based on MLE. In par-
ticular, we consider a measure of number of neighbors for any given site on the
lattice. Depending on the rate of convergence of this measure, we attain different
asymptotic properties of the MLEs. This idea bears similarity to Lee (2004), who
studied the asymptotic properties of MLEs for a lag SAR model with the restric-
tion to one lag only in space. Although the modeling framework in Lee (2004)

is quite different and appears to be more restrictive in parameterization than
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ours, we will utilize some of the techniques there when establishing the theoret-
ical results. In addition, Robinson and Thawornkaiwong (2010) established the
asymptotic normality of instrumental variables estimates of the regression coeffi-
cients for linear and semiparametric partly linear regression models and discussed
the consistency of the estimates of the spatial covariance matrix, although it is
not clear how general the asymptotic framework is. Under hybrid asymptotics,
Robinson (2010) considered a semiparametric lag SAR model and established
asymptotic properties of the adaptive estimates.

In the paper, we define increasing domain, infill, and a combination of increas-
ing domain and infill asymptotics, which appear to have not been systematically
developed for lattice models. There turns out to be an interesting and direct con-
nection between the measure of number of neighbors and the type of asymptotics

under consideration here. Our scope is broad, as we examine all three asymptotics

under a unified framework and all the parameters in the spatial linear models in-
cluding the regression coefficients. As we will show, the MLEs are consistent
and asymptotically normal under the increasing domain and the rate of conver-
gence is square root of the sample size. Under the infill, however, consistency and
asymptotic normality are attained for the MLEs of the regression coeflicients and
the variance component only, while the MLEs of the autoregressive coefficients
are inconsistent. When combining increasing domain and infill, consistency and
asymptotic normality are attained for the MLEs of all the parameters as under
increasing domain, but the rate of convergence is slower for the autoregressive
coeflicients.

The implications of our results are several folds. On the one hand, they reveal
the difficulties in estimating autoregressive coefficients under infill. This may not
be surprising, as a merely denser lattice should not be expected to provide ad-
ditional information about the relations among neighboring sites. On the other
hand, these results show that estimation of the regression coefficients still has de-
sired, sound asymptotic properties. We find this particularly useful, as in many

studies involving spatial lattice data, regression coefficients are of primary in-
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terests and by either increasing the domain or infilling sampling sites, better
estimates in terms of accuracy and precision are attainable for the regression
coeflicients. Furthermore, our results are instrumental (rom a theoretical point
of view, as we strive for a comprehensive scope by examining all three types of
asymptotics under a unified framework and all the parameters in the spatial linear
models, including both the regression coefficients and autoregressive coefficients.

The remainder of the paper is organized as follows. In Section 2, we describe the
SAR models in detail. In Section 3, we develop maximum likelihood for inference
and establish three types of asymptotics. The main theoretical results are given
in Section 4. A simulation study is performed in Section 5. Conclusions and
discussion are given in Section 6. Technical proofs are shown in the Appendices
A-C. In Appendix D, we compare our asymptotic framework and results with

those in Mardia and Marshall (1984).
2. Model.

2.1. A Spatial Lattice Model. Let D C R? denote a spatial domain of interest,
where d € N. Partitioning D = Uj\il’Dz into a collection of cells results in a spatial
lattice {D; : i =1,..., N}, where N € N. Let s; € D; denote a representative site
in the ith cell for i = 1,..., N. The collection of sites {8;: i =1,..., N} gives an
alternative way of denoting the spatial lattice. A spatial lattice may be regular
or irregular. For example, an imagery in remote sensing is often a regular lattice
formed by square pixels or the centroids of individual square pixels, whereas a risk
map in disease mapping is often an irregular lattice formed by counties within
a state or states within a country. In this paper, we deal with both regular and
irregular spatial lattices.

Let (2, F, P) denote a probability space. For modeling a given response vari-
able on the spatial lattice, let {Y'(s;) : 8; € D;,i = 1,..., N} denote a random
spatial process consisting of Y'(-) defined on (2,7, P). For ease of notation, let
Y; =Y(s;) for i =1,..., N. Under a suitable asymptotic framework to be speci-

fied in Section 3.2, we let n index the stage of the asymptotics for n € N. Thus
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let D =Dy, N =N, and D; = Dy, for i = 1,..., N, such that D, = U8 D,y
for n € N.
Now, let Y, = (Y1,...,Yy,) denote the vector of response variables on the

lattice {Dy,; :i =1,..., Ny}. We consider a spatial linear model in the form of
(21) Ytn P Xmﬁ il €n

where X, is an V,, x p design matrix and 3 is a p-dimensional vector of regression
cocfficients. Furthermore, €, is an N,-dimensional vector of random errors such

that
(22) €p = VV;L(@)En + v

where W,,(0) is an N,, x N,, spatial weight matrix parameterized by a g-dimensional
vector @ such that the diagonal elements of W, (0) are 0’s and I, — W,,(0) is non-
singular, where I, is an N,, x N, identity matrix. Further, v, is an N,,-dimensional
vector of disturbances that follow N(0,02I,). In model (2.2), the random error

at a given site is auto-regressed on those at other sites on the spatial lattice,

which induces spatial dependence.

2.2. Model Parameterization. The spatial weight matrix W,,(8) can be spec-
ified in different ways, but usually involves specification of a neighborhood struc-
ture. We let AV, (¢) = {j : site 7 is a neighbor of site i} denote the neighborhood
of site 7. The neighborhood of site ¢ can be further partitioned into ¢ orders, such
that Ay, (i) = Ul_ Ny k(i) where A, (i) = {j : site j is a kth order neighbor of site i}.

We then consider the following parameterization of the spatial weights matrix

W,.(0):
q
(23) VVH(Q) = Z HkWrL.k
k=1
where the diagonal elements of W, ; are 0’s for all k and 8 = (f1,...,0,)" is a

g-dimensional vector of autoregressive coefficients such that I,, — Y7 _; 6 W, &
is nonsingular. For row standardized weight matrices, if 3°7_, |6, < 1, then

I, — E::l 0. W, 1. is nonsingular and thus the covariance matrix in the SAR



ASYMPTOTICS OF MAXIMUM LIKELIHOOD ESTIMATION 7

model is positive definite (Corollary 5.6.16, Horn and Johnson (1985)). We let
6 € ©, where © is a compact subset of R7. The parameterization of spatial weight
matrix (2.3) is flexible, as it can accommodate different orders of neighborhoods
to be associated with different autoregressive coefficients (Zhu, Huang and Reyes

(2010)).
3. Maximum Likelihood Estimation.

3.1. Likelihood Function. Letn = (3',0',0%)" denote a (p+ ¢+ 1)-dimensional
vector of parameters under the model specified in (2.1)—(2.3). Let S,,(8) = I, —

Sl 0xWh i, for 8 € ©. The log-likelihood function, up to a constant, is
(31)  tm) = —(Nu/2)log o +1og|8u(6)]| — (20%)'Wlp,

where v, = 8, (0)(Y,, — X,,3). The first-order derivatives of £(n) with respect to

B3 and o? are, respectively,

8t(n) _

2y—1 v ot oL(n)
7?—5'— = (CT ) X S (G)U.,“

) VR (20*) 7 (pvn — Nuo?).

n—mn
Thus, written in terms of 8, the maximum likelihood estimate (MLE) of 3 and
a? are, respectively,

Br(6) = {X,5,(0)8.(0)X.} " X,5.(0)S,.(0)Y,,

mn

Nn_l{Y:rL L3 Xné,,(9)}’8&(9)5‘”(6){}/{1 B XTT.B’I!.(B)}'

wq>
=
|

We define a profile log-likelihood function of 8 as
2(0) = £{f3n(0),0,52(8)} = —(N,/2) log 62(8) + log |S.(0)| — N, /2.

Then the MLE of @ maximizes the profile log-likelihood ¢(@) and is denoted as

811 s

3.2. Asymptotic Types. For any set A C R? | let vol(A) denote the volume
(i.e., the Lebesgue measure) of A. We define three asymptotic types in terms of
the volume of the spatial domain vol(D,,) and that of the individual cells vol(D,, ;)

as follows.
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o Increasing domain asymptotics: The volume of the spatial lattice tends to
infinity vol(D,,) — oc as n — oo, while the volume of each cell on the lattice
is fixed vol(Dp ) = vol(Dy4) fori=1,...,Np,n=2,3,....

o Infill asymptotics: The volume of the spatial lattice is fixed vol(Dy) =
vol(Dy) for n = 2,3,..., while the volume of each cell on the lattice tends
to zero max{vol(Dy;) i =1,..., Ny} = 0 as n — o0.

e Hybrid asymptotics (increasing domain combined with infill asymptotics):
The volume of the spatial lattice tends to infinity vol(D,) — oo and
the volume of each cell on the lattice tends to zero max{vol(Dy;) : i =
1,...,N,} = 0asn— oo

In the context of (2.3), an essential element in the specification of an asymptotic
type is the order of the elements in the spatial weight matrix, denoted as m,; L
Tht ds; W'Y = O(m ~1), where {wtlk} are elements of the weight matrix W, 1.

Consider the following examples on a regular spatial lattice.

ExXAMPLE 1. Nearest neighbors: Let v = T{site j is the kth nearest neighbor of site i},
n,k J

where Z(+) is an indicator function, and V;, = [v” e f\‘J" 1- Row standardize V;, »
i, J’\ﬂ i
to attain a spatial weight matrix W, ; such that w,* = qn k/ 251 U

EXAMPLE 2. Distance-based neighbors: Let d;; denote the Euclidean distance
between sites 7 and j. Let ufj\. = Z{d;j € [0k—1.0x)}, where o =0 < 81 < ... < Jq

%) ]M Row standardize V,,

are prespecified threshold values, and V,, ;. = [vn ki1
to attain a spatial weight matrix W), ; such that w = v, k/ ZJ U ; .s s in

Example 1.

In Example 1, m,, = C’)(mdx{z : k= 1,. i =1,...,Na}) is O(1)
by the definition of the neighborhood. This order is the same for all n and all three
asymptotic types. For example, consider ¢ = 1 and thus the four nearest neighbors
on a regular lattice. The infill asymptotics can be thought of as the reverse of the
increasing domain asymptotics, even though the spatial domain is fixed and finite.
For this reason, it suffices to consider only the increasing domain for Example 1.

In Example 2, m, = O(IHax{E_;-\;”l vf;;’;,t k= Lot = Lyvgas Npt)o Unider this
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increasing domain asymptotics, m,, is O(1). However, under the infill asymptotics,
my, — 00 and my, /N, does not tend to 0, whereas under the hybrid asymptotics,
My — 0o and my, /N,, — 0. Here, q is assumed to be fixed. This is a reasonable
assumnption even for the hybrid and infill asymptotics, as in Example 2, for a given
site, the number of neighbors for each order of neighborhood structure tends to
infinity even though ¢ remains fixed.

For infill asymptotics and hybrid asymptotics, the autoregressive coefficients
Oy, B =1,...,q are assuined to be fixed for different cell resolutions. This as-
sumption is reasonable under row standardization of the weight matrices. In
Example 2, it means that the average of the neighboring cells in a neighborhood

of a particular order contributes the same across resolutions.
4. Asymptotic Properties.

4.1. Notation. Let ny = (8g, 6),c})" denote the (p+q+1)-dimensional vector
of true model parameters. Let Sy, = S,,(6p). The model (2.1)(2.2) evaluated at
the true parameters ny is Y,, = X,,8 + S(;Lluo.,,,, where vg, ~ N (O,JSI”). Let

Br = Bn(8,), 62 = 62(8,,), and #y, = ( 3 ,8.,52)" denote the MLE of 5. For any

0 # 60, let 077(8) = Ny 'oftr { 55,1 5,(6)S.(0) S5, }.

Let Ay, denote an N, x N, matrix with elements [a';’] 5\3":1

The sequence of ma-
trices A,, is uniformly bounded in matrix norm |||-||| . if SUP1<i< N, n>1 Zj‘i"l |latd|
oco. The sequence of matrices A,, is uniformly bounded in matrix norm ||| - |||,
if supyc ey, no1 it @8] < oco. Furthermore, the sequence of matrices A, is
uniformly bounded in £o norm if sup,<; j<, ,>1 |a57| < co (Horn and Johnson
(1985)).

Let T' denote a compact subset of R™, m € N, and let T',, denote a non-
empty compact subset of T, n = 1,2,.... Let g, : I — R denote a continuous
function on I'. Suppose that g, () has a maximum on T, at v, n = 1,2,.... Let
Sn(d) denote an open ball in R™ centered at v* with fixed radius § > 0. For each

n =1,2,..., define a neighborhood T, (8) = S, (d) NI, with compact complement

I'%(6) in T, The sequence of maximizers {~;} is said to be identifiably unique
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on {I',}, if either for all § > 0 and all n, I';(d) is empty, or for all § > 0

Lt S {III&X,YEF;; @) 9n () — g.”(fy:;)} < 0 (White (1994)).
4.2. Assumptions. To establish the asymptotic properties of the MLEs of the
model parameters, we impose the following regularity conditions.

(A.1) The elements u;ﬂ‘ of the spatial weight matrix W,, ; are at most of order

m> 1 uniformly for all j # i and w,ffk =0, foralli=1,...,N, and k =

n
1,....q and m, is bounded away from zero uniformly.
(A.2) The sequence of spatial weight matrices {W,,x : k = 1,...,q} are uniformly
bounded in matrix norms ||| - |||1 and ||| - ||]oc-

(A.3) The matrix S,,(0) is nonsingular for 6 € © and n € N.

(A.4) The sequence of matrices {S, ()} is uniformly bounded in matrix norms
Ul ||l1 and |||+ |||eo for @ € ©. The true parameter g is in the interior of ©.

(A.5) The elements of X,, are uniformly bounded constants. The limit of N X158 (0]5,(6)X,
as n — oo exists and is nonsingular for 8 € ©.

(A.6) For 8 # B9, lim, ..o N; ! {log |022(6)S,,(0)S,(8)| — log |05 S, Sonl} # 0.

(A.6') For 8 # 6, lim, 0o N, 'm,, {log|o;2(8)S,,(0)Sx(8)| — log |05 55, Sonl} #
0.

Assumptions (A.1) and (A.2) are regularity conditions on the spatial weight
matrices. Note that, in (A.1), the sequence of rates {m, : n = 1,2,...} can be
bounded or divergent in general. Assumption (A.2) is generally satisfied under row
standardization. Indeed, by Lemma, 6, it can be shown that (A.1) implies (A.2).
Assumptions (A.3) and (A.4) are made about the sequence of matrices S,(8).
Assumptions (A.3) is standard for the spatial lattice model under consideration.
Assumption (A.4) is needed to ensure that the variance of Y, is bounded. In
fact, one can show that (A.4) holds under fairly weak conditions by applying
Lemma 7. Assumption (A.5) is a standard assumption of the design matrix and
implies that the elements of N, {X/ 5! (6)S,(6)X,}~! are uniformly bounded.
Assumption (A.6) (or (A.6')) is needed to establish identifiable uniqueness when

establishing consistency of the MLE.
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4.3. Results.

THEOREM 1. Assume that (A.1)-(A.6) hold and m,, = O(1). Then the MLE

of i is consistent such that, as n — o0,
o ol
M — To-

If, in addition, the limit of N,TIE{—%} as n — oo exists and is positive
definite for n € RP x © x R™, then the MLE of n is asymptotically normal such
that, as n — oo,

1 = D
N2, — m0) > N(0, By)

. T— o2 L
where E;ul = limp 00 =N B {%}

Theorem 1 shows that, under the regularity conditions and when m,, = @(1),
the MLE 7,, is consistent and asymptotically normal at a convergence rate of
square root of the sample size N,,. The condition m, = O(1) corresponds to

increasing domain asymptotics in Examples 1-2.

THEOREM 2. Assume (A.1)-(A.5) and (A.6') hold, m,, — oo and my, /N, —

0, as n — co. Then the MLE of n is consistent such that, as n — oo,

SE e
M — To-

: s ; ~1,.1+6 — ( # 5 : S 2%¢(n)
If, in addition, limy, .0 N, 'm,; "% = 0 for some d > 0 and if the limit of (m, /N, )E {_W}
as n — oo exists and is positive definite for @ € O, then the MLE of i is asymp-

totically normal such that, as n — oo,

NM23(g, - By) = N(0,Zg), N3 -o5)= N(0,207)

i

(Nn,/'mn)]/zfén = 90) 2’ N(G, 290)1

where T, = 08 limp—co Ny (X},85,50nXn) " and Bg! = limp_0o —(Mmn/No)E {fﬁgggv }

Furthermore, G” is asymptotically independent of &2 and 0,,.

Theorem 2 shows that, under the regularity conditions and when m, — oo

and my, /N, — 0, the MLE 7, is consistent and asymptotically normal. The
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conditions m, — oc and m,/N, — 0 correspond to the hybrid asymptotics in
Example 2. The rate of convergence is the square root of the sample size N, for
the regression coefficients (3 and the variance component o2. However, the rate of
convergence is slower at /N, /m,, for the autoregressive coefficients 8. It appears
that only the increasing domain asymptotics improve the inference for 6, whereas

the infill asymptotics do not yield additional information.

THEOREM 3. Assume (A.1)-(A.5) hold, my, — oo and m,/N,, — c € (0, 0]

as n — 00. Then the MLEs of B and o® are consistent such that, as n — oo,

B.0) L By and 62(0) 5 o2

and asymptotically normal such that, as n — o0,
N1{B,(8) - Bo} B N (0,%g), Ny/*{32(8) - 08} 2 N(0,207)

where g = 08 limp_.o0 Ny, {X,’.LSR(9}’.5’,1,(9)X.,,,}_1 X! 8.(8)8:(0)85 S(’{HIS;.(B)S.”,(H)X,,,
(X! 5 (0)S,(0)X,} ", for a given 8 € ©. Furthermore, B.(8) and 52(0) are
asymptotically independent. However, the consistency of the MLE of 0 is not

gquaranteed.

Theorem 3 shows that, under the regularity conditions and when m, — oo
and m, /N, — ¢ > 0, the MLEs ,ém and &2 are consistent and asymptotically
normal at a rate of v/N,. However, the MLE 6, is inconsistent. The conditions
My, — 00 and m, /N, — ¢ > 0 correspond to the infill asymptotics in Example 2.
In other words, without increasing the domain, it is not possible to infer about
0 consistently using MLE. This makes sense intuitively, as infill alone does not

vield additional information about the relations among neighboring sites.

5. Simulation Study. We now conduct a simulation study to examine the
finite-sample properties of the MLEs under three types of asymptotics. We con-
sider an r X r square lattice with a unit resolution. We vary the lattice size by
letting © = 4,8, or 16, while keeping the area of each cell at 1 unit?. For each

lattice size, we further divide each cell into an 7* x r* sub-lattice with sub-cells.
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We then vary the sub-lattice size by letting r* = 1,2, or 4. The sample size N
thus ranges from 16 (r = 4, 7" = 1) to 4096 (r = 16,r* = 4).

For a given lattice size r and sub-lattice size r*, we simulate data from a
SAR model defined in (2.1) and (2.2). For the linear regression, we let E(Y;) =
Bo + $1X;, where X; = sin(i), 8o = 2, and 8 = 2 for the sth cell, i = 1,..., N.
For the spatial dependence, we consider distance-based neighborhood with one
order ¢ = 1 and a unit threshold distance d; = 1. The parameter values are set at
) = 0.2 and o = 1. For each simulated data, we estimate the model parameters
by maximum likelihood and obtain [3’0, ,[91,91: and &%, We repeat this procedure
100 times. Tables 1-3 give the means and the standard deviations of the MLEs.

First, for a given sub-lattice size r*, we examine the results across different lat-
tice sizes r, which corresponds to increasing domain asymptotics. We note that
the biases and standard deviations of all four parameter estimates decrease as the
lattice size r increases from 4 to 16, for any given sub-lattice size r* = 1,2, or 4.
Next, for a given lattice size r, we examine the results over different sub-lattice
sizes r*, which corresponds to infill asymptotics. The biases and standard devi-
ations of the regression coefficient estimates ,éo, 61 and the variance component
estimate 62 decrease as the sub-lattice size r* increases from 1 to 4, for any given
lattice size r = 4,8, or 16. However, for the autoregressive coefficient estimate
5'1, the biases and standard deviations remain similar in values as r* increases
from 1 to 4, indicating inconsistency. Last, we examine the results when both the
lattice size r and the sub-lattice size r* increase, which correspond to the hybrid
asymptotics. We note that the biases and standard deviations of all four param-
eters decrease. However, the biases and standard deviations of 6}1 decrease at a
slower rate in comparison to the results of the other three parameter estimates.
In summary, under all three types of asymptotics, the finite-sample properties

support the theoretical results given in Theorems 1-3.

6. Conclusions and Discussion. The modeling approach in SAR is by
construction in the sense that spatial dependence is induced from autoregression

in formulas like (2.2). This is a technique widely used in other areas of statis-
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tics such as time series, dynamic modeling, and graphical models. The resulting
SAR model has a rational spectral density under suitable conditions (Gaetan and
Guyon (2010)). It is also intuitive, as one can interpret the model parameters via
equation (2.2) and thus SAR model has been one of the most popular models
used for spatial lattice data. However, we believe that there lacks an adequate
framework for studying the asymptotic properties of the parameter estimates for
SAR, despite its immense popularity in practical use in many scientific disciplines.
What we have achieved here is an attempt to bridge some of this gap between
theory and practice.

The asymptotic framework considered here is unified covering all three types
of asymptotics. This is in contrast to Mardia and Marshall (1984), which is often
referenced as the theoretical backing of SAR model parameter estimation (see,
e.g., Cressie (1993)). It can be shown that if the assumptions of our Theorem 1
or 2 hold, then the assumptions for Mardia and Marshall (1984)’s results are
satisfied. The details are given in Appendix D. However, the asymptotic results
in Mardia and Marshall (1984) do not distinguish the rates of convergence as we
do for increasing domain in Theorem 1 and for hybrid asymptotics in Theorem 2.
Furthermore, the approach taken in Mardia and Marshall (1984) cannot de;ﬂ
with infill asymptotics in a straightforward manner. Thus, we believe that the
approach taken here offers a viable alternative for studying the asymptotics of
SAR models.

As pointed out by Cressie (1993), any SAR model can be represented as a
CAR model, which is a Gaussian Markov random field model. Rescarch has been
conducted to study the link between geostatistical Gaussian random fields and
Gaussian Markov random fields. Rue and Tjelmeland (2002) demonstrated em-
pirically that Gaussian Markov random fields approximate well commonly used
Gaussian fields. More recently, Lindgren, Lindstrd and Rue (2010) showed that
for some Gaussian fields with the Matérn class of covariance functions, an explicit
link can be established to Gaussian Markov random fields using an approximate

stochastic weak solution to stochastic partial differential equations. Taken to-
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gether, we conjecture that SAR models approximate a class of Gaussian random
fields, which would then provide a closer connection between asymptotic frame-

works considered here and those in geostatistics. We leave this for future research.
Appendix A: Proof of Theorem 1.
PRrROOF. From (3.1), it can be shown that, under ng,

E{tm)} = —(Nu/2)logo” +log|S,(0)]

—(20%)7" (B0 — B X,57,(0)S,(6) X (B0 - B) + oitr { S,151,(8)S.(8)55, )]

Thus the first-order derivatives of E{¢(n)} with respect to 8 and o2 are, respec-

tively,

6E{£(n)} h 1 ’ = 8E{€(n)}_ 4y —1 ! SRl
T = (o ) X, 5,(0)S,.(8)X,(Bo B), TeaEE W (20%) " {E(vvn) — Npo®}.
The maximizers of E{{(n)} are 3;;(8) = By and ¢7%(0) = N;lcr%tr{ o SL(8)S, (9)8011}

Let .(0) = B[¢{3:(0), 0, a::?(@)}J. Thus g,(0) = (Ny/2) log 072(0)+log | S, (8)|
Np/2. We establish the consistency of 6, by showing that Supgee Ny |€(8) —
gn(0)| = 0p(1) and that N, 1g,(0) is identifiably unique. We then establish the
consistency of ,@n and 5’_% in terms of én.

Note that,

o {€6) —9n(0)} = -1/2{log6(6) — log o3 (8)} = —{252(0)} " {52(6) - 012(6)}

where 52(0) = acf2(0) + (1 — a)62(0) for some a € (0,1) and &2(6) =
N0 H 0wk

n=mn n=mn

Bo(6) = 555,,(0) [In — 5.(0) X, {X;,54(8)S0(6)X,} ™" X,,54,(8)] 51(0) S5,

(6.1)
Also, by (A.1)-(A.4) and Lemma 5

No™ [V Son' Su(0)S0(6) S5, von — E {14,551 54(8) S, (0)S5, von }] = 0,(1).
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Furthermore, the convergence is uniform on ©, because of the linear-quadratic

form in @ and by Corollary 2.2 of Newey (1991). By (A.1)-(A.5) and Lemma 4,

ﬁlV(fJnSm—LlSr (0)S,.(0) X, {X;S;T.(Q)SH(G)XH}_I X:LS:I.(B)S”-(G)SO_T),IVOH

-

— N-U[N-V2X! S (8)8,(0)S5 ven ) {N71X!S!(0)Sn(0) X
n m (i1 On n n*=n

{N 12x1 8! (0 )Sn(B)SO_.ano-n} = op(1)

n=rmn

Again, the convergence is uniform on , since Ny ' X/, S, (8) S (6) S5, von = 0p(1)
uniformly on ©, {N, 1 X, S:L(G)Sn(ﬂ)X.n}—l is uniformly bounded in £, and the

boundedness is uniform on © by (A.5). Thus it follows that, uniformly on @,
52(6) - 732(6)
= j\f;l [Uﬂﬂ 715, (B) ( )Sﬂ_ﬂluml =5 {VUH 0;15’ (9)87,_(9)507”1!/0"}]
_JVrt_ll}{JnSE]:l.lS;(B) X” {Xﬂ n B)S X”} Xu TI(O)S”-(H)S{‘];,.IVDH = 013(1)‘
(6.2)
Further, by Jensen’s inequality,
N;Y{9n(8) — 9n(60)} = Ny' (log|Sn(6)| — log|Son) - 1/2{10g0-:?(9) — logag}

ISQ-?-LlS,( )S (9 07: |N
/2 o8 5T 5,(0)5,(0)55 ]

(6.3)

I

for 8 € ©. Under (A.1)-(A.4),

Il

fi’\r‘r71 tr{Sn ~) 1W71.11}$ tl{S"l 1W” (j} 8 90)

*ZO )8k — Bo,x),

N;l (log|S,(8)| — log |Son|)

(6.4)

where 8 = a@ + (1 — a)8p for some « € (0,1). Thus

logo;2(0) = —2N;'{gn(6) — gn(60)} + 2N; " {l0g | (6)| - log |Sou|} + log g

v

QNJI {log |Sn(6)| — log | Son |} + IOgJLQM

which is bounded from below uniformly on ©, and ¢*?(0) is bounded away from
zero uniformly on ©. Since 62(0) — 0:%(68) = op(1) uniformly on ©, 62(0) is
bounded away from zero in probability uniformly on ©. Hence, supgeg IV, 11¢(8)-

gn(0)| = 0p(1).
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To show the identifiable uniqueness of N;1g,(6), we note that N 'g,(0) is
uniformly equicontinuous. In
jV-r:l {97!.(91) i g-n(BQ)}
N, {log|S,(61)] — log |S,(82)[} — (1/2) {log o;2(61) — log 02(6:) }

= N {log|8n(61)| —log |Sn(62)]} — {25:%(6)} {072 (81) — 032 (82)},

where 7;2(0) = ao2(61)+(1—)a2(0,) for some o € (0,1) and is bounded away
from zero, both terms are uniformly equicontinuous, since by (6.4), N7 ! (log |S,.(61)| — log |S,(62)]) =

-0 O0(my Y (61 — 024), and with @ = o) + (1 — )8, for some a € (0, 1),

0:2(61) — 07%(62)

q 7 ! 5
—N'00 Y tr { S5 Wy S(6) S5 + S 1 (B)Wo kSt } (61 — B2)
k=1
q

—a50(my ) D (61,5 — Oa).
k=1

Together with (A.6) and (6.3), N, 1g,,(6) is identifiably unique (Kelly (1955)).

Thus, by Theorem 3.4 of White (1994), the MLE of @ is a consistent estimator.

By (6.2), the consistency of §2(6,) can be derived from the consistency of

a:2(0,,), which is obvious from its definition. Further,

e o o o —1 ~ *
Bu(Bn) = {X1,5,(61)Sn(6n) X0} X},5,(6)Sn(6) Y
2 % - . X i ; A
= ﬁO -k Z(go,k == gn.,k)j\r;g_l/z {NEIX:;S;(an)Sn(Qn)Xn} {NJl/z-X-:LS;l(en)Wn,kS[iqlVUn}

k=1
N2 {J\fn‘lX{lS,’,,(é”)Sn(é.n‘)X.,,}_] (N2 X80, (6n)von }
where the last two terms are of order o,(1) by (A.1)-(A.5) and Lemma 4.

By (A.A4), 6y is in the interior of ©. Thus, for sufficiently small ¢ > 0, we
have Ac = {n : ||[n—mo|| < ¢} C R?P x ©@ x RT and P(7), € A) — 1 as
n — oo, where || - || denotes the Euclidean norm. Here we focus on 7, € A..
Now, we establish the asymptotic normality of the MLE by showing asymptotic

. —1/28¢ . s —1 8%
normality of Ny '/ %:;0) and convergence in probability of N On(fg?")’ where

M = ano + (1 — a)fy, for a € (0,1) converges to ny in probability.

AT OOT —lazg(ﬁﬂ) . , a7 ] = -1 @25 ﬁn 82€ ==
For convergence of N mon+ We show that, under (A.1)-(A.5), N, 7977(57?) - ﬁ =

52 32
op(1) and N ! {%,:;EE?,J - E%igﬂ’,)} = 0,(1). Here for an a x a random matrix




18 ZHENG AND ZHU

An, we let A, = Op(1) (or oy(1)) if all the elements of A, is of order Op(1) (or

0p(1)). The second-order derivatives of £(n) are

8%¢(n) ot 80(n) 4\—1

= i 4 T X'H! T AL e . X-n -;? 0 n
d*{(n) e 1

- —_ ! n iBW”- S 6 T k':l,,
(‘)ﬁc’)& ( X {WA B)JrS”‘( ) ,R} n ( )V ,
)2
Gl {m_ks_,;l(e)wn__is;l(e)} ()WL SN O) W W 1S (8) v,
()9&-(‘)9,5 '

El="1, 0 g

92(5(’?) 4y—1 = 325(’7) 6y—1 / 2
agkagz = A(J ) V;z.Wn.:kSn (9)1/?19 !]'C == l, wiv arg —8(0—2)2 = (20' ) (—21,'”1}” —+ ang )

By (A.1)-(A.5), we have
]\4771 azf(ﬁH) s 82‘0(7)0)
" \9Bog ~ 980p
q
= ‘T\IJIX;’LSE)HSO’HX’H(1/0—{% - 1/0- ) - 1\” Z 90 kB Gn k‘ (SUn n.k + rrfhkSCln)X

q q
(irvna'z {Z HUAanWr:k}{Z QUF\_HHA nk}X :Op(l):
k=1 k=1

N1 {azf(ﬁ”) o 823(770)}

dBde?  9p0g?

q
e ATT?-]LX-' SDF’LVO” 1/0‘0 =5 1/(7” -1 Z 901’\ E— 9?’1!‘\ (Sé,anq;,, + W;r.,.l.‘.SO'i'?)S(;'LlyUﬂ-
k=1

g y q
+(Nn. IX,. {Z HDA _gfzk nk} {Z Hﬂk - T:A rlk}s[]_ulyﬂu

k=1

_( )I'XH.S‘;.'L .)75 ) n(JBD ,Bn): ():

Ly [ 8)  8%(m) ) .
. n = N, 2 Sn Sr Qn Wn o 1/11 = Xﬂ
Nn { 81889;, 8,@89; H 'ﬂ { n,k + n,( ) ..R} ( 3 !@U)
A ”G—U lXIl (Wn I\SDR &R SO!I,WH,I’T) (K? - XWGU)
J'\NCT 1)(r { + Sf (9 5) YTI,AI} X'H‘(igo - Bn)
T O‘P(l)!

ot [ P2 8t
7 89k893 86,@_86‘1

= Ny [-tr (W87 (62) Wi iS (8n) ) + tr { Wi, 85, Wi iS5 }]
N : érrSEJrilW lvvn ASOHUDH(I/U o 1/‘70) (N11.53)71(50 i lé'”)'rX':lﬂ[?;.,fWn.kX”-

x(ﬁO Wl Bn) I Q(Arn,(}i)il(ﬁ() i B??,)’X;, W;';:[mzrks(]inlu[}ﬂ = Op(l)u
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where

tr {IfV.,,_ P (e (én)}

= tr{W, 85! W,,,SO,¢}+Zm{ Wi oSy (6n) Wi i S () Wi 1S (81)

g=1

+VVn,kS,fl(9'n.)Wn,¢Sf(én)mm,js 1{9”)}( 7 BGJ)

= tr{ W5 Wa iS5l } + OV, /mn)op(1),

J,Vfl 82{}(7}”) 2 Bzﬁ(no)
& i%}kéﬂrr? 'O“f;;;f)ﬂ'z

= ‘Nﬂ,_l {_(&ﬁ) IU{fJu D;IS’ (g )Wn‘ks()i”:‘lVOn a5 (Ué) IVE);LWn,A:S[T,}VUT7,}
_(Nn.&i)il(ﬁﬂ = B-n)’X;_S-;.(é-n)mr.,kxn.(,@f] =) :én)
(Nng4) ](JBU = ﬁﬂ) X:LS:L(é W, kSOn Von — (an& ) IVE)n SI( n) W, ok Xn(Bo — ﬁ )

= Oﬁ(l)!

and

_!'V_l 82£(ﬁn} o 825(’70)
n 8(0_2)2 8(0.2)2

q
= Nr:lvtl}nv(]n(l/gg e 1/5-2) = (‘N‘nﬂ yOnSU {Z 901. i 9;1 k 1;}
k=1

q = q
{2(90,&' = OIL,R:)Wn,k} S&llyﬂn = Q(Nng Von {Z 90 =04 K ma,k} S():-:VDH
k=1

k=1
+{(205) " - (265)7'F = 0,(1).

Thus N {500 — ZHm} = o,(1)

dnan’
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Further, under (A.1)-(A.5), we have

- {626(% 52 tm)

BE)ed oBoF

}
N“{agé;(’f } %Ea?} = (Nuod) ™ X Spuvion = Ny 20p(1) = 05(1),
= N;120,(1) = 0p(1),
. 1{%2;3; zzg;} ki
OB (S Wi WakS5) | = N0y (Nafm) = oy(1),
i {o) s Tm = v {u()nm.ksaﬂ?mfa%u«Wn.,ksa;)}=op(1),

2 ~
N {a Um) _ 5o f(n“)} —(Npo) L (Wnton — Ny) = 05(1).

(802)2 7 (do?)?

: s 526 (7 a%e _1 3% ot
Thus N, 1{(817(61;)] - B aﬂgz;’,)} = 0p(1). It follows that N,,‘J(an(afq,) - X =

15 924(mo)

limy, oo N, T

Furthermore, the first-order derivatives of £(n) at @y are linear or quadratic

forms of vy, since

0L(mo) _ 9t(no) -
(r_gﬁ = (JS) ]X':a S{)-nuﬂﬂv W = (20-61} I(VE)-H‘VD‘N. - Nn.o'(z])
ol
a(gm) = —tr {W, kS5l } + (03) 7 ou Wi iS5 vom = —tr(Gi) + (98) ™ von Grvon,
k

where G, = W, kSon for k=1,...,¢. By (A.5) and Lemma 4, we have
—1/204(m0) D e B
j\ln lfz—aﬁ— = Af(oiiggo(l\/ngg) IX;,?SE,]TLSOTLX'H)'
By a classic central limit theorem,

N,

20 1/28‘;( 2) N(0, (208)71).

a

For the asymptotic normality of Ny 1/2 Oé(”“) A.2) and (A.4) ensure that Gy, is
B0,

uniformly bounded in matrix norms |||-|||; and [||-|[| and the positive definiteness
of X5} ensures that N,lech(%ﬁﬂ;ﬁ) = N, 'tr(G}+ G, Gy) is bounded away from

zero. By a central limit theorem for linear-quadratic forms (Theorem 1, Kelejian
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and Prucha (2001)), we have

)4
Nn—l/za—;g@ 2 N(0, lim N ltl(GA + GL.Gy))

k: n—0Q
: : e - BE(me 5
for k =1,...,q. Consider a linear combination of a(;’f) and (g(ﬁ?), ke loiod
with coeflicients ¢y, ... ,¢441, we have

ae ol it g 9
§ : N 1/2 CC\0) nU) Capl N 1/2 d(;k’) f Nu. 1/2(0(2]) lyéﬂ {2 :Cka + ot (20[2)) ]In} i
h=1

q
— 17802 1/2¢5 2y—1
3 Z kN, / tr(Gr) — Cq+11’\rn/ (2073)
k=1
which is again a linear-quadratic form of v,,. Thus its convergence in distribution

holds, again by Theorem 1 of Kelejian and Prucha (2001). Then by the Cramér-

Wold theorem and the fact that a{ég“) is asymptotically independent of %ﬁﬁ

and %{%}ljkzl,,,,,g,weha\fe

~17290(m0) b
2]
NY o S N(o, 2t

where/ 3t = limy, -, 0 B ( N 1—”"1) and F ( Nl E(””)) is

noandry’ n  andn’
(T2 0C L S S 0 e 0 0
0 N (G +GiGY) ... N7'W(GhGy+ GYG1) (Nyod)~ltr(Gy)
0 No4r(GGh + GIG,) ... N7%(G2+GLGy)  (Naod) lix(G,)
0 (Naad)~r(Gh) g (N,o8)~tr(Gy) (2af)=1

It follows that

1025(7?))

-1
g = —1/29¢(no)
1/2 it - e ling L : N 1/2
N, (Thc 7o) { n anan; l_OP(]*)} Ny

2’ ‘N(Uv 2"70)

and thus the result of this theorem holds. Note that m,, needs to be bounded to
ensure that the limiting variance-covariance matrix is nonsingular. When m,, —
oo, for example, N 'tr(G% + G1G1) = N;'O(N,/m,) = o(1), which will result

in a singular limiting variance-covariance matrix. O

Appendix B: Proof of Theorem 2.
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Proor. We establish consistency of the MLE as in the proof of Theorem 1,

Note that

mnNn_l{f(Q)—gn(B)} = fm.n{% i { aa( ~Un (9)}

is of order op(1) uniformly on © under (A.1)-(A.5), where 52(0) = ab2(0) +
(1 — a)o*?*(@) for some o € (0,1). Thus supgeg ma N, ' |£(8) — gn(0)] = 0,(1).
To show the identifiable uniqueness of m,, N, 1g,(8), it suffices to show that it is

uniformly equicontinuous. Note that

m-,LN,Il{Qn(Bl) . g'ﬂ-(gg)}

= muN, ! {log|Sn(61)| — log |Sn(62)[} — m,{25:2(8)} ' {0}2(61) — 072(82)}

where 32(0) = ac?2(01)+(1—a)o:%(02) for some a € (0,1) and is bounded away
from zero. With arguments similar to those in the proof of Theorem 1, we have
the uniform equicontinuity of of m, N, 1g,(#). Thus together with (A.6") and the
fact that m, N, '{g.(0) — g.(60)} < 0, we have the identifiable uniqueness of
mn N, g, (0). By Theorem 3.4 of White (1994), the MLE of @ is consistent. The
consistency of MLE of 3 and ¢? can be shown using arguments similar to those
in the proof of Theorem 1. We omit the details.

For sufficiently small ¢ > 0, we have A, = {6 : ||0 — 6y|| < ¢} C O and
P(én € A.) — 1 as n — oo. Here we focus on én c A.. Now, we establish
the asymptotic normality of the MLE 0, by showing the asymptotic normality

of (my/N,)Y? df(g” and the convergence in probability of m, N, ddé(d%i), where

6, = aby + (1 — n)H.,l for o € (0, 1) converges to By in probability.

T 7—18%0(8,) e r—18%00,) _ 874(B0)y _
For convergence of m,, N 58067 We show that m, N { 090" — 5805 Y=

0p(1) and m, N, {a;?gégﬁ) - E%égj;’,}} = 0p(1), under (A.1)-(A.5). We note that

ore B, (0 =
5!(5'1) = 7{2 )}_ U'ii 89( )VUH s tr{W'ihlsn.l(H)}
= {&3(9)}*1:/{]”1“”,1(9)uon — tr{W,18,'(0)}
523(9) 1.1 aTnl(g)

@Az Q{N.,,ﬁi(9)}71{116“17”11(9)1/0,1}2+{&i(ﬂ) Wiy PR
005 bolia]

71:’1‘{8;1(9)WH 1817 T? 1}
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where B,,(0) is given in (6.1), T,,1(0) = (1/2)8‘%’(‘)1 ) i

St | Wi 1 MSa(6) - S,,(8) W1 X { X,,5,,(0)S,(0)X,.} ! X1,5.,(8)S,(6)

T T

+8,(0)8:(0) X, { X, 5,,(6)Sx(6) X} ' X, W,

n,l

Sn(0) X,

x {X},5,(8)5.(6)X,} " X.,54(0)S.(0)| S5,

and M, = I,, — S,(6)X,, { X/, 5/(8)8,(8)X,} " XS/ (8). By (A.1)~(A.5), and

n*>=mn

Lemma 5,

m'rLNa:lVG-rLTIL,l(9)',/01’1 = Op(l)

0T, 1 (0 % oT,,1(0
Tri“l'\ UOrc‘a’—Ol(luﬂ'n = m'i’iNrL lggtl-{«(;T()} T O?J(l)s
since T}, 1(0) and 2 J{) 19) are uniformly bounded in either matrix norm ||| - |||; or

I+ ||loc; which are ensured by the submultiplicative property of a matrix norm

(Horn and Johnson (1985)). Thus, under (A.1)—(A.5),

a0 0 . ¥ 9
MmNy 1 36’(2 ! = Q{m.ncrﬁ(ﬂ)} ; {mn,]\fn luér:,TrL,l(B)VUra}
+{&’?L(6)}_1m‘ﬂNrt_1V6ﬂa_l—;;(;my()n
*'TTL-,,,N”__L(‘I‘{W,, lsn ( ) n, IS (9)}

aﬂi,]( )
ao,

mnNn"ltr{ } — mp, N r {W,,,,lS;l(B)W”,lS;l(B)} + 0p(1)

and for 8, = o8y + (1— (y)én,

8%4(6,)  B%£(6y)
A5 e i
MV, { 067 062

g4, T, (0
= .l [tl‘ {——ééi )} —tr {—_6 Béf ) H

~maNg [t {871 00 Wi 187 (6,0 Wi } - tr { S5 W1 S5 Wi }] + 0,(1)

T (é'n i 90)10(1) - (én ¥ 90)10(1) 5 O:P(l) = O‘P(l)'

By similar arguments for 6y and 0y, k, k' =1, ..., . ¢, we have m,, N~ {d;gg;) Y a;—jgg%o,) } =
o)
Furthermore,
82p( ) = aTn.l(BO) e
—~ TNy & 707 = —-m,N, Yer {T} +m, N lm-(Gﬁ) + o,(1)

= m N7 {(G1G) + (G} + 0y(1),
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since

T,.1(6
M Ny L { 9T5,1(60) }

a0,
= —malN,; t1(Sp,' Wy 1 Wi So 1) + mp N e {( X 86 SonXn) XL W W, 1 X )

_Wl'ﬂj\ru_ltr{(X;J.Sé]nSUH,XrL)ilX;.(Sér:WH:l 3y W:r.ISUF'!-)X'?? (X:z Slf)rzSU'fi‘X”)il
XX':L(SE'HW;”:I + W.r’z,lso'“-)Xﬂ} & mﬂN’-n_ltr{(X;,].SEMSU‘”-XTI)71X:7.(S;]TLWH,1

+W,,150n) Sors St (S0 W1 + Wiy 1500) X} = —mn Ny t0{G1G1} + o(1).

2 n2p
By similar arguments for 8y, and 0y, k, k' = 1,..., g, we have my, Nt {aaé(af;q) - Ei)ég;?ﬁ) } =

_1926(8, “1 _ _1 0%
op(1). It follows that m, N, 89599,) — g, = limp— 0o mp Ny IE—E@(—BLBO,).

To establish the asymptotic normality of (m, /N,,)Y 2%, Theorem 1 in Kele-
jian and Prucha (2001) no longer applies here, since the variances of the linear-
quadratic forms over N,, are not bounded away from zero. Instead we apply the
central limit theorem for linear-quadratic forms in Appendix A of Lee (2004) to
establish the asymptotic normality of 6,,.

Note that

a0 ,
(/N2 2000) (e N 252000} Tt (B0 oo — (/N 45 (W S5.)
1

= {6%(00)} "} (mn/Na)? { V4, Gr1rvom — oBtr(G1) } + 0p(1).

(A.2) and (A.4) ensure that Gy = W,1S;, is uniformly bounded in matrix
norms ||| - ||| and ||| - |||« and the positive definiteness of EEU] ensures that
(Mn/Np)Var(vh, Givo,) = (M /Ny )odtr(G3 4+ G)G1) is bounded away from
zero. By Lee (2004), we have

(M /N )2 {I/énGlllon - U%tr(Gl)} SN (O, lim i I ey {he (G ) 4 tr(G%)}) .

Hence

oL(0
(maf N 22000 152(00)) " o N2 {4 G — Rt (W1 S} } + 0p(1)
1

2N (0, lim m N {r(G1GY) + (G )

Then similarly for 85,k = 2,...,q, we have

1/20€(60)

“TY J\TTL
(ma/ o) 225

D ; =
DN (O,nlglgo mn N Htr(GLGY) + m-(Gi)}) .
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For any given set of coefficients ¢, k = 1,...,q, we have

q Ay
Z Ck (mu./jv‘n,) b M
k=1 00

q q
= (mn/Na)*{62(60)} b > ek Tk (B0)on — (Ma/Na) 2 Y cptr(Wi 1S5

k=1 k=1
q
= d5%a m,,/N,L) {VD” Z e Grrg, — Jf, Z (:;\.tI'(kaSmf)} + 05(1)
k=1
D
= N (U Jim e, N, {Z Z CrCR/ {tl(G G;) + tr(G,G; )} })
k=1 k=1
Thus, by the Cramér-Wold theorem,
5 OL(B)
(mn-/N'n.)]/zﬁ 2’ N(O: 251)
00 %
where
8*¢(mo)
=
Y5 = ﬂlil}oloimﬂN E{ 5090’
ma Ny 1t (G + GIG1) ... maNr(G1Gy + G,G1)
— _lgn : : :
mndNy MGG+ G1G,) ... malN, G+ GLG,)
Thus it follows that
_,0%(0, < 90(80) b
(N”r/?nn) (9-"1 G 90) = A7 {m'”Nn, : 865‘99’) + U]’J(l)} (m/'ri./j\r'n)l/z% =¥ N(Oy 290)
To establish the asymptotic normality of ﬁn(én), we have
e : A = A A
ﬁn(an) = ;60 = {X?fa,sil.(Gra)sn(an)xn} X’ S-" (BTl)Sﬂ(BTl)Yn = JBD
= {X.80(0.)5:(00) X5} X,8L(00)50 (655, von.
Thus under (A.2) and (A.5) and by Lemma 4, we have
Nl/z( ( n) =7 !60) = N11—1/2 {AT lX«:ls;(én.)sn(én)xn}_ XLS;?(GA‘IL)SH(é-n)S&}VGn

= Nr:l/z (I\Irjlx:cSénSU'”X'ﬂ) X;lsé'n Von + Op(l)

51
L (0 hm( 1){’SE,.”SO,,,XH) )

n—0Q

63(6,) = N;'Y,/S,,(6,) [I”.—Sn(é,,)xu I e % (én)} Sn(00) Yy,

T mn
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we have under (A.1)—(A.5),

o

N,%(57(6n) — of)

Ny

Y2 (1S5t 81, (6n) Sn(6r) Sy o

85181 (00) S0 (6) X { X1,81,(6) S0 (6) X V7 X1.8,(8,)80(6) S5 von — Nuod

4

‘Vn_lm (VE]T!-VO'” - N”Ul?j) o E Nr:l/zu(gn {Z(HOR 9” k)S(f]nl n, A }
k=1
q

q
{Z GUA 3 lgn k Ti RSON } on + 2]\(;1/2 Z(GU.’» = 9” k)u[]nSE)nlW kVon
k=1 k=1

Ar_l/zl/({)n [',Jnlsr (éft)sﬂ( ”)X {XTES;E(éﬂ)sﬂ(éﬂ)xﬂ-}ﬁ X SI (é ) (9’”-)5(;3”0"
]\7;1/2 (L/{]n!/gn e J\‘Y.nO“ ) -+ Op

N(0,203).

Appendix C: Proof of Theorem 3.

Proor. For the MLE of 3, we have

3.(0)

= {X1.5,(0)5.(6)X.} " X,5,,(0)8.(0)Y,

n—n (

= Bo+ NyV2{NIXLSL(0)S,(0)X, ) { N7 2X18,(6)54(8)S5 vom )

T

= ﬁ(] 3= O-p(l)a

since under (A.1)-(A.5), N;Y2x! g (8)5,.(0)S;, v, is of order O,(1) and the

mn=mn

elements of { N1 X/ S/(0)S,(0)X n}_ are uniformly bounded. Furthermore, un-

nen

der (A.1)-(A.5) and by Lemma 4, we have
~ - -1
NI2Ba(0) - Bo) = N7V {NTIXS,(0)5.(0)X, ) X,(6)S0(8)Sg v
D

= N (0, Eﬁ) ;

where ¥ g is given in the statement of Theorem 3.
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For the MLE of ¢2, under (A.1)-(A.4), we have

Q>
S
=

Il

j\?’;l [U{]‘n S(J;lS;:(H)Sn(B)SU_HIVUH

n—n n=n

=N 204,86, 51,(8) 5,(0) X0 (X, S,,(8)5(0) X)) ™' X, /,(8) 5(6) Sy o
q q

— N Vu,,VO:L -+ N 11‘/0” {Z HGA — O SE]nl n F\} {Z bor — Q‘E‘ ”'A’SU_’}} Von
k=1 k=1

q
Z/NN Z ok — VOnSGn ﬁ’F kYon

-N; ”zvansezlsz(9)s”(6)XH(X:!.S.:L<6)S-”.(9)Xn)*X:,.s;(e)sﬂ(9>sof,fv@-n 5,

where the last three terms are of order 0,(1) by the Chebyshev’s inequality.

Furthermore, under (A.1)-(A.5)

NY2(62(0) - of)

q
Nn._l/z (U{)‘H-VD“ o NHO-O) =f N 1/2'/6!!, {Z 90& = 9‘;\ SO;LI n k}
k=1

q q
X {Z(on — 0k)Wo kS, } Von + 2N 12 3" (Bok — 0k) v, S5 Wi 1 Von
k=1 k=1

_‘r\r—l/guéln [’Jnlsf (6 Sﬂ( ) H(X:’LS:L(H)SH(G)X) lX’ SI( )S'H(B}S(;nluo‘ﬂ

T T

e D
= Nn i (U("]”’UD” 2 NHJD o) 0}3( ) = _[V(O,QO’(%),

where the last three terms are of order op(l)r by the Chebyshev’s inequality and
the fact that limy, o my N7 = c € (0, 00].

Finally, we show the inconsistency of 0., by considering Example 2 under the
infill asymptotics. We let the threshold value be such that all the cells on the

lattice are neighbors of each other. Thus ¢ = 1 and € = 6. In this case,
L”“*;(]-n]-i; = In): My = Nn -1= O(f\]—n):

where 1, is an Nj,-dimensional vector of all 1’s. Thus m,, — co and my/N,, —

1 # 0. It follows that

Ny,— 140 0 Nt O
= s 1.1, 8-He) = —”—{I S i }
Sn(0) Noa W e e n (0) N,—1+86 ”‘+1-9N”71
E 1 3
Wt o) = et 71+9{(1—9) S e Ll vy
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Consider the case p = 1, 3 = 3, and X = 1,,. The profile loglikelihood function

is

00) = {B(0),6,62(6)} = —Nu/2 — (Nu/2)log 67(6) + log | Su(0)]

const — (N, /2) log v, Bn(0)von + log |8, (0)]

where Gy = W,,1S;,! and By,(8) = {I, — (6 — 0)G1}(I, — N1, 1){I,, — (8 —
8p)G1}. The first-order derivative of £(f) is

2 OB, (0 "
HOV o (¥a/2) (o Bal@n) ™ {1 2} — {187 0)),
o6 o6 -
where
8]5;,;(9) = —2G1+ N7'1,1' Gy +2(6 — 80)G? + N;'G11,1), — 2(8 — 80)N; ' G11,1,,G4.

Thus, provided that 8y # 1,

9t(0o)
a0

1
= N {Vhalln = N7 )00} {(No = 1+ 80) " 0 (T = N ' 1017 )10n |
—(Nnbo){(Ny — 1+ 60)(1 — )}~

= —N{(Np— 1461 - 60)} 1 = —(1—0p)7?, as n — 0.

The second-order derivative of £(8) is

92
a;ﬁf) = —(N2= Ny + No){(N = 14+ 6)(1 — )}2 + (Nn/2) {¥u B (@)von} >
OB, (0 i r 8B, (0
X {V(Jn—%uo”} Nf?/2 {‘UOH UU”} {V{JHT(;Q()VUH}

A = 121 B Af?’!- + IV, 1;92 i QAIU. Arn

T (Na—14+0)2(1-90)2 " (Np—1406)2 (N,—1+6)2

— —(1-8)"% asn — oo.
We have

g7 O TRy ! oe(60)
bu =0 =\ "5p a6

where 8, = af,, + (1 — a)fp for some a € (0,1). When O, ki 8o, b, L. fy. Thus

A

] -1
Bu 00— {(1=00)72} (1= 00)7" =200 — 1 # o,

provided that 6y # 1. That is, é.n is not a consistent estimator of f. (]
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Appendix D: Relation to a Conventional Asymptotic Framework.
The asymptotic framework we consider is unified covering all three types of
asymptotics. This is in sharp contrast to Mardia and Marshall (1984). Even
though it is often referenced as the theoretical backing of SAR model param-
eter estimation (see, e.g., Cressie (1993)), it is not clear exactly what asymptotic
scheme is assumed and how different schemes affect the rates of convergence in
Mardia and Marshall (1984). In particular, the rates of convergence are indis-
tinguishable between increasing domain and hybrid asymptotics from the results
of Mardia and Marshall (1984). The approach taken there also cannot deal with
infill asymptotics in a straightforward manner. Thus, we believe that our ap-
proach may be more adequate for studying the asymptotics of SAR models. We
clarify these issues here by taking apart the elements in the regularity conditions
of Mardia and Marshall (1984) and providing insight into the connections and
differences between the two approaches.

Recall the regularity conditions for the consistency and asymptotic normality
of the MLE of parameters in Mardia and Marshall (1984). Let V denote the
variance-covariance matrix of ¥,. Let Bg = [bg] = —E{8%(n)/0888'} and
B., = [b¥] = ~E {8%((n)/8v8~'}, where v = (0',02)". Let V; = 0V /oy, Vi =
V1 /8y;, Vi = 82V /8,8y, and V¥ = 82V L /90y, for i, =1,...,q+ 1.
To align with the notation in Mardia and Marshall (1984), we omit n in some of

the notation. Consider the following assumptions.

B0 e B = Dand im0 By =0,
(B.2) limpoo TIFL . EIbtr (VVHVYE) =0,
(B-3) limy oo SFEL; 58, WS (@} VFV Vimr) =0,
Mardia and Marshall (1984) established that under (B.1)—(B.3), the MLE of n is
consistent and asymptotically normal.

We now investigate the relation between our regularity conditions and those
in Mardia and Marshall (1984) under the SAR model. For ease of presentation,

we restrict our attention to a single order of neighbors ¢ = 1 and v = (61, 6%)".

Our results below show that, if the assumptions of our Theorem 1 or 2 hold, then
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the assumptions for Mardia and Marshall (1984)’s results are satisfied. However,
the asymptotic results in Mardia and Marshall (1984) do not distinguish the
rates of convergence as we do for increasing domain in Theorem 1 and hybrid
asymptotics in Theorem 2. Furthermore, under the assumptions of our Theorem 3,

the regularity conditions in Mardia and Marshall (1984) are not all satisfied.

Increasing Domain Asymptotics. Under the assumptions in Theorem 1, we
show that (B.1)-(B.3) hold. It is obvious that, by (A.5), lim, . 5’51 =0. It can

be shown that B! is equal to

4y—1 o Jg 5], "
{Na(20) (GG + @) — () MG} (N:)(Qi’t ){G bt ~({Gr)gt {zi
—(o%) TGy tr 1+ G

(6.5)

of which the determinant term scaled by N, 2 is bounded away from zero by
the positive definiteness assumption of Z;{}, where G; = W,,15;71(#). Also,
tr(Gh) = O(Np/my), tr(G'G1) = O(Nn/my), tr(G?) = O(N,/m,) under (A.1),
(A.2) and (A.4), and m, = O(1). It follows that b¥ = O(N;!) for i,j = 1,2 and
limy, o B,;l = 0. Thus, (B.1) holds.

For (B.2), the inverse of the variance-covariance matrix is
V= (0% (T - W) (T — 6 W),

where, for ease of notation, we again suppress n in V,, and W, 1. The first-order

derivatives are

ov-1 _

Vl = 861 = 7(0’2) 1 {W{(Iu = 61W1) + (I'n - HIW{)WI} )
ov 1 —9

V= — = (o) (I - OW)) (I — 6:W1).

The second-order derivatives are

Vi s i R
vl = W:Q(ﬁ) wiw,, V= TP = 2(c%)3(I,, — O.W))(I,, — W),
i
*v-1
V= P = (02) 2 {W{(I, — 6:W1) + (I, — 6 W)W }.

T 90,002
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Under (A.1)-(A.4), we have tr (VV‘JJVV”) = CNyu/my) for', 5.k 1 i=+,2;

Since b4 = O(N; ) for i,j = 1,2, we have

2 2
PR RS
ikl=1 ig k=1

|64 [pr (VVEVVE)| = o) = o(1).

Thus (B.2) holds.
For (B.3), we have

2 D 2
> Y (Vv Vi) = 3 ENe {(VXVIX) T (XViVYiX) )
ik=17,l=1 ]
2
=N o1
k=1

under (A.2) and (A.5). Since bi;‘ = Q(N; 1) for i,k = 1,2, we have

> B (el VEVVi) = OW;Y) = o(1).
i,k=1j,l=1

Thus (B.3) holds.

Hybrid Asymptotics. Under the assumptions in Theorem 2, we show that
(B.1)-(B.3) hold. With arguments similar to those for the increasing domain
asymptotics, we have lim, .. Bgl = 0. For B 1 the determinant term in
(6.5) multiplied by m,/N? is bounded away from 0 by the positive definite-
ness assumption of 2501. Algo; ti(Gh) = QLN fmp ), TG = OQ(Nyimy),
tr(G?) = O(N,/m,,) under (A.1), (A.2) and (A.4), m,, — oo, and m, N1 = o(1).
It follows that bl = O(m,/Ny), bi? = b2t = O(N;'), and b22 = O(N,;!). Thus
i B,;l =0 and (B.1) holds.

Using arguments similar to those for the increasing domain asymptotics, we
can show that (B.2) and (B.3) hold since bl = O(my/N,), b1 = b2 = O(N,; 1),
and b?f = O(N,;!). However, as mentioned above, Mardia and Marshall (1984)
do not distinguish the rates of convergence between increasing domain and hyhbrid

asymptotics, but we do in Theorems 1 and 2.

Infill Asymptotics. Under the infill asymptotics, we continue to use the ex-

ample in Appendix C to illustrate inconsistency of the MLE. In this example,
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Gi= (Np =146 {1 - 61) 11,1, - I.,} = GY. Since

lim N, (20%)~! [N o { G2 }—a—%lz{al}} =(1-61)%/2+#£0

n—oo
provided that 6, # 1, we attain lim,_.o B;l # 0, where B,;l is given by (6.5).

Thus (B.1) does not hold.

Appendix E: Preparation Lemmas. Let A, = [a.?nf]” +, and B, =

(7] Nu - denote N, x N, matrices. v, ~ N(0,c2I,).

=1
LEMMA 1. If A, and B, are uniformly bounded in both matriz norms ||| -|||1
and |||+ |||oc, then AnB, and B, A, are also uniformly bounded in both matriz
norms.

PROOF. Let Cp = [¢4/]M_; = ApB,. Then ©i cbd = &1 S5 alibhd =

AR
Z‘T\El ali ;-\z”l bhl < b, Z;\:“l at < aqb, < oo for some constants a,, b, > 0. O

=1 “n

LEMMA 2. Suppose that the elements ai? of Ay, are O(1/my,) uniformly over
i,7. If By, is uniformly bounded in matriz norm ||| - ||| (respectively, ||| - /1),
then the elements of A, B, (respectively, B, A,) are O(1/m,,) uniformly over
i,7, in which case tr(A,B,,) = tr(BrAy) = O(Nn/my).

PROOF. Let C, = [cif]Ve; = AnBy. Thencid = T ailbld = O(1/mn) Tl thi =

=1 Ay Oy

O(1/my). 0

LEMMA 3. Suppose that A, is uniformly bounded in £y, tr(A,) = O(1),
tr(A,AL) = O(1) and tr(A2) = O(1). Let {an} denote a sequence of constants

such that a, = o(1). Then we have a, v, Ayvy, = 0p(1).

PrOOF. We have E(v),A,vy) = o,(1) and Var(v),A,v,) = o0,(1). By the

Chebyshev’s inequality, a,v), A,vy, = anE(V), Anvy) + 0p(1) = op(1). |

LEMMA 4. Suppose that A, is uniformly bounded in matriz norm ||| ||| and
Z, is an N, x k matriz uniformly bounded in (. Then N,:UQZ;,‘A”U.“, =0u(1):
Further, of the limit of Z] A, A}, Zn /Ny, exists and is positive definite, then

N2z A v, B N(0,0? lim Z' A, A Z,/N,).
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A T
ProOF. Let uw = Z/ A, v, with u; = E?Jz”l(z\" z"’a )iy, ;. Then

=1"%n

PNy > C)
N 2

T j\fﬂ "\rﬂ
P —lfzz(zm )J o =P he Z(Zz” w)y,,J > o2
j=1

J=1

IA

Nn 7 Nn 2 N, N,
p({n- lz(zzw w) SR LSt
j=1
= P(Xn >C),

where x2 is a x? variable on N, degrees of freedom, z is the upper bound of the

elements of Z,, and a is the upper bound of matrix norm ||| - ||| of A,,. Thus

Ny 27! Anv, = Oy(1). Further, Ny /2w = Ny /22! Apvy, ~ N (0, N Lo?(2 AL AL Z,)).
It is obvious that if the limit of Z), A, Al Z, /N, exists and is positive definite,

then

N;Y2Z, Avn = N(0,0° lim Z}, Au AL Zo/Ny).

O

LEmMA 5. Suppose that A, is uniformly bounded either in matriz norm
Il llec or ||l - |l1 and the elements a%? are O(1/my,) uniformly over i,j. Then
B, Aptin) = O(Nyfm) and Var (v, Asvy,) = O(Ng /). If it os(n /Ny ) =
0, then

mnNy {V, Ay, — BV, Antn) ) = 0,(1).

PROOF. First, we note that E(v], A, v,) = o?tr(A,) = O(N,/my) and Var(v, A,v,) =
ot {tr(A,A}) + tr(A2)}. Since tr(A, AL) = tr(A2) = O(Ny/my), we have Var(v, A,u,) =

O(Nn/my). By the Chebyshev’s inequality, when lim,,_, o m,N;! = 0, we have
?T!“.[V L {V AﬁV’n s (V A Vn } = )(mn/f\rn) 2 o O;D(l)'
O

LEMMA 6. Suppose that the matriz A, is a non-negative N, x N, matriz
with elements atl = /ZJ_l vhd and vid > 0 for all i,j. If ZN“ vl for all

i,J are uniformly bounded away from zero at the order of m,, and Zl 2 vbd for
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all i,7 are O(my,), then A, is uniformly bounded in matriz norms ||| - ||| and
lIRIIFE

Nnp

Proor. Observe that |||A,|||~ = 1. Furthermore, el i > ¢ym, and

Ny Ny,

i
Yo v < camy, for some constants ci,cp > 0. Thus 3.7 ( vy /ZJ 1” )

S Nn vid f(eymy) < ea/c1, which implies that ||| Ay||; is uniformly bounded. O

LEMMA 7. Suppose that ||| ], axAnill| < ¢ uniformly for a constant 0 <
e <1, where Apg, k = 1,...,q9 are Ny x Ny matrices and ||| - ||| i e matriz

norm. Then |||S;7|| is uniformly bounded, where Sy, = I, — Yi_; axAnk.

PROOF. Let An = 320_; arAn /||| Zheq akAn il and Ay = ||| 7 axAnlll
Then [[IS; 1| € T2 Al = TN, = 1/(1 = A) < 1/(1 - ¢) < 0
(Corollary 5.6.16, Horn and Johnson (1985)). O
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TaBLE 1
Means and standard deviations (SD) in parentheses of mazimum likelihood estimates (MLE) of
the model parameters on a 4 x 4 lattice with varying sub-lattice sizes 1 x 1, 2 x 2, and 4 x 4
within each cell of the lattice, based on 100 simulated data.

Sub-lattice size
Parameter Truth MLE 11 2% 2 4 x4
Bo 2.0 Mean 1.9951 2.0030 1.9923
SD  (0.3156) (0.1568) (0.0755)
Jéz1 2.0 Mean 2.0025 2.0048 2.0026
SD (0.3766) (0.1729) (0.0781)
th 0.2 Mean 0.0691 0.0746 0.0705
SD (0.3002) (0.2717) (0.2701)
o? 1.0 Mean 0.7875 0.9442 0.9983
SD (0.3083) (0.1828) (0.0938)

TABLE 2
Means and standard deviations (SD) in parentheses of mazimum likelthood estimates (MLE) of
the model parameters on a 8 x 8 lattice with varying sub-lattice sizes 1 x 1, 2 x 2, and 4 x 4
within each cell of the lattice, based on 100 simulated data.

Sub-lattice size

Parameter Truth MLE 1x1 2x2 4 x4
o 2.0 Mean 1.9938 2.006 1.9902
SD  (0.1568) (0.0851) (0.0350)

it 2.0 Mean 1.9754 2.0053 1.9988
SD (0.1734)  (0.0923)  (0.0437)

(73 0.2 Mean  0.1426 0.1635 0.1318
SD (0.1462)  (0.1465) (0.1402)

o> 1.0 Mean 0.9331 0.9895 1.004
SD (0.1680)  (0.0851)  (0.0423)

Zuu, J., HuanGg, H.-C. and REYES, P. (2010). On selection of spatial linear maodels for lattice

data. Journal of the Royal Statistical Society Series B T2 389-402.
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TABLE 3
Means and standaerd deviations (SD) in parentheses of mazimum likelihood estimates (MLE) of
the model parameters on a 16 x 16 lattice with varying sub-lattice sizes 1 x 1, 2 x 2, and 4 x 4
within each cell of the lattice, based on 100 simulated data.

Sub-lattice size
Parameter Truth MLE 1.2zl 25692 4x4
Bo 2.0 Mean 2.0061 1.9968 2.0013
SD (0.0661) (0.0357) (0.0179)
O 2.0 Mean 2.0089 2.0055 1.9997
SD (0.0810) (0.0498) (0.0210)
(A 0.2 Mean 0.2092 0.1913 0.1880
SD (0.0749) (0.0721) (0.0732)
a? 1.0 Mean 0.9680 0.9992 1.0054
SD  (0.0955) (0.0431) (0.0211)




