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Abstract

Applicability of Pearson’s correlation as a measure of explained variance is by now well

understood. One of its limitations is that it does not account for asymmetry in explained variance.

Aiming to develop broad applicable correlation measures, we propose a pair of generalized

measures of correlation (GMC) which deal with asymmetries in explained variances, and linear

or nonlinear relations between random variables. We present examples under which the paired

measures are identical, and they become a symmetric correlation measure which is the same

as the squared Pearson’s correlation coefficient. As a result, Pearson’s correlation is a special

case of GMC. Theoretical properties of GMC show that GMC can be applicable in numerous

applications. In statistical inferences, the joint asymptotics of the kernel based estimators for

GMC are derived and are used to test whether or not two random variables are symmetric in

explaining variances. The testing results give important guidance in practical model selection

problems. The efficiency of the test statistics is illustrated in simulation examples. In real

data analysis, we present an important application of GMC in explained variances and market

movements among three important economic and financial monetary indicators.

Key words and phrases: Linear dependence, nonlinear dependence, asymmetric correlation, non-

parametric estimation, economic study.
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1 Introduction

In almost all statistical inference problems, dealing with how random variables depend on each other

plays a fundamental role in model selections. In the literature, since its introduction, Pearson’s cor-

relation coefficient has been the most dominant dependence measure used in numerous applications.

It mainly depicts a symmetric and linear relation between two variables. Its theoretical properties

have been thoroughly studied. Rodgers and Nicewander (1988) presented thirteen ways to look at

the correlation coefficients. For many applications, it leads to meaningful and interesting interpre-

tations of variables under study. However, it may also give misleading results in many applications.

This phenomenon has been witnessed in many published papers, for example, O’Grady (1982), Ozer

(1985), Drouet-Mari and Kotz (2001), and Zhang (2008), amongst many others. Recently, Zhang,

Qi, and Ma (2010) show that the sample based Pearson’s correlation coefficient is asymptotically

independent of the quotient correlation coefficient, which is a very important property as it shows

that these two correlation coefficients measure completely different dependencies between two ran-

dom variables. Certainly, Pearson’s correlation coefficient has its limitations in measuring variable

dependencies. To overcome its limitations, various dependence measures have been proposed in the

literature. We shall not detail them in the present work. We refer readers to Joe (1996) and Drouet-

Mari and Kotz (2001) which are excellent books summarizing various dependence measures.

For Pearson’s correlation coefficient, one of its limitations is that it does not account for asym-

metry in explained variances which are often innate among nonlinearly dependent random variables.

As a result, measures dealing with asymmetries are needed. In fact, studying the asymmetric de-

pendent characteristics of random variables has drawn more and more attentions, especially in the

studies of stock returns such as Hong, Tu and Zhou (2006), Zhang and Shinki (2006), and references

therein. However, theoretical foundations of asymmetry in explained variances do not exist and are

yet to be developed.

This paper is intended to introduce effective and broadly applicable statistical tools for dealing

with asymmetry and nonlinear correlations between random variables. For simplicity of illustration,

we regard ‘linear’ or ‘symmetric’ as a special case of ‘nonlinear’ or ‘asymmetric’. In the case of

‘linear and symmetric’, Pearson’s correlation coefficient is an extremely important and widely used

analytical tool in statistical data analysis. New dependence measures that comprise Pearson’s cor-
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relation coefficient as a special case should be of the greatest interest to practitioners. We aim to

develop such dependence measures. In Section 2.1, we use a well known variance decomposition

formula to introduce our proposed new measures of correlation: the generalized measures of corre-

lation (GMC). Theoretical properties of GMC are illustrated in Section 2.2. One can see that our

proposed GMC has various connections to Pearson’s correlation coefficient, and especially they are

identical to the squared Pearson’s correlation coefficient when two random variables are related in a

linear equation. A special case is that two random variables follow a bivariate normal distribution.

More importantly, GMCs are nonzero while Pearson’s correlation coefficient may have a zero value

when two random variables are nonlinearly dependent. In addition, GMCs also have monotonic

dependence properties in explained variances. One can also see that our proposed GMC may be

used as an alternative statistical tool in Granger causality inference. For this purpose, we intro-

duce two new measures: Auto generalized measures of correlation (AGMC) and Granger causality

generalized measures of correlation (GcGMC).

The rest of the paper is structured as follows. In Section 3, we present a nonparametric method

in computing our proposed GMC. The joint asymptotics of two GMC estimators are derived and

they are used to test whether two explained variances are identical or not. Starting from theoreti-

cal foundations, we will analyze examples covering a wide range of dependency between random

variables in Section 4. Particularly, we study three types of bivariate t random variables and derive

their corresponding GMCs. We also calculate GMCs for a three sectional extreme value copula

which shows an asymmetric dependence and extreme dependence between two underlying random

variables. Numerical illustrations of GMC are presented in Section 5. One can see that GMC can

be very useful dependence measures, especially when explained variance is concerned. In Section

6, we present real data analysis through three important economic variables: the exchange rate of

Japanese Yen against US dollar, US federal funds rate, and Japan deposit rate. They are indicators

of both countries’ economy status: for example whether they are healthy or not. People have hoped

that the comparisons may help reveal similarities and find answers (even solutions) to an economic

recovery from the current international financial crisis. From a market perspective, plotting these

variables shows no similarity, linear relationship, or co-monotone relationship. However, our pecu-

liar GMC shall display economic changes between these two countries. Section 7 discusses potential

extensions of the present paper and limitations of our proposed measures. Technical derivations are
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presented in Section 8.

2 Generalized measures of correlation: Definitions and

Properties

2.1 Generalized measures of correlation

In computing coefficient of determination in a linear regression model, the total variation in response

variable is partitioned into two component sums of squares, i.e. explained variation due to regression

and unexplained variation. Here, we shall introduce our generalized measures of correlation based

on a well known variance decomposition formula:

V ar(X) = V ar
(
E(X|Y )

)
+ E

(
V ar(X|Y )

)
(1)

whenever E(Y 2) < ∞ and E(X2) < ∞. Note that E
(
V ar(X|Y )

)
is the expected conditional vari-

ance of X given Y , and hence E
(
V ar(X|Y )

)
/V ar(X) can certainly be interpreted as the explained

variance of X by Y . We have

E
(
V ar(X|Y )

)

V ar(X)
= 1− V ar

(
E(X|Y )

)

V ar(X)
= 1− E[{X − E(X|Y )}2]

V ar(X)
.

Similarly we can define the explained variance of Y given X . Therefore, it is natural to introduce a

pair of generalized measures of correlation (GMC) as

{
GMC(Y |X), GMC(X|Y )

}
=

{
1− E[{Y − E(Y |X)}2]

V ar(Y )
, 1− E[{X − E(X|Y )}2]

V ar(X)

}
. (2)

This pair of GMC posseses many good properties which will be illustrated in detail in the following

section. One of them is that the two measures are identical when (X, Y ) is a bivariate normal random

vector. The GMC can depict the nonlinear or asymmetric relation between two variables. They are

true measures for explained variances.

2.2 Properties of generalized measures of correlation

We have the following proposition which shows that the GMC can measure the nonlinear and asym-

metric relation between two variables. Proofs of propositions are postponed to Appendix section.
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Proposition 2.1 Suppose both X and Y have finite second moments. Then

(i) GMC is an indicator lying between zero and one, that is,

0 ≤ GMC(Y |X), GMC(X|Y ) ≤ 1,

and if X and Y are independent, then GMC(Y |X) = 0, GMC(X|Y ) = 0.

(ii) The relation of GMC and Pearson’s correlation coefficient ρXY satisfies:

• If ρXY = ±1, then GMC(Y |X) = 1 and GMC(X|Y ) = 1.

• If ρXY 6= 0, then GMC(X|Y ) 6= 0 and GMC(Y |X) 6= 0.

• If GMC(Y |X) = 0 and/or GMC(X|Y ) = 0, then ρXY = 0.

(iii) Suppose Y = g(X) + ε, X and ε are independent, and both g(X) and ε have finite second

moments, where g(·) is a linear or nonlinear measurable function. Then

GMC(Y |X) =
V ar

(
g(X)

)

V ar
(
g(X)

)
+ V ar(ε)

.

Particularly, if g(x) = ax + b for a 6= 0 and b being constants, we have

GMC(Y |X) = ρ2
XY .

For the extreme values of GMC, we have

GMC(Y |X) = 1 ⇐⇒ Y = g(X) a.s.

Furthermore, If g is a one to one measurable function, then GMC(Y |X) = GMC(X|Y ) =

1; If g is not one to one, then GMC(Y |X) = 1 > GMC(X|Y ) ≥ 0.

(iv) Suppose Y1 = g1(X) + ε1 and Y2 = g2(X) + ε2, where ε1 and ε2 are independent of X ,

g1(·) and g2(·) are linear or nonlinear measurable functions. If either 1) V ar
(
g1(X)

)
=

V ar
(
g2(X)

)
, V ar(ε1) < V ar(ε2); or 2) V ar

(
g1(X)

)
> V ar

(
g2(X)

)
, V ar(ε1) = V ar(ε2),

we have

GMC(Y1|X) > GMC(Y2|X).
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(v) If V ar(Y1) = V ar(Y2) and inf
f

E[{Y1 − f(X)}2] = inf
g

E[{Y2 − g(X)}2], where f, g are mea-

surable functions, then

GMC(Y1|X) = GMC(Y2|X).

If V ar(Y1) = V ar(Y2) and inf
f

E[{Y1 − f(X)}2] < inf
g

E[{Y2 − g(X)}2], then we have

GMC(Y1|X) > GMC(Y2|X).

Example 2.1 Considering a special example Y = X2, X ∼ N(0, 1) where Y is a nonlinear mea-

surable function in Proposition 2.1 (iii), we have generalized correlation coefficients GMC(Y |X) =

1, GMC(X|Y ) = 0, GMC(Y |X) 6= GMC(X|Y ), but Pearson’s correlation coefficient ρXY = 0.

Remark 1 In Proposition 2.1, it is clear in (i), (ii) and (iii) that GMC characterizes nonlinear or

asymmetric relation between two variables, where ‘linear’ or ‘symmetric’ is considered as a special

case of ‘nonlinear’ or ‘asymmetric’ respectively. If Y is perfectly nonlinearly dependent on X ,

GMC(Y |X) is 1; and if X and Y are independent, the GMCs are 0. In (ii), when X and Y have

a nonzero Pearson’s linear correlation coefficient, the GMCs of X and Y are always greater than

zero, but not reversely as shown in Example 2.1. On the other hand, as long as one of GMCs is

zero, Pearson’s correlation must be zero. These properties show that GMC has more applicabilities

than Pearson’s correlation coefficient has. They are strong indications of the generality of GMC as

measure of dependence considering that Pearson’s correlation only measures linear and symmetric

relation. In (iv) if the linear or nonlinear relation of Y1 on X is stronger than that of Y2 on X , then

GMC(Y1|X) is larger than GMC(Y2|X). It shows monotonicity of GMC, which is an important

property in defining a correlation measure and in defining a prediction criterion for model/varaible

selections. In (v) if X has the stronger ability to predict Y1 than to predict Y2, then GMC correlation

Y1|X is larger than GMC correlation Y2|X , that is, GMC(Y1|X) > GMC(Y2|X).

The following proposition shows that the squared Pearson’s correlation coefficient is identical to

the GMC under the bivariate normal distribution.

Proposition 2.2 For the bivariate normal distribution, ρXY and
(
GMC(Y |X), GMC(X|Y )

)
are

equivalent in depicting the relation of X and Y , i.e., GMC(Y |X) = GMC(X|Y ) = ρ2
XY .
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The following proposition calculates GMCs when marginal distributions are uniform on [0,1].

The proof of the proposition is straightforward.

Proposition 2.3 Suppose that X and Y have continuous distribution functions FX(x) and FY (y)

respectively. Then

GMC
(
FY (Y )|X)

= 12E
({E(FY (Y )|X)}2

)−3, GMC
(
FX(X)|Y )

= 12E
({E(FX(X)|Y )}2

)−3.

(3)

Formulas in (3) can be compared with Spearman’s correlation

ρS(X,Y ) = corr
(
FX(X), YY (Y )

)
= 12E

(
FX(X)FY (Y )

)− 3,

which does not account for asymmetry in explained variances. Examples with uniform marginals

will be illustrated in Section 4.

We argue that the three propositions above clearly show that the GMC is a true measure for ex-

plained variances, and for linear or nonlinear relations between two random variables. We note that

the calculation of our proposed GMC involves computing the variance of conditional expectation

and the expectation of conditional variance, which may be a difficult task in deriving explicit GMC

formulas. In Section 4, we shall derive explicit forms of GMC in several joint distributional models.

2.3 Generalized measures of correlation in time series

In time series study, auto-correlation function is an important concept. Our GMC can naturally be

extended to time series models. Suppose that {Xt, Yt}, t > 0 is a bivariate time series. We define

auto generalized measures of correlation (AGMC) as:

AGMCk(Xt) = GMC(Xt|Xt−k), AGMCk(Yt|Xt) = GMC(Yt|Xt−k), k > 0. (4)

Granger causality (Granger 1969) has been widely used in economics since the 1960s. It is

a powerful statistical concept of causality that is based on prediction. It is normally tested in a

bivariate linear autoregressive model of two variables Xt and Yt. For simplicity, we assume an order

one bivariate linear autoregressive model. We say Yt Granger-causes Xt if

E[{Xt − E(Xt|Xt−1)}2] > E[{Xt − E(Xt|Xt−1, Yt−1)}2], (5)
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i.e Xt can be better predicted using the histories of both Xt and Yt than using the history of Xt alone.

Similarly we say Xt Granger-causes Yt if

E[{Yt − E(Yt|Yt−1)}2] > E[{Yt − E(Yt|Yt−1, Xt−1)}2]. (6)

Using the fact E
(
V ar(Xt|Xt−1)

)
= E[{Xt − E(Xt|Xt−1)}2] and

E[{E(Xt|Xt−1)−E(Xt|Xt−1, Yt−1)}2] = E[{Xt−E(Xt|Xt−1)}2]−E[{Xt−E(Xt|Xt−1, Yt−1)}2],

one can see that (5) is equivalent to

1− E[{Xt − E(Xt|Xt−1, Yt−1)}2]

E
(
V ar(Xt|Xt−1)

) > 0. (7)

Similarly, (6) is equivalent to

1− E[{Yt − E(Yt|Yt−1, Xt−1)}2]

E
(
V ar(Yt|Yt−1)

) > 0. (8)

When both (5) and (6) are true, we have a feedback system. (7) and (8) can be extended to a more

general form, and we introduce our Granger causality GMC as follows.

Definition 2.4 Suppose that {Xt, Yt}, t > 0 is a bivariate stationary time series. Define Granger

causality generalized measures of correlation (GcGMC) as:

GcGMC(Xt|Ft−1) = 1− E[{Xt − E(Xt|Xt−1, Xt−2, . . . , Yt−1, Yt−2, . . . )}2]

E
(
V ar(Xt|Xt−1, Xt−2, . . . )

) , (9)

GcGMC(Yt|Ft−1) = 1− E[{Yt − E(Yt|Yt−1, Yt−2, . . . , Xt−1, Xt−2, . . . )}2]

E
(
V ar(Yt|Yt−1, Yt−2, . . . )

) , (10)

where Ft−1 = σ(Xt−1, Xt−2, . . . , Yt−1, Yt−2, . . . ).

• If GcGMC(Xt|Ft−1) > 0, we say Y Granger causes X .

• If GcGMC(Yt|Ft−1) > 0, we say X Granger causes Y .

• If GcGMC(Xt|Ft−1) > 0 and GcGMC(Yt|Ft−1) > 0, we say that we have a feedback

system.

• If GcGMC(Xt|Ft−1) > GcGMC(Yt|Ft−1), we say that X is more influential than Y .

• IF GcGMC(Yt|Ft−1) > GcGMC(Xt|Ft−1), we say that Y is more influential than X .
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It is easy to show that 0 ≤ GcGMC(Xt|Ft−1) ≤ 1 and 0 ≤ GcGMC(Yt|Ft−1) ≤ 1. Other

theoretical properties of GcGMC can be derived along the line of GMC. This work will make a

single paper too overloaded, and we shall put the study of GcGMC in a separate project. We present

the following proposition which relates GcGMC to Grainger’s causality .

Proposition 2.5 If E
(
V ar(Xt|Xt−1)

)
= E

(
V ar(Yt|Yt−1)

)
and the strength of that Xt Granger

causes Yt is stronger than the strength of that Yt Granger causes Xt, i.e.

E[{E(Yt|Yt−1)− E(Yt|Yt−1, Xt−1)}2] > E[{E(Xt|Xt−1)− E(Xt|Xt−1, Yt−1)}2],

then
GcGMC(Yt|Yt−1, Xt−1) > GcGMC(Xt|Xt−1, Yt−1).

3 Nonparametric estimators of GMC

The GMC in (2) involves evaluations of conditional means and variances, which is not as easy

as computing Pearson’s correlation coefficient in practice. In the literature, there have been quite

a few developments in estimating conditional variances such as Fan and Yao (1998) and Hensen

(2009), amongst others. We propose to use nonparametric kernel based methods to estimate GMC.

The construction of our estimators for each conditional variance in GMC is similar to the existing

methods in the literature. The main task here is to establish the joint asymptotics of the estimators.

Throughout Section 3 and proofs of Lemma 3.1, Theorems 3.2 and 3.3, we denote fX(x) and

fY (y) as the density functions of X and Y respectively. {(Xi, Yi), i = 1, . . . , n} is a random sample

of (X, Y ). Denote R1 = (−∞, +∞), sx = inf{x : fX(x) > 0, x ∈ R1}, Sx = sup{x : fX(x) >

0, x ∈ R1}, sy = inf{y : fY (y) > 0, y ∈ R1}, Sy = sup{y : fY (y) > 0, y ∈ R1}. For

notational convenience, we drop the limits in all integrals. The lower and upper limits are sx and

Sx, respectively, in all integrals with respect to dx, and the lower and upper limits are sy and Sy,

respectively, in all integrals with respect to dy.

3.1 The estimators

First, GMC can be expressed as

9



GMC(Y |X) = 1− E[{Y − E(Y |X)}2]

V ar(Y )
=

∫ (φY |X(x))2

fX(x)
dx− µ2

Y

σ2
Y

and

GMC(X|Y ) =

∫ (φX|Y (y))2

fY (y)
dy − µ2

X

σ2
X

where µX = EX , µY = EY , σ2
X = V ar(X), σ2

Y = V ar(Y ), φY |X(x) =
∫

yf(x, y)dy, φX|Y (y) =
∫

xf(x, y)dx, f(x, y) is the joint density of X and Y . Let the kernel densities of (X, Y ) be

f̂(x, y) =
1

nh2

n∑
i=1

K

(
x−Xi

h

)
K

(
y − Yi

h

)
,

fX
n (x) =

1

nh

n∑
i=1

K

(
x−Xi

h

)
and fY

n (y) =
1

nh

n∑
i=1

K

(
y − Yi

h

)

where K(.) is a kernel function and h is the bandwidth. Then the Nadaraya-Watson estimator is

Ê(Y |X = x) =

1
nh

n∑
i=1

YiK ((x−Xi)/h)

1
nh

n∑
i=1

K ((x−Xi)/h)
=

φ
Y |X
n (x)

fX
n (x)

where φ
Y |X
n (x) = 1

nh

n∑
i=1

YiK
(

x−Xi

h

)
. Similarly, we obtain

ÊY =

∫
yfY

n (y)dy = Ȳ + h · E1
K ,

ÊY 2 =

∫
y2fY

n (y)dy =
1

n

n∑
i=1

Y 2
i + h2E2

K + 2hȲ E1
K , V̂ ar(Y ) = S2

Y + h2V arK

and

Ê[{Ê(Y |X)}2] =

∫
[Ê(Y |X = x)]2fX

n (x)dx =

∫
(φ

Y |X
n (x))2

fX
n (x)

dx

where Ei
K =

∫
ziK(z)dz, Ȳ and S2

Y are the sample mean and sample variance of Y1, · · · , Yn, and

V arK =
∫

z2K(z)dz − (
∫

zK(z)dz)2. Because Ê[{Y − Ê(Y |X)}2] = ÊY 2 − Ê[{Ê(Y |X)}2],

then we have

Ê[{Y − Ê(Y |X)}2]

V̂ ar(Y )
=

1
n

n∑
i=1

Y 2
i + h2 · E2

K + 2h · Ȳ · E1
K − Ê[{Ê(Y |X)}2]

S2
Y + h2 · V arK

= 1 +
Ȳ 2 − h2 · V arK + h2 · E2

K + 2h · Ȳ · E1
K − Ê[{Ê(Y |X)}2]

S2
Y + h2 · V arK
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= 1 +
Ȳ 2 + h2 · (E1

K)2 + 2h · Ȳ · E1
K − Ê[{Ê(Y |X)}2]

S2
Y + h2 · V arK

= 1 +
(Ȳ + h · E1

K)2 − Ê[{Ê(Y |X)}2]

S2
Y + h2 · V arK

= 1 +
(Ȳ + h · E1

K)2 − ∫ (φ
Y |X
n (x))2

fX
n (x)

dx

S2
Y + h2V arK

.

Then the kernel estimators of GMC are

G̃MC(Y |X) =

∫ (φ
Y |X
n (x))2

fX
n (x)

dx− (Ȳ + hE1
K)2

S2
Y + h2V arK

and

G̃MC(X|Y ) =

∫ (φ
X|Y
n (y))2

fY
n (y)

dy − (X̄ + hE1
K)2

S2
X + h2V arK

where φ
X|Y
n (y) is defined similarly to φ

Y |X
n (x).

3.1.1 Choice of bandwidth h

We shall use cross-validation method to choose h, which is a widely adopted procedure in the litera-

ture. Because E(Y |X) = min
l(X)

(Y − l(X))2 and E(X|Y ) = min
l(Y )

(X− l(Y ))2, we choose the optimal

h as

hoptimal = argminh>0

[
ω1

n

n∑

k=1

(Yk − Ê−k
h (Y |X = Xk))

2 +
ω2

n

n∑

k=1

(Xk − Ê−k
h (X|Y = Yk))

2

]

where ω1 and ω2 are weights, and (Ê−k
h (Y |X = x), Ê−k

h (X|Y = y)) are Nadaraya-Watson esti-

mators computed based on data (Xi, Yi), i = 1, · · · , k − 1, k + 1, · · · , n. Here ω1 and ω2 can be

chosen as the inverse of the square root of sample variances of Y1, · · · , Yn and X1, · · · , Xn, that is,

ω1 = 1/SY and ω2 = 1/SX .

3.2 Asymptotics of GMC estimators

Lemma 3.1 Under Assumptions (a)-(c) in Appendix, we have

∫
(φ

Y |X
n (x))2

fX
n (x)

dx−
∫

(φY |X(x))2

fX(x)
dx = T Y |X

n + op(1/
√

n) + Op(h
2) + Op(

1

nh
) (11)

and ∫
(φ

X|Y
n (y))2

fY
n (y)

dy −
∫

(φX|Y (y))2

fY (y)
dy = TX|Y

n + op(1/
√

n) + Op(h
2) + Op(

1

nh
) (12)
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where

T Y |X
n =

∫
2(φ

Y |X
n (x)− Eφ

Y |X
n (x))φY |X(x)

fX(x)
dx−

∫
(fX

n (x)− EfX
n (x)) · (φY |X(x))2

(fX(x))2
dx

and

TX|Y
n =

∫
2(φ

X|Y
n (y)− Eφ

X|Y
n (y))φX|Y (y)

fY (y)
dy −

∫
(fY

n (y)− EfY
n (y)) · (φX|Y (y))2

(fY (y))2
dy.

Theorem 3.2 Let Assumptions (a)-(c) in Appendix be fulfilled. If nh2 →∞ and nh4 → 0, then we

have

√
n


 G̃MC(Y |X)−GMC(Y |X)− (

∫ (φY |X(x))2

fX(x)
dx− µ2

Y )
(

1
σ2

Y +h2V arK
− 1

σ2
Y

)

G̃MC(X|Y )−GMC(X|Y )− (
∫ (φX|Y (y))2

fY (y)
dy − µ2

X)
(

1
σ2

X+h2V arK
− 1

σ2
X

)



=⇒ N(02×1, A
T ΣA)

where V arK =
∫

z2K(z)dz − (
∫

zK(z))2,

Σ = Cov

(∫ (
2Yi−φY |X (x)

fX (x)

)
φY |X (x)

fX (x)

1
h

K(x−Xi
h )dx

σ2
Y

, Yi

σY
, Y 2

i ,

∫ (
2Xi−φX|Y (y)

fY (y)

)
φX|Y (y)

fY (y)

1
h

K( y−Yi
h )dy

σ2
X

, Xi

σX
, X2

i

)

and

A =




1 0

−2µY

σY
+

2

(∫
(φY |X (x))2

fX (x)
dx−µ2

Y

)
σY µY

(σ2
Y +h2V arK)2

0

−
(∫

(φY |X (x))2

fX (x)
dx−µ2

Y

)

(σ2
Y +h2V arK)2

0

0 1

0 −2µX

σX
+

2

(∫
(φX|Y (y))2

fY (y)
dy−µ2

X

)
σXµX

(σ2
X+h2V arK)2

0 −
(∫

(φX|Y (y))2

fY (y)
dy−µ2

X

)

(σ2
X+h2V arK)2




.

With the established joint asymptotics, we can make large sample inferences on explained variances.

In the literature, Hotelling (1953) stated that the best present-day usage in dealing with correlation

coefficients is Fisher’s Z-transformation test of linear (in)dependence of two random variables. In

our context, we argue that testing the equality of the explained variances is fundamentally important

in model selection, model building and statistical inferences. We have the following testing problem:

H0 : GMC(Y |X) = GMC(X|Y ) v.s. H1 : GMC(Y |X) 6= GMC(X|Y ). (13)
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Theorem 3.3 Let Assumptions (a)-(c) in Appendix be fulfilled. If nh2 →∞ and nh4 → 0, then the

test statistic for the testing problem (13) has the following asymptotic distribution under H0

√
n(G̃MC(Y |X)− G̃MC(X|Y )− C0) → N(0, (1,−1)AT ΣA(1,−1)T )

where

C0 =

(∫
(φY |X(x))2

fX(x)
dx− µ2

Y

)(
1

σ2
Y + h2V arK

− 1

σ2
Y

)

−
(∫

(φX|Y (y))2

fY (y)
dy − µ2

X

)(
1

σ2
X + h2V arK

− 1

σ2
X

)

and the matrices A and Σ are the same as those in Theorem 3.2.

Proof of Theorem 3.3 is easily obtained by Theorem 3.2 and the delta method.

We note that when Theorems 3.2-3.3 are used to make statistical inference for GMC(X|Y ) and

GMC(Y |X), the unknown µX , µY , σX , σY , φX|Y , φX|Y , fX , fY and Σ can be replaced by their

consistent estimators. In Section 5, we use examples to demonstrate sample performances of the

established theoretical results.

4 Derivations of GMCs in several joint distributions

From the previous section, we see that the GMCs between two bivariate normal random variables are

identical. In the literature, there exist many parametric families of bivariate distribution functions.

Some of them posses the property of having identical GMCs, while some of them do not. It will

be very useful if we can present GMCs for each known family as GMCs are important population

characteristics. It may be too ambitious a task to include every bivariate distribution in a single paper.

We choose four families of bivariate distributions to illustrate the derivations of GMC. Two families

posses the property of having identical GMCs, while the other two families do not. The purpose of

our mathematical derivation of GMCs is to provide some guidance in application and to show what

we can get. One can see that for some families, we can get explicit formulas for GMCs, while for

other different families, we can not. Also the derivations for cases of non-identical GMCs are much

more complicated than the derivations for cases of identical GMCs in our chosen examples.
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Beyond bivariate normal distributions, the bivariate t distributions are also widely used in various

applications. In the following proposition, we illustrate three types of bivariate t distributions with

two having identical GMCs and one having different GMCs.

Proposition 4.1 Suppose that {(Xi, Yi), i = 1, . . . , m} is an independent sequence of bivariate

normal vectors. Define

X̄ =
1

m

m∑
i=1

Xi, Ȳ =
1

m

m∑
i=1

Yi, S2
1 =

1

m− 1

m∑
i=1

(xi − X̄)2, S2
2 =

1

m− 1

m∑
i=1

(Yi − Ȳ )2.

Case 1: Suppose V ar(X) = σ2
1 , V ar(Y ) = σ2

2 , Cov(X,Y ) = σ1σ2ρ with |ρ| < 1. Define

T1 =

√
m · X̄
S1

, T2 =

√
m · Ȳ
S2

.

Then (T1, T2) follows a bivariate t distribution with degrees of freedom df = m− 1 (Siddiqui

(1967)), and we have GMC(T1|T2) = GMC(T2|T1).

Case 2: Suppose σ1 = σ2. Define

T1 =

√
m · X̄
S

, T2 =

√
m · Ȳ
S

.

where S2 =
(m−1)(S2

1+S2
2)

2m−1
. Then (T1, T2) follows a bivariate t distribution with degrees of

freedom df = m− 1 (Patil and Liao (1970)), and we have GMC(T1|T2) = GMC(T2|T1).

Case 3: Let Xi, i = 1, · · · ,m1 + m2
i.i.d.∼ N(0, σ2). Let

X̄1 =
1

m1

m1∑
i=1

Xi, X̄∗ =
1

m2

m1+m2∑
i=m1+1

Xi

S2
1 =

1

m1 − 1

m1∑
i=1

(Xi − X̄1)
2, S2

∗ =
1

m2 − 1

m1+m2∑
i=m1+1

(Xi − X̄∗)2,

X̄2 =
1

m1 + m2

(m1X̄1 + m2X̄∗), S2
2 =

(m1 − 1)S2
1 + (m2 − 1)S2

∗
m1 + m2 − 2

,

and

T1 =

√
m1 · X̄1

S1

, T2 =

√
m1 + m2 · X̄2

S2

.

Then (T1, T2) follows a bivariate t distribution with degrees of freedom (df1 = m1−1, df2 =

m1 + m2 − 2), respectively (Bulgren et al. (1974)). When m1 > 2, m2 ≥ 2, (T1, T2) is a

bivariate t distributed random vector, and we have GMC(T1|T2) 6= GMC(T2|T1).
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Recently, the study of copula functions has been becoming a major phenomenon in constructing

joint distribution functions and modeling real data. In the literature, the bivariate Gumbel-Hougaard

copula is widely used in many applications, especially in finance and in insurance. It is easy to

show that the GMCs of a pair of random variables following a bivariate Gumbel-Hougaard copula

are identical. In an effort to model multivariate extremal dependence, Zhang (2009) introduced

a three sectional copula which partitions the probability space into three parts. We give a brief

summary of the three sectional copula here. Suppose that X and Y are two loss random variables.

Among the three parts, one part is related to computing the probability that the loss of Y is a times

smaller the loss of X , one part is related to computing the probability that the loss of Y is b times

larger than the loss of X , and the third part is related to computing the probability of the ratio of

the loss of Y and the loss of X is between a and b with a < b. Zhang (2009) demonstrated that

the three sectional copula performs as good as the Gumbel-Hougaard copula in modeling bivariate

extreme dependence. However, the three sectional copula is able to account for either symmetry

and asymmetry in explained variances by varying parameter values. In this paper, we further extend

the three sectional copula to a model which gives a larger difference between the two GMCs with a

price of adding a new parameter.

Suppose that U1 and U2 are independent uniform random variables on [0,1]. Define

ξ1 = (−1/ log(U1))
1/β; ξ2 = (−1/ log(U2))

1/β;

η1 = max((1− α1)ξ1, α1ξ2); η2 = max(α2ξ1, (1− α2)ξ2);

and

X = exp

(
−αβ

1 + (1− α1)
β

ηβ
1

)
; Y = exp

(
−αβ

2 + (1− α2)
β

ηβ
2

)
(14)

where β ≥ 1, 0 ≤ α1, α2 ≤ 1 and α1 + α2 < 1.

Let f1(x) = xβ

xβ+(1−x)β and f2(x) = (1−x)β

xβ+(1−x)β . Then f1(x) is monotonically increasing in [0,1]

and f2(x) is monotonically decreasing in [0,1]. We have the following proposition.

Proposition 4.2 Under model (14), we have

GMC(Y |X) = 12E
({E(Y |X)}2

)− 3, GMC(X|Y ) = 12E
({E(X|Y )}2

)− 3 (15)
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where

E
({E(Y |X)}2

)
=

(f2(a) + f2(b))
2

(f2(b) + 1)2

f2(b)

2f2(a) + f2(b)
+

f 2
1 (a)

(f2(b) + 1)2

f1(b)

4f1(a)− f1(b)

+
2(f2(a) + f2(b))f1(a)f1(b)f2(b)

(f2(b) + 1)2(2f1(a)f2(b) + f2(a)f1(b))

and

E
({E(X|Y )}2

)
=

(f1(b) + f1(a))2

(f1(a) + 1)2

f1(a)

2f1(b) + f1(a)
+

f 2
2 (b)

(f1(a) + 1)2

f2(a)

4f2(b)− f2(a)

+
2(f1(b) + f1(a))f2(b)f2(a)f1(a)

(f1(a) + 1)2(2f2(b)f1(a) + f1(b)f2(a))

with a = 1− α1 and b = α2.

It is easy to see that GMC(Y |X) and GMC(X|Y ) are functions of a, b, and β. They are not

identical. They are equal, or the difference is negligible, i.e., |GMC(Y |X)−GMC(X|Y )| < 10−10,

for some chosen values of α1, α2 and β, for example in the following choices, (α1, α2) = (0.1, 0.2)

and β ≥ 16.4021, (α1, α2) = (0.1, 0.1) and β ≥ 1. The following table is a numerical illustration

of choices of (α1, α2, β).

α1

β ≥ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1 16.4021 26.8361 56.0792 +∞ 27.0396 12.9395 7.9043 1

0.2 16.4021 1 26.8361 56.0792 +∞ 27.0396 12.9355 1

0.3 26.8361 26.8361 1 56.0792 +∞ 27.0395 1

0.4 56.0792 56.0792 56.0792 1 +∞ 1

α2 0.5 +∞ +∞ +∞ +∞ 1

0.6 27.0396 27.0396 27.0396 1

0.7 12.9355 12.9355 1

0.8 7.9043 1

0.9 1

5 Simulation examples

In this section, we use the following simulation procedure:
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(1) Simulate a bivariate random sample from a pre-specified joint distribution using software

package R v2.9.

(2) Empirical Type I errors and Empirical powers are calculated based on 1000 repeated samples.

Example 5.1 In this example, we simulate bivariate normal samples with variances σ2
1 = σ2

2 = 1.

Figure 1 displays Type I errors for the sample size n = 50 and correlation coefficient ρ ranging from

0 to 0.8 with sizes of test 10% and 5% in the left panel and in the right panel respectively. Figure 2 is

Type I errors for correlation coefficient ρ = 0.40 and changing sample sizes n = 30, 40, 50, 75, 150.
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Figure 1: The demonstration of sample performance of bivariate normal distribution with sample

size n = 50 and varying correlation coefficient values.

This example shows that for bivariate normal random variables, when the sample size is no less than

50, Type I error probabilities are well controlled within their nominal levels.

Example 5.2 In this example, we simulate bivariate t samples (Case 2) with degrees of freedom

df = 9. Figure 3 displays Type I errors for the sample size n = 50 and correlation coefficient

ρ ranging from 0 to 0.8 with sizes of test 10% and 5% in the left panel and in the right panel

respectively. Figure 4 is Type I errors for correlation coefficient ρ = 0.40 and changing sample

sizes n = 30, 35, 40, 50, 75, 150.

This example shows that for bivariate t random variables (Case 2), when the sample size is greater

than 50, Type I error probabilities are controlled within their nominal levels.
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Figure 2: The demonstration of sample performance of bivariate normal distribution with correlation

coefficient ρ = 0.40 and varying sample sizes.
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Figure 3: The demonstration of sample performance of bivariate t distribution (Case 2) with sample

size n = 50 and varying correlation coefficient values.
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Figure 4: The demonstration of sample performance of bivariate t distribution (Case 2) with corre-

lation coefficient ρ = 0.40 and varying sample sizes.

Example 5.3 In this example, we simulate bivariate t samples (Case 3) with the degrees of freedom

(df1 = 2, df2 = 21). Figure 5 reveals empirical powers for the sample sizes n = 50, 75, 150, 200,

250, 500, 750. The sizes of test are α = 0.10 and α = 0.05, respectively in the left panel and in the

right panel.

We can see that Example 5.3 clearly shows that with sufficiently large sample size, our proposed

estimators and test statistics are able to tell whether explained variances are identical or not.

Example 5.4 In this example, we simulate bivariate samples from Model (14). In Figure 6, we plot

empirical powers for (α1, α2) = (0.4, 0.1)) for the sample sizes n = 25, 50, 75, 150, 200, 250, 500,

and the sizes of test α = 0.10 and α = 0.05 respectively. In Figure 7, we plot powers for α2 = 0.1

and changing α1 values while the sample sizes are fixed at n = 100, 300.

Figure 6 demonstrates that when two GMCs are not identical, empirical powers are increasing

along with increasing sample sizes. Figure 7 displays that Model (14) is a flexible copula model for

a wide range of dependence and explained variances between random variables. In the figure, with

the sample size being fixed, empirical powers give indications of how close of two GMCs.

Example 5.5 In this example, we simulate bivariate sample from the following bivariate time series
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Figure 5: The demonstration of sample performance of bivariate t distribution (Case 3) with chang-

ing sample sizes.
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Figure 6: The demonstration of sample performance of Model (14) with changing sample sizes.
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Figure 7: The demonstration of sample performance of Model (14) with sample sizes n = 100, 300

and changing a1 values.

model:
Xi = 0.3Xi−1 + 0.2Xi−2 + εX

i

Yi = 0.5Yi−1 − 0.1Yi−2 + εY
i

where εX
i and εY

i follow a bivariate normal distribution with correlation coefficient ρ = 0.4. In

Figure 8, we plot Type I errors for the sample sizes n = 25, 50, 75, 150, 200, 250, 500, and the sizes

of test α = 0.10 and α = 0.05 respectively.

We can see that with sufficiently large sample sizes, Type I errors are controlled within their corre-

sponding nominal levels. This example suggests that GMCs are also suitable for time series data,

which is a very important property in practice. In Section 6, we will apply GMC to economic time

series data analysis.

One can see from these five examples that dealing with non-identical GMCs is a challenge task,

which was also witnessed in Section 4 where mathematical derivations of GMCs for several cases

of bivariate distributions were presented. Nevertheless, our simulation examples show that our pro-

posed nonparametric estimators for GMCs are still able to efficiently estimate the values of GMCs

and detect whether GMCs are identical or not with a sufficiently large sample size.
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Figure 8: The demonstration of sample performance of bivariate time series with bivariate normal

random errors (ρ = 0.4) and varying sample sizes.

6 Real data analysis

United States and Japan are two largest economies in the world. The relationship between these

two economic powers is very strong and mutually advantageous. These two countries both suffered

massive banking and financial crises as Japan started in 1989, which was followed by a long period of

slow growth and deflation, and US started in 2008, which will remain a depressed economic growth.

Comparing the US to Japan has drawn main attentions among politicians, economists, investors,

and researchers. Among many comparisons, researchers have focused on illustrating national GDP,

imports, exports, S&P500 index, Nikkei index, exchange rates, and other market variables. People

have hoped that the comparisons may help reveal similarities and find answers (even solutions) to

an economic recovery from the current international financial crisis.

This section aims to reveal an uncanny relationship via our proposed GMC using US and Japan

economic variables. Particularly, we consider monthly average exchange rates from the Japanese

Yen against the US dollar (JPY/USD), and monthly US federal funds rates, and monthly Japan

deposit rates respectively. They are very important economic indicators. Our data source is Inter-

national Monetary Fund (IMF), and the data is available at http://www.imf.org. The time range is

from January 1957 to April 2009. They are plotted in Figure 9. From a market perspective, plotting

these variables shows no similarity, linear relationship, or co-monotone relationship. However, our
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Figure 9: Plots of monthly average exchange rate of JPY/USD (left panel), monthly Japan deposit

rates (middle panel), and US federal funds rates (right panel)

peculiar GMC shall display economic changes between these two countries.

When computing GMC using Japan deposit rates, we use data from August 1967 to April 2009

because Japan deposit rate did not show any changes before August 1967. When computing GMC

using the exchange rates, we use data from July 1971 to April 2009 since the exchange rates before

July 1971 did not show any changes. Considering that the Bureau of Economic Analysis (BEA)

estimates of gross domestic product (GDP) are among the most widely scrutinized indicators of U.S.

economic activity, and BEA releases a comprehensive revision about every 5 years, we calculate

GMC using a five year window (60 months) and the following procedure:

• Suppose data are {(x1, y1), . . . , (xn, yn), (xn+1, yn+1), · · · , (xn+59, yn+59)}.

1) i = 1

2) Use {(xi, yi), (xi+1, yi+1), · · · , (xi+59, yi+59)} to compute GMC(Xi|Yi) and GMC(Yi|Xi)

3) i = i + 1 and repeat 2) until i = n.

One can see that this procedure will generate two dynamic GMC curves showing economic status

changes over time. For notational convenience, we shall use brief letters ‘E’ to stand for the ex-

change rates of Japanese Yen against US dollar, ‘J’ to mean Japan deposit rates, and ‘U’ to indicate

US federal funds rates. For example, GMC(E|U) stands for the proportion of variation of the ex-
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change rates explained by US federal funds rates. The interpretations of the rest of notations are

similar.

Figure 10 displays GMC(E|J), the absolute value of ordinary Pearson correlation |cor(E, J)|,
and GMC(J|E) from July 1971 to April 2004. One can immediately see that the overall trends

among the three curves are similar. The variations of |cor(E, J)| look larger than the variations

of GMC, which may indicate that the relationship between the two market variables is not linearly

dependent. The curves of GMC reflect the history of Japan economy. The first valley of GMC curves

occurred between 1972 and 1981. During this time period, the United States and Japan experienced

three major economic conflicts: the first one led to the U.S. import surcharge of August 1971; the

second one damaged Japanese confidence in its American connection and immediate impact on

the political career of the then Prime Minister, Takeo Fukuda due to major U.S. pressure on Japan

during 1977-78 to boost its domestic growth rate; the third one concerned the reemerging issue

of security relations between the two countries; see Bergsten (1982) for more details. Notice that

during this period, GMC(E|J) is larger than GMC(J |E), i.e. the strength of explained variance

in exchange rates by the deposit rate is stronger than the strength of explained variance in deposit

rates by the exchange rate. This phenomenon coincided with the damaged Japanese confidence in

its American connection. It also clearly suggests that GMC can provide more information than

Pearson’s correlation can provide. The second valley occurred between 1986 and 1990 in which

Japan experienced one of the great bubble economies in history. It began after the Japanese agreed,

in the so-called Plaza Accord with the United States in 1985, to increase substantially the value

of the Yen (which doubled by 1988), see Asher (1996) for more details. After the 1989 Japan

economic crisis, the dynamic variations in computed empirical GMC are smaller than those in the

proceeding time periods, which may indicate that other economic, social or political factors play a

role in the variations of these two economic variables. We note that in the plot there are time points

that GMC((E|J) and GMC(J|E) changed relative positions. These points tell that which economic

variable is more influential in explained variances during a particular time period, which may also

reflect the foreign relations between two countries. Based on the right panel of the figure, we can

see that the deposit rate has more impacts in Japan economy growth than the exchange rate has.

Figure 11 compares GMC(E|U), the absolute value of ordinary Pearson correlation |cor(E, U)|,
and GMC(U|E) from July 1971 to April 2004. The overall trends among the three curves are similar
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Figure 10: Plots of GMC and ordinary correlation coefficients between JPY/USD exchange rates and

Japan deposit rates over time. Time points that GMC((E|J) and GMC(J|E) change relative position

are t1 = 12/1972, t2 = 06/1979, t3 = 03/1980, t4 = 12/1980, t5 = 03/1983, t6 = 03/1985,

t7 = 09/1986, t8 = 03/1988, t9 = 03/1990, t10 = 01/1994, t11 = 07/1995, t12 = 10/1998,

t13 = 04/1999, t14 = 01/2000, t15 = 06/2000, t16 = 08/2001, t17 = 06/2002, t18 = 03/2003. The

right panel plots pairwise GMC with a straight line of 45 degrees.

to those in Figure 10. One can see that the influence of the federal funds rates on the exchange rates

is more significant than the Japan deposit rates on the exchange rates. There are less number of

points that GMC((E|U) and GMC(U|E) changed relative positions. We note that from October 1992

to August 1998, GMC(U |E) is larger than GMC(E|U), i.e. the strength of explained variance in

the federal funds rates by the exchange rates is much stronger than the strength of explained variance

in the exchange rates by the federal funds rates. This empirical finding is again coincided with the

economic status during that time period as Griswold (1998) stated “From 1992 and 1997, the U.S.

trade deficit almost tripled, while at the same time U.S. industrial production increased by 24 percent

and manufacturing output by 27 percent. Trade deficits do not cost jobs. In fact rising trade deficits

correlate with falling unemployment rates. Far from being a drag on economic growth, the U.S.

economy has actually grown faster in years in which the trade deficit has been rising than in years in

which the deficit has shrunk. Trade deficits may even be good news for the economy because they

signal global investor confidence in the United States and rising purchasing power among domestic

consumers.” This is another evidence that GMC is superior in explaining asymmetry of market
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Figure 11: Plots of GMC and ordinary correlation coefficients between JPY/USD exchange rates

and US federal funds rates over time. Time points that GMC((E|U) and GMC(U|E) change relative

position are t1 = 10/1983, t2 = 06/1984, t3 = 09/1985, t4 = 06/1986, t5 = 10/1989, t6 =

09/1991, t7 = 10/1992, t8 = 08/1998. The right panel plots pairwise GMC with a straight line of

45 degrees.

movements while the ordinary correlation certainly can not achieve this purpose.

Figure 12 shows GMC(J|U), the absolute value of ordinary Pearson correlation |cor(J, U)|, and

GMC(U|J) from July 1971 to April 2004. We see that the US federal funds rates and Japan de-

posit rates mutually influence each other. There are more number of points that GMC((J|U) and

GMC(U|J) changed relative position. We note that between 1977 and 1981, GMC(J |U) is much

larger than GMC(U |J), which tells that the US money regulation policy had a major impact in Japan

deposit rates. During that time period, US President Jimmy Carter tried to combat economic weak-

ness and unemployment by increasing government spending, and he established voluntary wage and

price guidelines to control inflation. But the most important element in the war against inflation was

the Federal Reserve Board, which clamped down hard on the money supply beginning in 1979. By

refusing to supply all the money an inflation-ravaged economy wanted, the Fed caused interest rates

to rise. As a result, consumer spending and business borrowing slowed abruptly. The economy soon

fell into a deep recession (Source: US Economy in 1970s from U.S. Department of State). Before

Japan 1989 economic crisis (time t11), GMC(J |U) is much smaller than GMC(U |J) (t10 to t11),

while after the economic crisis, GMC(J |U) is much larger than GMC(U |J) (t11 to t12), i.e. the
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Figure 12: Plots of GMC and ordinary correlation coefficients between US federal funds rates and

Japan deposit rates over time. Time points that GMC((J|U) and GMC(U|J) change relative position

are t1 = 02/1970, t2 = 07/1973, t3 = 11/1973, t4 = 11/1974, t5 = 11/1975, t6 = 01/1977,

t7 = 08/1981, t8 = 11/1983, t9 = 06/1984, t10 = 08/1987, t11 = 12/1989, t12 = 01/1992,

t13 = 08/1994, t14 = 12/1994, t15 = 08/1995, t16 = 08/1999, t17 = 10/2000, t18 = 04/2001,

t19 = 05/2001, t20 = 06/2002, t21 = 12/2003. The right panel plots pairwise GMC with a straight

line of 45 degrees.

explained variances in Japan economy had been delayed by the US economy. This is not surpris-

ing as at the beginning of an economic recession, the economy is weak, and it can hardly have an

immediate economic bounce and recovery, i.e. the influence from other economic variable is weak.

Figure 13 compares auto generalized measures of correlation, i.e. AGMC. From the left panel

and the middle panel, one can see that the lagged (one month) impact from the exchange rate on US

federal funds rate and Japan deposit rate is higher than either the lagged-1 impact on the exchange

rate from US federal funds rate or the lagged-1 impact from Japan deposit. This phenomenon may

suggest that the exchange rates can be used to help researcher to build more reliable prediction

models. The right panel in the figure shows that US economy is more influential than Japan.

This real data analysis clearly shows that our newly proposed GMC is more informative in

explaining variations and movements in economic and financial monetary indicators. Our empir-

ical findings show that there are some economic similarities between US and Japan, however the

economic development dynamics between these two economic powers are asymmetric, and the uni-
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Figure 13: Plots of AGMC. The left panel is AGMC between JPY/USD exchange rates and Japan

deposit rates over time. Time points that AGMC1((E|J) and AGMC1(J|E) change relative position

are t1 = 07/1973, t2 = 09/1974, t3 = 10/1982, t4 = 06/1985. The middle panel is AGMC between

JPY/USD exchange rates and US federal funds rates over time. Time points that AGMC1((E|U)

and AGMC1(U|E) change relative position are t1 = 08/1973, t2 = 12/1973, t3 = 01/1975, t4 =

08/1977, t5 = 08/1981, t6 = 07/1982, t7 = 04/1988, t8 = 02/1989, t9 = 04/1999, t10 = 10/1999.

The right panel is AGMC between US federal funds rates and Japan deposit rates over time. Time

points that AGMC1((J|U) and AGMC1(U|J)— change relative position are t1 = 06/1974, t2 =

01/1975, t3 = 07/1977, t4 = 12/1980, t5 = 08/1987, t6 = 05/1990, t7 = 01/1992, t8 = 09/1994,

t9 = 07/1995.
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versal truth is still that US has more impacts in the world economy. As a result, our findings may be

helpful in making monetary regulation policies.

7 Conclusions

We have demonstrated that our newly proposed GMC is superior in characterizing the asymmetry

of explained variances. GMC contains the ordinary correlation coefficient as a special case when

two random variables are related in a linear equation or they are bivariate normally distributed.

Theoretical foundations of GMC show that when two random variables are correlated through a

measurable function, at least one of GMC takes the extreme value one while the ordinary correlation

coefficient can still be zero. GMC also obeys monotone properties. These properties are strong

evidences that GMC is a true nonlinear dependence measure, especially in explained variances. It

may be safe to say that GMC can be applied to many research areas where Pearson’s correlation

coefficient is either applicable or not applicable.

Our definitions of GMC are mainly for bivariate random variables. It is possible to extend the

definitions to cases of multivariate random variables, i.e. we shall deal with the explained variance in

X1 by X2, X3, . . . , Xk. In an attempt to relate GMC to Granger causality between two time series,

we introduced Granger causality generalized measures of correlation (GcGMC). We shall conduct

a full study of properties of GcGMC in a separate project. GcGMC will be applied to bivariate

time series study. We expect to obtain more meaningful results and discover things previously not

revealed.

We note that the computation of Pearson’s correlation coefficient is easy, while GMC involves

conditional expectations, and hence it may be computationally challenge in practice. Based on our

simulation examples, we found as long as sample size is 60 or larger, our nonparametric estimators

give good approximated values of GMC. Our nonparametric estimators are kernel based estimators,

which is a standard procedure in nonparametric statistics, and therefore they can easily be imple-

mented in any existing software packages.

It is worth noting that Little and Rubin (1987) and Liu (1994) proposed a similar indicator

to illustrate the fraction of the missing information in the data augmentation. To the best of our

knowledge, the properties of their indicator as the correlation have not been discussed in detail.
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Analog to their indicator, our generalized measures of correlation can be thought as an idea of

increasing dimension to measure the asymmetry.

8 Appendix: Proofs of Properties

Proof of Proposition 2.1

(i). The proof is obvious.

(ii). If ρXY = ±1 or Y = a + bX where b 6= 0, we have GMC(Y |X) = 1 and GMC(X|Y ) = 1.

When GMC(Y |X) = 0, we have E(Y |X) = EY or EXY = EXEY , and then ρXY = 0.

When the asymmetric correlation measure is zero, that is, GMC(Y |X) = 0 or GMC(X|Y ) = 0,

Pearson’s correlation satisfies ρXY = 0. If ρXY 6= 0, we have EXY 6= EX · EY . Then we obtain

GMC(X|Y ) 6= 0 and GMC(Y |X) 6= 0.

(iii). The proof of the first part is straightforward. We prove the second part here. Because

GMC(Y |X) = 1 ⇐⇒ E[{Y − E(Y |X)}2] = 0 ⇐⇒ Y = E(Y |X) a.s.

⇐⇒ Y is a measurable function of X

and
GMC(Y |X) = 0 ⇐⇒ E[{Y − E(Y |X)}2] = V ar(Y )

⇐⇒ E(Y |X) = EY a.s.

then GMC(Y |X) = 1 ⇐⇒ Y is a measurable function of X . Moreover, if X and Y are indepen-

dent, then GMC(Y |X) = 0 and GMC(X|Y ) = 0 because of E(Y |X) = EY and E(X|Y ) = EX .

(iv). The proof is straightforward.

(v). Because E[{Y −f(X)}2] = E[{Y −E(Y |X)}2]+E[{E(Y |X)−f(X)}2], we have inf
f

E[{Y −
f(X)}2] = E[{Y −E(Y |X)}2]. Similarly, we have inf

g
E[{Z − g(X)}2] = E[{Z −E(Z|X)}2]. If

inf
f

E[{Y − f(X)}2] = inf
g

E[{Z − g(X)}2] and V ar(Y ) = V ar(Z), then we have GMC(Y |X) =

GMC(Z|X). If inf
f

E[{Y − f(X)}2] < inf
g

E[{Z− g(X)}2] and V ar(Y ) = V ar(Z), then we have

GMC(Y |X) > GMC(Z|X). 2

Proof of Proposition 2.2. Suppose (X, Y ) ∼ N(µ1, µ2, σ
2
1, σ

2
2, ρ). Then we have

E(Y |X) = µ2 +
ρσ1σ2

σ2
2

(X − µ1), E(X|Y ) = µ1 +
ρσ1σ2

σ2
1

(Y − µ2),
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V ar(X|Y ) = E[{X − E(X|Y )}2] = σ2
1 −

(ρσ1σ2)
2

σ2
2

,

and

V ar(Y |X) = E[{Y − E(Y |X)}2] = σ2
2 −

(ρσ1σ2)
2

σ2
2

.

So we obtain GMC(Y |X) = GMC(X|Y ) = ρ2. 2

Proof of Proposition 2.5. We have

E[{Yt − E(Yt|Yt−1, Xt−1)}2] = E[{Yt − E(Yt|Yt−1) + E(Yt|Yt−1)− E(Yt|Yt−1, Xt−1)}2]

= E[{Yt − E(Yt|Yt−1)}2]− E[{E(Yt|Yt−1)− E(Yt|Yt−1, Xt−1)}2]

and

E[{Xt − E(Xt|Xt−1, Yt−1)}2] = E[{Xt − E(Xt|Xt−1) + E(Xt|Xt−1)− E(Xt|Xt−1, Yt−1)}2]

= E[{Xt − E(Xt|Xt−1)}2]− E[{E(Xt|Xt−1)− E(Xt|Xt−1, Yt−1)}2].

Then

E[{E(Yt|Yt−1)− E(Yt|Yt−1, Xt−1)}2]

E(V ar(Yt|Yt−1))
= 1− E[{Yt − E(Yt|Yt−1, Xt−1)}2]

E(V ar(Yt|Yt−1))

and

E[{E(Xt|Xt−1)− E(Xt|Xt−1, Yt−1)}2]

E(V ar(Xt|Xt−1))
= 1− E[{Xt − E(Xt|Xt−1, Yt−1)}2]

E(V ar(Xt|Xt−1))
.

Thus

GcGMC(Yt|Xt−1, Yt−1) =
E[{E(Yt|Yt−1)− E(Yt|Yt−1, Xt−1)}2]

E(V ar(Yt|Yt−1))

and

GcGMC(Xt|Yt−1, Xt−1) =
E[{E(Xt|Xt−1)− E(Xt|Xt−1, Yt−1)}2]

E(V ar(Xt|Xt−1))
.

If E(V ar(Xt|Xt−1)) = E(V ar(Yt|Yt−1)) and the strength of that Xt Granger causes Yt is stronger

than the strength of that Yt Granger causes Xt, i.e.

E[{E(Yt|Yt−1)− E(Yt|Yt−1, Xt−1)}2] > E[{E(Xt|Xt−1)− E(Xt|Xt−1, Yt−1)}2],

we then have GcGMC(Yt|Xt−1, Yt−1) > GcGMC(Xt|Yt−1, Xt−1).
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The proof of Proposition 2.5 is completed. 2

The following assumptions are given for Lemma 3.1.

Assumption (a): K(x) is a symmetric kernel about x = 0 satisfying
∫

K(x) = 1 and x2K(x) ∈
L1(−∞,∞);

Assumption (b): The densities fX(x) and fY (y) are bounded on the whole axis, and Ix = {x :

fX(x) = 0, sx < x < Sx} and Iy = {y : fY (y) = 0, sy < y < Sy} both have Lebesgue measure 0.

Moreover,
∫ ( ∫ ∫

yf
′′
x (x+θ∗ht, y) ·t2K(t)dtdy

)2
dx and

∫ ( ∫ ∫
xf

′′
y (x, y+θ∗ht) ·t2K(t)dtdx

)2
dy

are bounded for 0 < θ∗ < 1.

Assumption (c): The fourth-order mixed moments of X and Y exist.

Proof of Lemma 3.1. We first establish the following equation.

∫
(φ

Y |X
n (x))2

fX(x)
dx−

∫
(φY |X(x))2

fX(x)
dx

=

∫
(φ

Y |X
n (x))2

fX(x)
dx−

∫
(Eφ

Y |X
n (x))2

fX(x)
dx +

∫
(Eφ

Y |X
n (x))2

fX(x)
dx−

∫
(φY |X(x))2

fX(x)
dx

=

∫
(φ

Y |X
n (x))2

fX(x)
dx−

∫
(Eφ

Y |X
n (x))2

fX(x)
dx

+

∫
((Eφ

Y |X
n (x))− φY |X(x))((Eφ

Y |X
n (x)) + φY |X(x))

fX(x)
dx

=

∫
(φ

Y |X
n (x))2

fX(x)
dx−

∫
(Eφ

Y |X
n (x))2

fX(x)
dx + O(h2)

=

∫
(φ

Y |X
n (x)− Eφ

Y |X
n (x))2

fX(x)
dx +

∫
2(φ

Y |X
n (x)− Eφ

Y |X
n (x))Eφ

Y |X
n (x)

fX(x)
dx + O(h2)

=

∫
(φ

Y |X
n (x)− Eφ

Y |X
n (x))2

fX(x)
dx +

∫
2(φ

Y |X
n (x)− Eφ

Y |X
n (x))φY |X(x)

fX(x)
dx + O(h2) (16)

where the third and last equality hold because under Assumption (a)-(c)

Eφ
Y |X
n (x)− φY |X(x)

=
∫

y
∫

K(t)

(
f(x− ht, y)− f(x, y)

)
dtdy

=
∫

y
∫

K(t)

(
− htf

′
x(x, y) + 0.5h2t2f

′′
x (x + θ∗ht, y)

)
dtdy

= 0.5h2
∫ ∫

yf
′′
x (x + θ∗ht, y) · t2K(t)dtdy = O(h2).

(17)

32



Similarly we have Eφ
X|Y
n (y)− φX|Y (y) = O(h2). We now express the left-hand of (11) in a sum of

five terms by
∫

(φ
Y |X
n (x))2

fX
n (x)

dx−
∫

(φ
Y |X
n (x))2

fX(x)
dx

= −
∫

(fX
n (x)− EfX

n (x))(φY |X(x))2

(fX(x))2
dx

+

∫
(fX(x)− EfX

n (x))(φY |X(x))2

(fX(x))2
dx +

∫
(fX(x)− fX

n (x))2(φY |X(x))2

(fX(x))2fX
n (x)

dx

+

∫
(fX(x)− fX

n (x))(φ
Y |X
n (x)− φY |X(x))2

fX(x)fX
n (x)

dx

+2

∫
(fX(x)− fX

n (x))(φ
Y |X
n (x)− φY |X(x))φY |X(x)

fX(x)fX
n (x)

dx.

Considering the second term in the sum above, we have
∫ |fX(x)− EfX

n (x)| · (φY |X(x))2

(fX(x))2
dx = O(h2)

because under Assumptions (a)-(c)

EfX
n (x)− fX(x) =

∫
K(t)

[
fX(x− ht)− fX(x)

]
dt

=
∫

K(t)
[−ht(fX(x))

′
+ 0.5h2t2(fX(x + θ∗ht))

′′]
dt

= 0.5h2
∫ (

fX(x + θ∗ht)
)′′ · t2K(t)dt = O(h2).

(18)

Similarly we have EfY
n (y)− fY (y) = O(h2). For the third term in the sum, we have

E

∫
(fX(x)− fX

n (x))2(φY |X(x))2

(fX(x))2fX
n (x)

dx

=

∫
E

(fX(x)− fX
n (x))2(φY |X(x))2

(fX(x))2fX
n (x)

dx

=

∫
E

(fX(x)− fX
n (x))3(φY |X(x))2

(fX(x))2fX(x)
dx +

∫
E

(fX(x)− fX
n (x))2(φY |X(x))2

(fX(x))3
dx.

Because
∫

E
(fX(x)− fX

n (x))2(φY |X(x))2

(fX(x))3
dx

=

∫
(fX(x)− EfX

n (x))2 · (φY |X(x))2

(fX(x))3
dx +

∫
E(fX

n (x)− EfX
n (x))2 · (φY |X(x))2

(fX(x))3
dx

+2

∫
(fX(x)− EfX

n (x))E(fX
n (x)− EfX

n (x)) · (φY |X(x))2

(fX(x))3
dx
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= O(h4) + O(
1

nh
) + O(h2) = O(

1

nh
) + O(h2)

by Assumptions (a)-(c) and (17)-(18), we have

E

∫
(fX(x)− fX

n (x))2(φY |X(x))2

(fX(x))2fX
n (x)

dx = O(
1

nh
) + O(h2).

For the fourth term in the sum, we have

E

∫ |fX(x)− fX
n (x)| · (φY |X

n (x)− φY |X(x))2

fX(x)fX
n (x)

dx

≤
∫

E
|fX(x)− fX

n (x)| · (φY |X
n (x)− φY |X(x))2

fX(x)fX
n (x)

dx

≤
∫

E
(fX(x) + fX

n (x)) · (φY |X
n (x)− φY |X(x))2

fX(x)fX
n (x)

dx

=

∫
E

(φ
Y |X
n (x)− φY |X(x))2

fX
n (x)

dx +

∫
E(φ

Y |X
n (x)− φY |X(x))2

fX(x)
dx

= O(
1

nh
) + O(h2)

because the proof of
∫

E
(φ

Y |X
n (x)− φY |X(x))2

fX
n (x)

dx = O(
1

nh
) + O(h2)

is similar to that of E
∫ (fX(x)−fX

n (x))2(φY |X(x))2

(fX(x))2fX
n (x)

dx and
∫ E(φ

Y |X
n (x)−φY |X(x))2

fX(x)
dx = O( 1

nh
) + O(h2)

which is obtained through (17) and V ar(φ
Y |X
n (x)) = O( 1

nh
)(Page 119 of Nadaraya (1989)).

Lastly for the fifth term in the sum, we have

2E

∫ |fX(x)− fX
n (x)| · |φY |X

n (x)− φY |X(x)| · |φY |X(x)|
fX(x)fX

n (x)
dx

≤ 2

∫ √
E

(fX(x)− fX
n (x))2

fX
n (x)

· E (φ
Y |X
n (x)− φY |X(x)|)2

fX
n (x)

· φY |X(x)

fX(x)
dx

≤ 2

√∫
E

(fX(x)− fX
n (x))2

fX
n (x)

· (φY |X(x))2

(fX(x))2
dx ·

∫
E

(φ
Y |X
n (x)− φY |X(x)|)2

fX
n (x)

dx

= O(
1

nh
) + O(h2).

Combining the above expressions, we get
∫

(φ
Y |X
n (x))2

fX
n (x)

dx−
∫

(φ
Y |X
n (x))2

fX(x)
dx = −

∫
(fX

n (x)− EfX
n (x))(φY |X(x))2

(fX(x))2
dx

+Op(
1

nh
) + Op(h

2). (19)
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Adding (16) and (19), we have
∫

(φ
Y |X
n (x))2

fX
n (x)

dx−
∫

(φY |X(x))2

fX(x)
dx

=

∫
(φ

Y |X
n (x))2

fX
n (x)

dx−
∫

(φ
Y |X
n (x))2

fX(x)
dx +

∫
(φ

Y |X
n (x))2

fX(x)
dx−

∫
(φY |X(x))2

fX(x)
dx

=

∫
(φ

Y |X
n (x)− Eφ

Y |X
n (x))2

fX(x)
dx +

∫
2(φ

Y |X
n (x)− Eφ

Y |X
n (x))φY |X(x)

fX(x)
dx

−
∫

(fX
n (x)− EfX

n (x)) · (φY |X(x))2

(fX(x))2
dx + Op(h

2) + Op(
1

nh
)

Similar to the proof of Theorem 4.1 of Nadaraya (1989), we have
(

nh

∫
(φ

Y |X
n (x)− Eφ

Y |X
n (x))2

fX(x)
dx− C1

)
= Op(

√
h)

where C1 is a constant depending on the kernel function K(·) and the joint density of (X, Y ) under

the conditions nh2 →∞ and nh4 → 0. Then we obtain
∫ (φ

Y |X
n (x)−Eφ

Y |X
n (x))2

fX(x)
dx = op

(
1√
n

)
. So we

have
∫

(φ
Y |X
n (x))2

fX
n (x)

dx−
∫

(φY |X(x))2

fX(x)
dx

=

∫
2(φ

Y |X
n (x)− Eφ

Y |X
n (x))φY |X(x)

fX(x)
dx−

∫
(fX

n (x)− EfX
n (x)) · (φY |X(x))2

(fX(x))2
dx

︸ ︷︷ ︸
T

Y |X
n

+op(1/
√

n) + Op(h
2) + Op(

1

nh
).

Similarly, we have
∫

(φ
X|Y
n (y))2

fY
n (y)

dy −
∫

(φX|Y (y))2

fY (y)
dy

=

∫
2(φ

X|Y
n (y)− Eφ

X|Y
n (y))φX|Y (y)

fY (y)
dy −

∫
(fY

n (y)− EfY
n (y)) · (φX|Y (y))2

(fY (y))2
dy

︸ ︷︷ ︸
T

X|Y
n

+op(1/
√

n) + Op(h
2) + Op(

1

nh
).

Proof of Theorem 3.2. By Lemma (3.1), we have
( ∫

(φ
Y |X
n (x))2

fX
n (x)

dx− Ȳ 2

)
−

(∫
(φY |X(x))2

fX(x)
dx− µ2

Y

)

= T Y |X
n − (Ȳ 2 − µ2

Y ) + op(1/
√

n) + Op(h
2) + Op(

1

nh
).

35



Then we obtain

G̃MC(Y |X)−GMC(Y |X) =

∫ (φ
Y |X
n (x))2

fX
n (x)

dx− Ȳ 2

S2
Y + h2V arK

−
∫ (φY |X(x))2

fX(x)
dx− µ2

Y

σ2
Y

=
(
∫ (φ

Y |X
n (x))2

fX
n (x)

dx− Ȳ 2)− (
∫ (φY |X(x))2

fX(x)
dx− µ2

Y )

S2
Y + h2V arK

+

∫ (φY |X(x))2

fX(x)
dx− µ2

Y

S2
Y + h2V arK

−
∫ (φY |X(x))2

fX(x)
dx− µ2

Y

σ2
Y + h2V arK

+

∫ (φY |X(x))2

fX(x)
dx− µ2

Y

σ2
Y + h2V arK

−
∫ (φY |X(x))2

fX(x)
dx− µ2

Y

σ2
Y

=
T

Y |X
n

σ2
Y

− Ȳ 2 − µ2
Y

σ2
Y

+

(∫
(φY |X(x))2

fX(x)
dx− µ2

Y

)(
1

σ2
Y + h2V arK

− 1

σ2
Y

)

+

(∫
(φY |X(x))2

fX(x)
dx− µ2

Y

)(
1

S2
Y + h2V arK

− 1

σ2
Y + h2V arK

)

+ op(1/
√

n) + Op(h
2) + Op(

1

nh
).

Therefore,

G̃MC(Y |X)−GMC(Y |X)−
(∫

(φY |X(x))2

fX(x)
dx− µ2

Y

)(
1

σ2
Y + h2V arK

− 1

σ2
Y

)

=
T

Y |X
n

σ2
Y

− Ȳ 2 − µ2
Y

σ2
Y

+

(∫
(φY |X(x))2

fX(x)
dx− µ2

Y

) (
1

S2
Y + h2V arK

− 1

σ2
Y + h2V arK

)

+op(1/
√

n) + Op(h
2) + Op(

1

nh
).

Similarly, we have

G̃MC(X|Y )−GMC(X|Y )−
(∫

(φX|Y (y))2

fY (y)
dy − µ2

X

)(
1

σ2
X + h2V arK

− 1

σ2
X

)

=
T

X|Y
n

σ2
X

− X̄2 − µ2
X

σ2
X

+

(∫
(φX|Y (y))2

fY (y)
dy − µ2

X

)(
1

S2
X + h2V arK

− 1

σ2
X + h2V arK

)

+op(1/
√

n) + Op(h
2) + Op(

1

nh
).

By the central limit theorem, we have

√
n

(
T

Y |X
n

σ2
Y

,
Ȳ − µY

σY

,
1

n

n∑
i=1

Y 2
i − EY 2,

T
X|Y
n

σ2
X

,
X̄ − µX

σX

,
1

n

n∑
i=1

X2
i − EX2

)T

→ N(06×1, Σ)

where

Σ = Cov

(∫ (
2Yi−φY |X (x)

fX (x)

)
φY |X (x)

fX (x)

1
h

K(x−Xi
h )dx

σ2
Y

, Yi

σY
, Y 2

i ,

∫ (
2Xi−φX|Y (y)

fY (y)

)
φX|Y (y)

fY (y)

1
h

K( y−Yi
h )dy

σ2
X

, Xi

σX
, X2

i

)
.
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By the multivariate delta method, we have

√
n




T
Y |X
n

σ2
Y
− Ȳ 2−µ2

Y

σ2
Y

+ (
∫

(φY |X(x))2

fX(x)
dx− µ2

Y )
(

1
S2

Y +h2V arK
− 1

σ2
Y +h2V arK

)

T
X|Y
n

σ2
X
− X̄2−µ2

X

σ2
X

+ (
∫

(φX|Y (y))2

fY (y)
dy − µ2

X)
(

1
S2

X+h2V arK
− 1

σ2
X+h2V arK

)



=⇒ N(02×1, A
T ΣA)

where

A =




1 0

−2µY

σY
+

2

(∫
(φY |X (x))2

fX (x)
dx−µ2

Y

)
σY µY

(σ2
Y +h2V arK)2

0

−
(∫

(φY |X (x))2

fX (x)
dx−µ2

Y

)

(σ2
Y +h2V arK)2

0

0 1

0 −2µX

σX
+

2

(∫
(φX|Y (y))2

fY (y)
dy−µ2

X

)
σXµX

(σ2
X+h2V arK)2

0 −
(∫

(φX|Y (y))2

fY (y)
dy−µ2

X

)

(σ2
X+h2V arK)2




.

Therefore,

√
n


 G̃MC(Y |X)−GMC(Y |X)− (

∫ (φY |X(x))2

fX(x)
dx− µ2

Y )
(

1
σ2

Y +h2V arK
− 1

σ2
Y

)

G̃MC(X|Y )−GMC(X|Y )− (
∫ (φX|Y (y))2

fY (y)
dy − µ2

X)
(

1
σ2

X+h2V arK
− 1

σ2
X

)



=⇒ N(02×1, A
T ΣA).

Proof of Proposition 4.1.

Case 1: The joint bivariate t density f(t1, t2) of (T1, T2) is (see Siddiqui (1967))

Γ(m1 + 2)(1− ρ2)
m1+1

2

(2π)3/2Γ(m1 + 3/2)

[(
1 +

t21
m1

)(
1 +

t22
m1

)]−m1+1
2

×
∫

(1− r2)
m1−3

2 (1− b− cr)−m1− 1
2 F

(
1

2
,
1

2
,m1 +

3

2
,
1 + b + cr

2

)
dr

where m1 = m− 1,

b =
ρt1t2
m1

[(
1 +

t21
m1

)(
1 +

t22
m1

)]− 1
2

, c = ρ

[(
1 +

t21
m1

) (
1 +

t22
m1

)]− 1
2

F (a, b; c; x) = 1 +
ab

c
· x

1!
+

a(a + 1)b(b + 1)

c(c + 1)
· x2

2!
+ · · ·+

k∏
i=1

[(a + i− 1)(b + i− 1)]

k∏
i=1

(c + i− 1)

· xk

k!
+ · · ·
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Because in the joint density of (T1, T2), t1 and t2 is symmetric, we obtain that the GMCs satisfy

GMC(X|Y ) = GMC(Y |X).

Case 2: The joint density of (T1, T2) for m odd and equal to 2k + 3 is

f(t1, t2) =
K1

2π(1− ρ2)0.5 · 4(k + 1)

k∑
i=0

Ci
k(−1)k−i

[
1− ρ2

ρ

]2k−i+1

Γ(2k − i + 1)

·
{

Γ(i + 2)

[
1

2(1 + ρ)
+

t21 − 2ρt1t2 + t22
8(k + 1)(1− ρ2)

]−(i+2)

−
2k−i∑
j=0

(
ρ

1− ρ2

)j
Γ(i + j + 2)

j!

[
1

2(1− ρ)
+

t21 − 2ρt1t2 + t22
8(k + 1)(1− ρ2)

]−(i+j+2)
}

and for m even is

f(t1, t2) =
+∞∑
i=0

(m + i− 1)(1− ρ2)−0.5qi

π2m+i+1(m− 1)(1 + ρ)m+i−1

[
1

2(1 + ρ)
+

t21 − 2ρt1t2 + t22
4(m− 1)(1− ρ2)

]−(m+i)

where K1 = 1

(Γ(k+1))2(4(1−ρ2))k+1 and qi = Ci
−0.5(m+1)

(
2ρ

1+ρ

)i (
1+ρ
1−ρ

)m−1
2

. Because in the joint den-

sity of (T1, T2), t1 and t2 is symmetric, we obtain that the generalized measures of correlation satisfy

GMC(X|Y ) = GMC(Y |X).

Case 3: The bivariate t density of T1 and T2 is

f(t1, t2) =

∫

0≤w1≤w2

f(t1, t2, w1, w2)dw2dw1

=

∫

0≤w1≤w2

A
√

w2 · exp

(
−w2

2
− m1 + m2

2m2

[
t21w1

m1 − 1
− 2Bt1t2

√
w1w2 +

t22w2

m1 + m2 − 2

])
dw2dw1

where A = K

2π
[

m2(m1−1)(m1+m2−2)
m1+m2

]1/2 , B = ρ
[(m1−1)(m1+m2−2)]1/2 and K = 1

Γ(m1−1
2 )Γ(m2−1

2 )2(m1+m2−2)/2

(see Bulgren et al. (1974)). Now, we compute

E(T1|T2 = t2)fm1+m2−2(t2) =

+∞∫

−∞

t1f(t1, t2)dt1 =

∫

0≤w1≤w2

+∞∫

−∞

t1f(t1, t2, w1, w2)dt1dw2dw1

where
+∞∫

0

t1f(t1, t2, w1, w2)dt1 =

+∞∫

0

t1A
√

w2exp

(
−w2

2
− m1 + m2

2m2

t22w2

m1 + m2 − 2

)

·exp

(
−(m1 + m2)w1

2m2(m1 − 1)

[
t21 − 2Bt1t2

√
w2(m1 − 1)√

w1

])
dt1
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= A
√

w2exp

(
−w2

2
− m1 + m2

2m2

t22w2

m1 + m2 − 2

)

·exp

(
(m1 + m2)B

2(m1 − 1)t22w2

2m2

)
· B(m1 − 1)

√
w2t2

√
2π√

w1

√
m2(m1 − 1)

(m1 + m2)w1

= exp

(
−w2

2
− m1 + m2

2m2

t22w2

m1 + m2 − 2
+

(m1 + m2)B
2(m1 − 1)t22w2

2m2

)

·AB(m1 − 1)
√

2π

√
m2(m1 − 1)

(m1 + m2)
t2

w2

w1

.

Let w2 = w2 and y = w1

w2
, we obtain that the Jacobian determinant is w2, and then we get

h(t2, y, w2) =

+∞∫

−∞

t1f(t1, t2)dt1

∣∣∣∣∣∣
y=

w1
w2

· w2

= exp

(
−w2

2
− m1 + m2

2m2

t22w2

m1 + m2 − 2
+

(m1 + m2)B
2(m1 − 1)t22w2

2m2

)

·AB(m1 − 1)
√

2π

√
m2(m1 − 1)

(m1 + m2)
t2y · w2

Let a = 1
2

+ m1+m2

2m2

t22
m1+m2−2

− (m1+m2)B2(m1−1)t22
2m2

, we obtain

h(t2, y, w2) = AB(m1 − 1)
√

2π

√
m2(m1 − 1)

(m1 + m2)
t2y · w2exp (−aw2) .

We have

E(T1|T2 = t2)fm1+m2−2(t2)

1∫

0

+∞∫

0

h(t2, y, w2)dw2dy

= AB(m1 − 1)
√

2π

√
m2(m1 − 1)

(m1 + m2)
t2 ·

1∫

0

ydy ·
+∞∫

0

w2exp (−aw2) dw2

= AB(m1 − 1)
√

2π

√
m2(m1 − 1)

(m1 + m2)
t2 · 1

2
· 1

a2

= AB(m1 − 1)

√
π√
2

√
m2(m1 − 1)

(m1 + m2)
· t2(

1
2

+ m1+m2

2m2

t22
m1+m2−2

− (m1+m2)B2(m1−1)t22
2m2

)2

where

fm1+m2−2 =
Γ

(
(m1+m2−2)+1

2

)
√

(m1 + m2 − 2)πΓ
(

m1+m2−2
2

)
(

1 +
t2

m1 + m2 − 2

)− (m1+m2−2)+1
2

;
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(E(T1|T2 = t2))
2fm1+m2−2(t2)

= A2B2(m1 − 1)2π

2

m2(m1 − 1)

(m1 + m2)
· t22(

1
2

+ m1+m2

2m2

t22
m1+m2−2

− (m1+m2)B2(m1−1)t22
2m2

)4

·
√

(m1 + m2 − 2)π · Γ (
m1+m2−2

2

)

Γ
(

(m1+m2−2)+1
2

)
(

1 +
t22

m1 + m2 − 2

) (m1+m2−2)+1
2

= A2B2(m1 − 1)2π

2

m2(m1 − 1)

(m1 + m2)

√
(m1 + m2 − 2)π · Γ (

m1+m2−2
2

)

Γ
(

(m1+m2−2)+1
2

)

·
t22

(
1 +

t22
m1+m2−2

)2

(
1
2

+ m1+m2

2m2

t22
m1+m2−2

− (m1+m2)B2(m1−1)t22
2m2

)4

= A2B2(m1 − 1)2π

2

m2(m1 − 1)

(m1 + m2)

√
(m1 + m2 − 2)π · Γ (

m1+m2−2
2

)

Γ
(

(m1+m2−2)+1
2

) a2
2

a4
1

·
t22

(
t22 + 1

a2

)2

(
t22 + 1

2a1

)4

= A2B2(m1−1)2π

2

m2(m1 − 1)

(m1 + m2)

√
(m1 + m2 − 2)π · Γ (

m1+m2−2
2

)

Γ
(

(m1+m2−2)+1
2

) a2
2

a4
1

·
t22

(
t2 + i√

a2

)2 (
t2 − i√

a2

)2

(
t2 + i√

2a1

)4 (
t2 − i√

2a1

)4

and

a1 =
m1 + m2

2m2

(
1

m1 + m2 − 2
−B2(m1 − 1)

)
=

(m1 + m2)(1− ρ)

2m2(m1 + m2 − 2)
, a2 =

1

m1 + m2 − 2
.

Thus

E[{E(T1|T2)}2] =

+∞∫

−∞

(E(T1|T2 = t2))
2fm1+m2−2(t2)dt2

= A2B2(m1 − 1)2π

2

m2(m1 − 1)

(m1 + m2)

√
(m1 + m2 − 2)π · Γ (

m1+m2−2
2

)

Γ
(

(m1+m2−2)+1
2

) a2
2

a4
1

·
+∞∫

−∞

t22

(
t2 + i√

a2

)2 (
t2 − i√

a2

)2

(
t2 + i√

2a1

)4 (
t2 − i√

2a1

)4 dt2.

Let f(z) = φ(z)(
z− i√

2a1

)4 where φ(z) =
z2

(
z+ i√

a2

)2(
z− i√

a2

)2

(
z+ i√

2a1

)4 , we have

+∞∫

−∞

t22

(
t2 + i√

a2

)2 (
t2 − i√

a2

)2

(
t2 + i√

2a1

)4 (
t2 − i√

2a1

)4 dt2 = 2πi ·Resf(
i√
2a1

) = 2πi ·
φ
′′′
( i√

2a1
)

3!
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where

φ
′′′
(z) =

2∑
i=0

min(2,3−i)∑
j1=0

min(2,3−i−j1)∑
j2=0

2!

(2− i)!

2!

(2− j1)!

2!

(2− j2)!

(4 + (3− i− j1 − j2)− 1)!

(−1)(3−i−j1−j2) · 3!

·
z2−i

(
z + i√

a2

)2−j1 (
z − i√

a2

)2−j2

(
z + i√

2a1

)4+(3−i−j1−j2)
.

+∞∫
−∞

t22

(
t2+ i√

a2

)2(
t2− i√

a2

)2

(
t2+ i√

2a1

)4(
t2− i√

2a1

)4 dt2 =
2∑

i=0

min(2,3−i)∑
j1=0

min(2,3−i−j1)∑
j2=0

2π
3!

2!
(2−i)!

2!
(2−j1)!

2!
(2−j2)!

· (4+(3−i−j1−j2)−1)!

(−1)(3−i−j1−j2)·3!
·

(
1√
2a1

)2−i(
1√
2a1

+ 1√
a2

)2−j1
(

1√
2a1

− 1√
a2

)2−j2

( √
2√

a1

)4+(3−i−j1−j2) .

Then

E[{E(T1|T2)}2] = A2B2(m1 − 1)2 π
2

m2(m1−1)
(m1+m2)

√
(m1+m2−2)π·Γ(m1+m2−2

2 )
Γ
(

(m1+m2−2)+1
2

) a2
2

a4
1

·
[

2∑
i=0

min(2,3−i)∑
j1=0

min(2,3−i−j1)∑
j2=0

2π
3!

2!
(2−i)!

2!
(2−j1)!

2!
(2−j2)!

· (4+(3−i−j1−j2)−1)!

(−1)(3−i−j1−j2)·3!
·

(
1√
2a1

)2−i(
1√
2a1

+ 1√
a2

)2−j1
(

1√
2a1

− 1√
a2

)2−j2

( √
2√

a1

)4+(3−i−j1−j2)

]
.

Similarly, we have

E[{E(T2|T1)}2] = A2B2(m1 + m2 − 2)2 π
2

m2(m1+m2−2)
(m1+m2)

√
(m1−1)π·Γ(m1−1

2 )
Γ
(

(m1−1)+1
2

) (a∗2)2

(a∗1)4

·
[

2∑
i=0

min(2,3−i)∑
j1=0

min(2,3−i−j1)∑
j2=0

2π
3!

2!
(2−i)!

2!
(2−j1)!

2!
(2−j2)!

· (4+(3−i−j1−j2)−1)!

(−1)(3−i−j1−j2)·3!
·

(
1√
2a∗1

)2−i(
1√
2a∗1

+ 1√
a∗2

)2−j1
(

1√
2a∗1

− 1√
a∗2

)2−j2

(
√

2√
a∗1

)4+(3−i−j1−j2)

]

where a∗1 = (m1 + m2)(1− ρ)/2m2(m1 − 1), a∗2 = 1/(m1 − 1).

Finally, we obtain

GMC(T2|T1) = 1− E[{T2 − E(T2|T1)}2]

V ar(T2)
=

E[{E(T2|T1)}2]

V ar(T2)

GMC(T1|T2) = 1− E[{T1 − E(T1|T2)}2]

V ar(T1)
=

E[{E(T1|T2)}2]

V ar(T1)
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where V ar(T1) = 2(m1 − 1), V ar(T2) = 2(m1 + m2 − 2). Dividing the left-hands of the two

equations above, we get
GMC(T1|T2)

GMC(T2|T1)
=

Γ(m1+m2−2
2

) · Γ(m1

2
)

Γ(m1+m2−1
2

) · Γ(m1−1
2

)

which shows that GMC(T1|T2) 6= GMC(T2|T1) when m1 > 2,m2 ≥ 2.

Proof of Proposition 4.2. Let a = 1− α1 and b = α2. Then for 0 < x < 1, 0 < y < 1, we have

X ≤ x, Y ≤ y ⇐⇒

U1 ≤ min

{
exp

(
log x

1 +
(

1−a
a

)β

)
, exp

(
log y

1 +
(

1−b
b

)β

)}

U2 ≤ min

{
exp

(
log x

1 +
(

a
1−a

)β

)
, exp

(
log y

1 +
(

b
1−b

)β

)}
.

which gives

P (X ≤ x, Y ≤ y) = min

{
exp

(
log x

1 +
(

1−a
a

)β

)
, exp

(
log y

1 +
(

1−b
b

)β

)}

·min

{
exp

(
log x

1 +
(

a
1−a

)β

)
, exp

(
log y

1 +
(

b
1−b

)β

)}

where 0 ≤ x, y ≤ 1. Let f1(x) = xβ

xβ+(1−x)β monotonically increasing and f2(x) = (1−x)β

xβ+(1−x)β

monotonically decreasing. Because α1 + α2 < 1, we have a > b, and xf1(a)/f1(b) < xf2(a)/f2(b). The

joint distribution of (X, Y ) is given by

P (X ≤ x, Y ≤ y) =





xf1(a)yf2(b), xf1(a)/f1(b) < y < xf2(a)/f2(b)

y, y ≤ xf1(a)/f1(b)

x, y ≥ xf2(a)/f2(b)

The conditional density f)Y |X(y|x) has three cases.

Case 1: When xf1(a)/f1(b) < y < xf2(a)/f2(b), we have

fY |X(y|x) = fX|Y (x|y) = f1(a)f2(b)x
f1(a)−1yf2(b)−1

Case 2: When y ≤ xf1(a)/f1(b), we have

P (Y ≤ xf1(a)/f1(b)|x−∆ ≤ X ≤ x) =
xf1(a)f2(b)/f1(b)[xf1(a)−(x−∆)f1(a)]

∆
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That is, P (Y ≤ xf1(a)/f1(b)|X = x) = f1(a)x
f1(a)
f1(b)

−1
. When y < xf1(a)/f1(b), we have P (Y ≤

y|x−∆ ≤ X ≤ x) = 0, and P (Y ≤ y|X = x) = 0. Then,

P (Y = xf1(a)/f1(b)|X = x) = f1(a)x
f1(a)
f1(b)

−1
.

Similarly, P (X = yf2(b)/f2(a)|Y = y) = f2(b)y
f2(b)
f2(a)

−1
.

Case 3. When y ≥ xf2(a)/f2(b), we have

P (Y ≤ y|x ≤ X ≤ x + ∆) = 1 → P (Y ≤ y|X = x) = 1,

P (Y ≤ xf2(a)/f2(b)|x < X ≤ x + ∆) =
xf2(a)(x + ∆)f1(a) − x

∆
,

P (Y ≤ xf2(a)/f2(b)|X = x) = f1(a).

Then P (Y = xf2(a)/f2(b)|X = x) = 1 − f1(a) = f2(a), P (X = yf1(b)/f1(a)|Y = y) = f1(b). Now

we compute

E(Y |X = x) =

xf2(a)/f2(b)∫

xf1(a)/f1(b)

yf1(a)f2(b)x
f1(a)−1yf2(b)−1dy + f1(a)x2f1(a)/f1(b)−1 + f2(a)xf2(a)/f2(b)

= f1(a)f2(b)
f2(b)+1

xf1(a)−1+f2(a)(f2(b)+1)/f2(b) − f1(a)f2(b)
f2(b)+1

xf1(a)−1+f1(a)(f2(b)+1)/f1(b)

+f1(a)x2f1(a)/f1(b)−1 + f2(a)xf2(a)/f2(b)

= f1(a)f2(b)
f2(b)+1

x
f2(a)
f2(b) − f1(a)f2(b)

f2(b)+1
x

2f1(a)
f1(b)

−1
+ f1(a)x

2f1(a)
f1(b)

−1
+ f2(a)x

f2(a)
f2(b)

= f2(a)+f2(b)
f2(b)+1

x
f2(a)+f2(b)

f2(b)
−1

+ f1(a)
f2(b)+1

x
2f1(a)
f1(b)

−1

= (f2(a)+f2(b))
f2(b)+1

x
2f2(a)+f2(b)

2f2(b)
−0.5

+ f1(a)
f2(b)+1

x
4f1(a)−f1(b)

2f1(b)
−0.5

.

and

E[{E(Y |X)}2] =
(f2(a) + f2(b))

2

(f2(b) + 1)2

f2(b)

2f2(a) + f2(b)
+

f 2
1 (a)

(f2(b) + 1)2

f1(b)

4f1(a)− f1(b)

+
2(f2(a) + f2(b))f1(a)

(f2(b) + 1)2

1
2f2(a)+f2(b)

2f2(b)
+ 4f1(a)−f1(b)

2f1(b)

=
(f2(a) + f2(b))

2

(f2(b) + 1)2

f2(b)

2f2(a) + f2(b)
+

f 2
1 (a)

(f2(b) + 1)2

f1(b)

4f1(a)− f1(b)

+
2(f2(a) + f2(b))f1(a)f1(b)f2(b)

(f2(b) + 1)2(2f1(a)f2(b) + f2(a)f1(b))
.

From (3), we get GMC(Y |X) = 12 · E[{E(Y |X)}2] − 3. Similarly we have GMC(X|Y ) =

12 · E[{E(X|Y )}2]− 3 where

E[{E(X|Y )}2] =
(f1(b) + f1(a))2

(f1(a) + 1)2

f1(a)

2f1(b) + f1(a)
+

f 2
2 (b)

(f1(a) + 1)2

f2(a)

4f2(b)− f2(a)
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+
2(f1(b) + f1(a))f2(b)f2(a)f1(a)

(f1(a) + 1)2(2f2(b)f1(a) + f1(b)f2(a))
.
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