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Abstract

Regularization methods consist of a category of commonly used techniques to
obtain robust solutions to ill-posed problems such as nonparametric regression
and classification. In recent years, methods of regularization have also been
successfully introduced to address some other classical problems in statistics,
e.g. model/variable selection and dimension reduction. This thesis is composed
of two major parts, both of which are within the framework of regularization
methods.

In the first part of this thesis, we are interested in the physics problem of
detecting high energy signal neutrino events. We propose a modification to the
traditional nonparametric penalized likelihood approach, to take into account
the usage of importance sampling techniques in the generation of the train-
ing data from computer experiments. We try to estimate the multivariate logit
function of the signal neutrino events in order to find the most powerful decision
boundary at a certain significance level to optimally separate signal from back-
ground ncutrinos. For simulated normal data, we compare this approach with
a non-standard support vector machine (SVM) approach. The results suggest
that in the case of weighted binary data, logistic regression is more appropriate
than SVM in terms of finding individual level curves of the logit function. We

also propose a diagnostic plot to check the goodness of fit of the result when
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the truth is unknown.

In the second part of this thesis, we are interested in problems involving
dissimilarity data. It is often possible to use expert knowledge or other sources
of information to obtain dissimilarity measures for pairs of objects, which serve
as pseudo-distances between the objects. When dissimilarity information is
available, there are two different types of problems of interest. The first is
to estimate the full position configuration for all objects in a low dimensional
space while respecting the data. This is usually for the purposes of visualiz-
ing the data and/or conducting further statistical analysis, such as clustering
or classification. Multidimensional scaling (MDS), which is still an active re-
search area, has been traditionally used to tackle this problem. In the second
type of problems, the high dimensional data points are assumed to lie on a
low dimensional manifold and the goal is to unfold the manifold in order to
recover the underlying intrinsic low dimensional structure. We develop a novel,
unified framework called Kernel Regularization which can be utilized to solve
either problem. Mathematical programming techniques are used to obtain the
solutions accurately and efficiently. The proposed method can naturally accom-
modate real-world situations, where for example, the dissimilarity information
is crude, noisy, incomplete (some dissimilarity measurements are missing), in-
consistent or associated with weights representing different level of confidence in
cach measurement. For the regularized kernel estimation (RKE) formulations

proposed, dimension reduction is naturally promoted for the estimated kernel,
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which is not only noise-robust but also advantageous for further data processing
like clustering and classification. The method is applied to proteins sequences

data with some interesting findings.
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Chapter 1

General Overview

1.1 Overview

In this thesis, we will derive new regularization methods for different types of
data.

For weighted two-class labeled data, we propose a modified version of the
traditional nonparametric penalized likelihood method to accommodate the new
feature — WGightS in the logistic regression problem. The proposed data driven
method consists of tuning, training and testing procedures. We will study the
performance of the procedure using both simulated normal data and neutrino
computer experiment data.

For noisy dissimilarity data, we derive a new regularization framework to
learn the information in the form of a kernel. We propose different loss functions
and kernel regularization functions for different kernel learning tasks to accom-
modate different purposes or data assumptions. Two types of kernel learning
problems involving dissimilarity data — multidimensional scaling type of prob-
lem and manifold unfolding problem are studied in this thesis. In both types

of problems, our proposed kernel regularization functions promote dimensional



reduction.

1.2 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 concerns the neutrino
signal detection problem. We first briefly introduce the statistical version of the
problem without too much physics background. Then we derive our modified
penalized (log)likelihood approach to solve the problem. After that we illus-
trate the computation procedures to fit our model. Next, we show simulation
results on multivariate normal data, where we also compare our method with a
non-standard support vector machine approach. Finally, we show results from
applying our method on data generated by computer experiment of neutrino
events. We also propose a way to check goodness of fit of our method when the
truth is unknown.

In Chapter 3, we study the problem of kernel lcarﬁing with dissimilarity in-
formation. After a brief literature review, we lay out our framework of Regular-
ized Kernel Estimation (RKE) before introducing the numeric technique called
convex conic programming, which is necessary for solving our optimization prob-
lems formulated in later sections and in Chapter 4. We then propose our RKE
formulation for multidimensional scaling type of problem and we show how to
convert it to a convex conic programming problem. Before we discuss more
technical details of implementing our RKE method, we define and solve newbie

(out-of-sample extension) problem for augmenting estimated kernels with new



data coming. Finally, we show RKE results on a simulated example and real
protein dissimilarity data.

In Chapter 4, we study the manifold unfolding problem adopting the kernel
approach. After a brief literature review of this recent research topic, we derive
our specific manifold-unfolding RKE formulation with a different loss function
and a different kernel regularization function compared to what we have in
Chapter 3. With material in Chapter 3 discussed, it is straightforward to show
how to convert our RKE formulation for manifold unfolding to also a convex
conic problem for global solution. We demonstrate the good propertics of our
method via several simulation studies.

The thesis will be concluded with some remarks in Chapter 5.



Chapter 2

Signal Probability Estimation
with Penalized Likelihood

Method on Weighted Data

2.1 Summary

In this chapter we consider the problem faced by astrophysicists where high en-
ergy signal neutrinos must be separated from overwhelming background events.
We propose a modification to the usual penalized likelihood approach, to take
account of the usage of importance sampling techniques in the generation of the
simulated training data. Each simulated multivariate data point has two asso-
ciated weights, which define its contribution to the signal or background count.
We wish to find the most powerful decision boundary at a certain significance
level to optimally separate signal from background neutrinos. In this modified

penalized likelihood method, the estimation of the logit function involves two



major optimization steps and the use of KL (Kullback-Leibler) distance crite-
rion for model tuning. We compare this approach with a non-standard SVM
(support vector machine) approach. Results on simulated multivariate normal
data and simulated neutrino data are presented. For the neutrino data, since
the truth is unknown, we show a way to check whether the proposed method is

working properly.

2.2 Introduction

A neutrino is a particle that has no charge and almost no mass. Neutrinos may
be produced in the center of active galaxies or from highly energetic objects
like y-ray bursts or black holes. Physicists are trying to use the giant device
called AMANDA (Antarctic Muon and Neutrino Detector Array) buried deep
in the Antarctic ice cap to detect certain neutrino signals within comparatively
overwhelming background noise (Andrés & other 119 coauthors 2001, Ahrens
& other 112 coauthors AMANDA collaboration). In computer experiments
simulating neutrinos passing through AMANDA, distributions of signal and
background are generated by an importance sampling procedure which generates
events described by multiple feature variables. Each simulated neutrino can
represent both signal and background by assignment of an importance sampling
weight. The task is to find the most powerful decision boundary at a certain
significance level to distinguish signal neutrino from background neutrino. For

a detailed description of the problem and data, see Hill et al. (2003). Because



of the curse of dimensionality, usual Monte Carlo methods are not practical.
We propose a modified penalized log-likelihood approach to solve the usual
multivariate problem with this weighted simulated data. Though this study is
motivated by the simulated neutrino data, the proposed method can be applied

to other multivariate weighted data.

2.3 Modified Penalized Likelihood Estimation

2.3.1 Penalized Likelihood Method for Labeled Data

Let x be a possibly multidimensional vector of event observables derived from
a reconstructed event. Let hy(x) be the probability density function for signal
vectors and hy(z) be the probability density function for background vectors,
and let 7, and m, be prior probabilities of a signal and background observation,
respectively. Then the posterior probability that x is a signal vector is p(z) =
mshs(2)/(mphw(z) + wehs(z)). The logit f(z) is defined as log[p(z)/(1 — p(z))] =
0+ loglhs(x)/hs(x)], where 8 = log(m,/m,). We will estimate the logit f(z) for a
particular (implicit) value of #, but since the end result is to obtain level curves
of f, the particular value of @ is not important for the calculations. A modified
form of the penalized likelihood estimate (Wahba 1990a, 20024, Wahba et al.
1995b) will be used.

Let y; be a random variable that is 1 (signal) with probability p(z;) and

0 (background) with probability 1 — p(x;). So the observed data are actually



=1

class labels. Then the likelihood of a single observation y; is: £ = p(x;)¥ (1 —
p(z;))'%. The negative log likelihood of (independent) data vy, ..., y, is then,

in terms of the logit given by

n

Q. f) = [log (1 +e/&) -y f(z;)] . G hih)

i=1
We want to find f = ) ep By € Hg (areproducing kernel Hilbert space (RKIHS),
see Aronszajn (1950a), Wahba (1990a, 2002¢)) which minimizes the penalized

log-likelihood:

Ie) = Qy, /) + M| f e (2.3.2)

where By’s are basis functions in Hx and || - ||, is the function norm in Hy.

This is essentially the penalized log likelihood estimate of f proposed in
O’Sullivan, Yandell and Raynor (1986) , and is in common use in some fields.
Under rather general conditions, which include a proper choice of A, penalized
log likelihood estimates are known to converge to the ‘true’ f as the sample
size becomes large (Cox & O’Sullivan 1990). RKHS are discussed in Aronszajn
(1950a) and their use in statistical model building in Wahba (1990a) and else-
where. A wide variety of these spaces is available. An RIKHS is characterized
by a unique positive definite function K(-,-), and once K is chosen, the exact
minimizer of I(c) is known to be in the span of a certain set of basis functions
determined from K (Kimeldorf & Wahba 1971). In Section 2.3.2 below we will
select a particular K, known to be a good general-purpose choice, and use an

approximating subset of this set of basis functions. Estimating f rather than p



directly gives a strictly convex optimization problem whose gradient and Hes-
sian are simple to compute, which makes the numerical analysis easier and thus
suitable for very large data sets. It is possible to estimate p directly but this
estimate is harder to compute in large data sets and is. believed to be not as

accurate.

2.3.2 Penalized Likelihood Method For Weighted Data

The form of the negative log likelihood in equation (1) applies where simulated
training data are distributed as hy(z) and h(x) through sampling directly from
the generating distributions ®,(E) and ®,(E), then processing the events E
through a simulation chain which mimics the tracks seen by the AMANDA
detector array and the process which extracts variables x from the simulated
tracks. Here, E means a vector of generating parameters, e.g., neutrino energy,
position and arrival direction. However, the results were expected to have ex-
tremely long tails which is the region of interest, so an importance sampling
scheme has been developed. x vectors were generated according to a conve-
nient sampling distribution g(E ), and pushed through the detector geometry
and variable (z) extraction. For each z; so obtained, two weights were assigned,
w,(7;) = Oy(E)/g(E;) for signal and wy(z;) = By(E;)/g(E;) for background.
w,(x;) + wy(x;) plays the role as an estimate of relative frequency of z; in sig-
nal + background while w(z;)/(ws(z;) + wy(z;)) plays the same role for the

probability of signal given x;, and similarly for background. The weights satisfy



Yoo wlwg) = N dnd > oo we(x;) = Ny, where N, and NV, are the predicted
numbers of events from the weighted simulation.

Now, if we had multiple unbiased observations at some x; as y;,75 = 1, ..., m(i),
the likelihood of these observations is: £ = p(:ci)zgn:q] ¥l *p(.l‘i))z.;'i?(l“y”)- If
the samplings at z; are biased, then the exponent sums are weighted by wq(x;)
and wy (:.91) respectivcly leading to a modified likelihood

ZZ{wQ[fog (1+&5®) — gif (2]}, (2.3.3)
i=1 yi=
where w,, = wy(z;) for y; = 1 and w,, = wy(z;) for y; = 0. The incorporation
of weighted events is thus simply accounted for by weighting the terms in the
logarithmic likelihood sum. Further, we can substitute wy(z;) and wy(z;) to

obtain an alternative form of the likelihood
(w, ) = Z{wt Jllog(1 + /@) — p(x:) f ()]}, (2.3.4)

where wy(z;) = wy(z;) + we(w;) and px;) = ws(z:)/we(z:).

Notice that, our extension of the penalized likelihood method to weighted
data by defining Q(w, f) in equation (2) as in equation (4) is a natural gen-
eralization of the original formulation since equation (4) will reduce to equa-
tion (2.3.1) in the case of labeled data, which we consider as a special case of
weighted data with (w, = 1, w, = 0) representing ‘1’ class and (w, = 0,w, = 1)

representing ‘0’ class.
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2.4 Implementation of the Modified Penalized

Likelihood Method

After getting the modified penalized likelihood formulation, we now can move
on to look for a ‘good’ estimate of f(z) whose level curves can be obtained.
In our implementation, we use radial basis functions plus constant and linear
terms. So,

N
f(z) =B+ BTx + Z ChRo (L, ), (2.4.1)
k=1

where K, (-,-) is the Gaussian kernel with isotropic variance o, N is the total
number of basis functions and the z;, .k = 1,..., N, will be chosen as a subset
of the z;,¢ = 1,...,n, as described below. Thus, f will be specified as long as
all coefficients, i.e., fo, f and the ¢;'s are determined (note that 3 is a vector).
By letting A || f |13, = )\Z;\;:l et Ky (i, x;,), we put a penalty only on the
ci’s leaving constant and linear terms unpenalized.

We used a sequence of data driven procedures to fit the model in the sense
that we let the data choose the ‘best’ combination of smoothing parameter
A, scale paramecter o and number of basis functions N .. For a given weighted
multi-dimensional data set, we can first transform each variable to make them
of comparable scale. Though these preprocessing procedures are not always nec-
essary, they often improve the performance of our algorithm. Then, the entire
data set is randomly divided into three subsets of some preset sizes: a training

set, a tuning set and a testing set. After that, we randomly, but according
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to weights (large-weighted simulated data points have higher chance to be se-
lected), choose a modest sized set of N x;,'s which determines basis functions
as a subset of the training set. We solve the minimization problem on a coarse
2-D parameter grid of A (usually on a log scale) and ¢ using the training set.
For cach parameter pair (each point on the log A — o grid), an iterative Newton-
Raphson algorithm is used to solve this convex minimization problem (Wahba
1990a). After the algorithm converges, we calculate the Kullback-Leibler (KL)
distance between the tuning set and the fitted model. This is essentially just the
first term of I,(¢) for tuning simulated data with f replaced by f . We then find
the best parameter combination based on the KL distance over the coarse grid.
Starting from there, a direct-searching simplex method (Lagarias et al. 1998)
is used to search for a locally best parameter combination according to the KL
distance criterion (Ferris et al. 2004). This whole procedure described above is
repeated using 2N bases, then 4NV bases and so on, until the improvement on
the KL distance is smaller than some preset threshold. We use the coefficients
corresponding to the then-best combination of parameters to construct our final
estimate of the logit function. Next, the testing set is used to check the good-
ness of fit of this final model. Finally, the level curves of p(z) are determined
and plotted. These level curves are appropriate for use in conjunction with the
approaches in Hill & Rawlins (2003), Feldman & Cousins (1998). Finally, the
real data can be analyzed by applying the thresholds given by the level curves

of p(z), sce Ahrens & other 112 coauthors (AMANDA collaboration).
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2.5 Results on Simulated Multivariate Normal

Data

Instead of using the neutrino data, for which we don’t know the truth, we first
test our algorithm on simulated multivariate data. For plotting convenience
we only show a two dimensional example. Our algorithm has been tested ex-
tensively on higher dimensional simulated data (in particular 5-D, which is the
expected dimension of the neutrino data) with success. We generate a random
sample of z’s from a 2-D uniform distribution (which plays the role of g) over
a square. We then associate with each z; two distinct 2-D Gaussian density
values (w,(z;) for signal, wy(x;) for background), giving a simulated data set
consisting of the x;’s and their associated w;’'s and wy’s. The sum of the two
2-D Gaussian distributions is shown in Figure 2.5.2(a).

For a particular run with sample size 1000 (among which we randomly pick
400 for training and another 400 for tuning), the result for the level curve
corresponding to p = 0.9 is shown in Figure 2.5.1. Since we know the truth
here, the data points are colored green if the true p is less than or equal to 0.9
and black otherwise. The red line is the level curve found by our algorithm,
which is visually almost identical to the true level curve (see Figure 2.5.2(c)).
We also implemented a nonstandard support vector machine (SVM) (Lin et al.
2002) (the paramecters are tuned in a similar way to our modified penalized

likelihood method) here for comparison. To use a nonstandard SVM to find
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the level surface corresponding to ef®) = p(z)/(1 — p(x)) = r, it is not hard

to extend the usual SVM formulation to the following weighted regularization

problem:
1 ;
= Z Z wiycy[(l 7 .Uf(»'f"z))-i-] +A|f HHk
B y—id
where
wy(z;) if y=—1;
wiy =
wlm) B o=l
! r if y= -1,
Cy =
Looaf gp=-1

and (7). = 7 if 7 > 0 and 0 otherwise. We minimize this nonstandard SVM
criterion while tuning the smoothing parameter and scale parameter through
iteratively calling the well-known SVM software SV MY (version 4.0), which
gives the blue line in Figure 2.5.1 as the estimated decision boundary.

It is worth mentioning that, our proposed penalized likelihood method esti-
mates the logit function over the domain of the observed z’s, hence it is able to
give all level curves of the logit (and thus p) simultancously, while SVM clas-
sifiers are targeted at one level curve at a time, i.e. they are meaningful only
for the classification boundary. This point may be understood via Figure 2.5.1
of Lee et al. (2004b). SVM classifiers come into their own when the classes are
(nearly) separable, but in our application that is not the case. In Figure 2.5.2,

we show further results from our 2-D example. The color bar beside plot(b)
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Level Curve forp=0.9

Figure 2.5.1: A 2-D EXAMPLE: Red line is the level curve estimated by our
penalized likelihood method; Blue line is the level curve estimated by nonstan-
dard SVM; Black points are data points with the true p > 0.9; Green points arc
data points with the true p < 0.9. ‘

codes the relative importance ws 4w, (in log scale) for cach data point, and the
estimated p for the 200 data points in the test set is plotted against the true p.
(The 200 points from the test set are particularly dense near 0 and 1.) We can
sce that the estimated probabilities (obtained from the estimated logit) match
the true probability very well except for several points of very small importance
that are colored in blue. Furthermore, by comparing the true and estimated
level curve plots in (c) and (d), we can conclude that we are estimating the true

logit function very well over the domain of the data.
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Figure 2.5.2: Results from the modified penalized likelihood method for a 2-D
EXAMPLE: (a) sum of the two Gaussians used for weights; (b) p-p plot with
the color bar coding the sum of the signal and background weights in log scale;
(c) true level curves of p=0.05, 0.1, 0.5, 0.9 and 0.95; (d) estimated level curves
of p=0.05, 0.1, 0.5, 0.9 and 0.95.
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2.6 Results on Simulated Neutrino Data

2.6.1 Logit Function Estimation

The simulated neutrino data consists of five variables along with the weights
(Ahrens et al. 2004). The variables are based on parameters derived from a max-
imum likelihood reconstruction of the particle track in the detector. For detailed
information on the detector, reconstruction, variables and analysis procedure,
see Ahrens et al. (2004). We had 10,000 simulated neutrino events, and divided
them into 40% training, 40% tuning and 20% test sets. The five variables are
first rescaled using their own sample weighted standard deviation after a log
transformation. Then, we run our algorithm with the transformed data. We
transform them back when plotting the results. The estimated logit function
enables us to estimate the probability of an event being a signal neutrino at any
point (within the domain of the data) in the 5-D observational space. We show
a level curve plot of a 2-D cross section of that 5-D space in Figure 2.6.1, where

other three variables have been fixed at their sample medians.

2.6.2 Checking the Goodness of the Estimate

Astrophysicists use very complex computer programs to simulate the observa-
tions of neutrinos passing through the AMANDA detector. Even though the
parameters related to the simulation are known, the probability of an event be-

ing a signal neutrino in the 5-D space is only estimated at the data points where
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Estimated Level Curves

Figure 2.6.1: Level curves: p = 0.1,0.5,0.9,0.95 and 0.99 on a 2-D cross section
in the 5-D observational space of the neutrino data. N = 500 basis functions
were used.

the simulation took place. We can’t construct a plot as in Figure 2.5.2(b) since
we don’t know the truth. We can only check whether the estimates reasonably
reflect the simulated information.

We try to evaluate the estimated probability surface using a method in com-
mon practice among physicists. We take all the 2’s whose estimated probability
of signal falls into one of ten equally spaced bins from 0 to 1. Then for each
bin we calculate the ratio of the sum of all the signal weights of the x's to the
sum of all the signal + background weights of those z’s. Call this the level-
binned observed p. We plot the result for the jth bin against the midpoint of
the bin, i.e., for the bin [0.4, 0.5], we plot the level-binned observed p against

0.45, and similarly for the other bins. If we estimate the probability reasonably
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well, based on the simulated, weighted data, we should have these ten points
falling close to the 45-degree line, which is what we observe in Figure 2.6.2 for
our neutrino data. The color coding of the points represents the relative signal

+ background weights of the 2’s in each bin, on a log scale.

Level-binned Observed p vs. Level p
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Figure 2.6.2: x-axis: Midpoints of 10 probability bins. y-axis: ratio of the sum
of signal weights to the sum of signal + background weights for data points in
each bin.

2.7 Conclusions

We have developed a feasible and effective computational method to obtain
modified penalized likelihood estimates for signal detection probability in the

context of five dimensional data as might be extracted from tracks observed by
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the AMANDA neutrino detector, where the data simulator has employed im-
portance sampling. We showed result obtained by implementing the proposed
method on a simulated neutrino data set before describing a way to check the
goodness of our estimation. We have also compared the penalized likelihood
method to the nonstandard support vector machine, similarly tuned, on a sim-
ulated multi-dimensional problems similar to the AMANDA problem, which
.Can be characterized as having a certain amount of overlap between the signal
and background distributions. In the examples of that nature, with signifi-
cant overlap of the signal and background, the penalized likelihood method is

competitive to the comparable nonstandard SVM for classification purposes.
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Chapter 3

A Framework for Kernel
Regularization with Application

to Protein Clustering

31 Summary

We develop and apply a novel framework which is designed to extract informa-
tion in the form of a positive definite kernel matrix from possibly crude, noisy,
incomplete, inconsistent dissimilarity information between pairs of objects, ob-
tainable in a variety of contexts. Any positive definite kernel defines a consistent
set of distances, and the fitted kernel provides a set of coordinates in Euclidean
space which attempts to respect the information available, while controlling for
complexity of the kernel. The resulting set of coordinates are highly appro-
priate for visualization and as input to classification and clustering algorithms.
The framework is formulated in terms of a class of optimization problems which

can be solved efficiently using modern convex cone programming software. The
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power of the method is illustrated using simulation study and in the context of
protein clustering based on primary sequence data. An application to the globin
family of proteins resulted in a readily visualizable 3D sequence space of globins,
where several sub-families and sub-groupings consistent with the literature were

easily identifiable.

3.2 Introduction

It has long been recognized that symmetric positive definite kernels (hereinafter
“kernels”) play a key role in function estimation (Aronszajn (19500), Kimeldorf
& Wahba (1971)), clustering and classification, dimension reduction, and other
applications. Such kernels can be defined on essentially any conceivable domain
of interest (Wahba (1990b)), originally function spaces and more recently, finite
(but possibly large) collections of trees, graphs, images, DNA and protein se-
quences, microarray gene expression chips, and other objects. A kernel defines
a distance metric between pairs of objects in the domain that admits an in-
ner product. Thus they play a key roleé in the implementation of classification
algorithms (via support vector machines (SVMs)) and clustering (via k-means
algorithms, for example), along with their more classical role in function approx-
imation and estimation, and the solution of ill-posed inverse problems Wahba
(1977). Since the mid 90s, when the key role of these kernels became evident

in SVMs (Wahba (1999), Evgeniou et al. (2000), Cristianini & Shawe-Taylor
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(2000)), a massive literature has grown related to the use and choice of ker-
nels in many domains of application, including, notably, computational biology
(Scholkopf et al. (2004)). A google scarch as of the date of this writing gave over
three million hits on “Kernel Methods” along with an ad from_ Google soliciting
job applications from computer scientists!

Mathematically defined kernels, for example, spline kernels, radial basis
functions and related positive definite functions defined on Euclidean space,
have long been the workhorses in the field, generally with one or a few free
parameters estimated from the data; see, for example Wahba (2002b). A re-
cent work Lanckriet et al. (2004) proposes estimating a kernel by optimizing
a linear combination of prespecified kernels via a semidefinite programming
approach. The reader may connect with the recent literature on kernel con-
struction and use in a variety of contexts by going to the NIPS2004 website
(http://books.nips. cc/nipsi?.html) or the book Shawe-Taylor & Cristian-
ini (2004).

It is frequently possible to use cxpert knowledge or other information to
obtain dissimilarity scores for pairs of objects, which serve as pseudo-distances
between the objects. There are two problem types of interest. The first is to es-
timate full relative position information for a (training) set of objects in a space
of preferably low dimension in order to visualize the data or to conduct further
processing - typically, classification or clustering. One traditional approach for

this purpose is multidimensional scaling (MDS) (Buja & Swayne (2002)), which
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continues to be an active research area. The second problem is to place new
objects in the space, given some dissimilarity information between them and
some members of the training set, in the coordinate space of the training sect.

In this chapter we propose regularized kernel estimation (RKE), a unified
framework for solving both problems by fitting a positive definite kernel from
possibly crude, noisy, incomplete, inconsistent, weighted, repetitious dissimilar-
ity information, in a fully nonparametric approach, by solving a convex opti-
mization problem with modern convex cone programming tools. The basic idea
is to solve an optimization problem which trades off goodness of fit to the data
and a complexity (shrinkage) penalty on the kernel which is used to fit the data
- analogous to the well known bias-variance tradeoff in the spline and ill-posed
inverse literature, but not exactly the same. Within this framework, we provide
an algorithm for placing new objects in the coordinate space of the training set.
The method can be used instead of MDS to provide a coherent set of coordinates
for the given objects in few or many dimensions, without problems with local
minima or (some) missing data. It can also be used to solve problems discussed
in Lanckriet et al. (2004), but in a fully nonparametric way.

The feasibility of the RKE approach is demonstrated in the context of pro-
tein sequence clustering, by applying the method to global pairwise alignment
scores of the heme-binding protein family of globins. In this example, we are

alrecady able to visualize the known globin subfamilies from a 3D plot of the
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training sequence coordinates that are obtained by the regularized kernel esti-
mate. Furthermore, apparent sub-clusterings and outliers of the known globin
subfamilies from the 3D plot reveal interesting observations consistent with the
literature. Clustering of protein sequences from a family to identify subfamilies
or clustering and classification of protein domains to determine protein func-
tion present one major application arca for the novel framework presented here.
However, we envision many more applications involving clustering and classi-
fication tasks in biological and non-biological data analysis, some of these are
discussed in Section 3.7.

In Section 3.3, we present the general formulation of the problem and define
the family of Regularized Kernel Estimates. Section 3.4 describes the formula-
tion of RKE problems and the problem of placing test data in the coordinate
space of training data as geﬁeral convex cone problems. Also included is a brief
discussion on tuning the parameters of the estimation procedure. Section 3.5
describes a simulation study. Section 3.6 presents an application to the globin
protein family to identify subfamilies and discusses the biological implication
of the results. Examples of placing test proteins in the coordinate system of
training protein sequences arc illustrated here. We conclude with a summary

and discussion of future work in Section 3.7.
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3.3 Dissimilarity Information and RKE

Given a set of NV objects, suppose we have obtained a measure of dissimilarity,
d;j, for certain object pairs (7, 7). We introduce the class of Regularized Kernel
Estimates (RKEs), which we define as solutions to optimization problems of the

following form:

Join L(wij, dij, dij(K)) + AN (K), (3.3.1)
Y (i.5)en

where Sy is the convex cone of all real nonnegative definite matrices of dimen-
sion N, Q is the set of pairs for which we utilize dissimilarity information, and
L is some reasonable loss function, convex in dﬁ.,;_,-, where tf.éj is the dissimilarity
induced by K. J is a convex kernel penalty (regularizing) functional, and A
is a tuning parameter balancing fit to the data and the penalty on K. The
w;; are weights that may, if desired, be associated with particular (i,7) pairs.
The natural induced dissimilarity, which is a real squared distance admitting
of an inner product, is (fij = K(i,i) + K(4,7) — 2K(i,j) = Bi; - K, where
K(i,7) is the (4,7) entry of K and Bj; is a symmetric matrix of dimension N
with all elements 0 cxécpt Bi;(i,4) = By(4,7) = 1, By;(4,5) = By;(4,4) = —1.
The inner (dot) product of two matrices of the same dimensions is defined as:
A-B =3, A(,j) B(i,j) = trace(AT B). There are essentially no restric-
tions on the set of pairs other than requiring that the graph of the objects with
pairs connected by edges be connected. A pair may have repeated observations,

which just yield an additional term in (3.3.1) for each separate observation. If
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the pair set induces a connected graph, then the minimizer of (3.3.1) will have
no local minima.

Although it is usually natural to require the observed dissimilarity informa-
tion {d;;} to satisfy d;; > 0 and d;; = dj;, the general formulation above does
not require these properties to hold. The observed dissimilarity information
may be incmnpléte (with the restriction noted), it may not satisfy the triangle
incquality, or it may be noisy. It also may be crude, as for example when it
encodes a small number of coded levels such as “very close”, “close”, “distant”,
and “very distant”.

In this work we consider two special cases of the formulation (3.3.1), the

first for its use in the application to be discussed in detail.

3.4 Numerical Methods for RKE

In Section 3.3, we define a general formulation of the RKE problem. In this sec-
tion, we describe a specific formulation of the general form in Section 3.3, based
on a linearly weighted [; loss, and use the trace function in the regularization

term to promote dimension reduction. The resulting problem is as follows:

%}.é%(z wy;ldi; — Byj - K| + Atrace(K). (3.4.1)
i,j)eq

We show how this formulation can be posed as a convex conic optimization
problem and also describe a “newbic” formulation in which the known solution

to (3.4.1) for a set of IV objects is augmented by the addition of one more object
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together with its dissimilarity data. A variant of (3.4.1), in which a quadratic
loss function is used in place of the [; loss function, is described in the Appendix
Al

The reason that we use trace as the kernel regularization function is very
intuitive. We want to obtain low rank kernels as RKE solutions. But rank is
not a nice function to optimize with since it is discontinuous and non-convex.
So we use trace, which is a continuous and linear (thus convex) function of the
kernel, as a simple approximation to the rank. Another intuition is the idea
of LASSO (Tibshirani (1996)). Since we want to promote the sparsity among
eigenvalues of the estimated kernel, the LASSO idea suggests to regularize the
I, norm of the eigensequence vector (i.e. trace, since the all eigenvalues of a
kernel are non-negative) instead of the [y norm (i.e. rank).

Although choosing different weighting schemes will be an interesting prob-
lem, in this work we let w;; = 1, (i, j) € 2. However, it is worth mentioning

that computationally, it won’t cost anything extra to add the w;; term.

3.4.1 General Convex Cone Problem

We specify here the general convex cone programming problem. This problem,
which is central to modern optimization research, involves some unknowns that
are vectors in Euclidean space and others that are symmetric matrices. These
unknowns are required to satisfy certain equality constraints and are also re-

quired to belong to cones of a certain type. The cones have the common feature
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that they all admit a self-concordant barrier function, which allows them to be
solved by interior-point methods that are efficient in both theory and practice
(Nesterov & Nemirovskii (1993)).

To describe the cone programming problem, we define some notation. Let
RP be Euclidean p-space, and let P, be the nonnegative orthant in RP, that
is, the set of vectors in R? whose components are all nonnegative. We let
()4 be the sccond-order cone of dimension ¢, which is the set of vectors z =
(z(1),...,2(g)) € R? that satisfy the condition z(1) > [Y L, 2(:)%]"/2. We
define S, to be the cone of symmetric positive semidefinite s x s matrices of real
numbers. Inner products between two vectors are defined in the usual way and
we use the dot notation for consistency with the matrix inner product notation.

The general convex cone problem is then:

XjTiyz

min ZCj'Xj+ZCi'$i+g'Z (3.4.2)
j=1 i=1

Mg

MNs
s.t.ZArj-Xj-l—Zaﬂ-:ri-l—gf-z:bf, o

i=1 i=1

Xj IS Ssj \V/j; L7 E qu Vi 2z € Pp.

Here, C;, A,; are real symmetric matrices (not necessarily positive semidefinite)
of dimension s;, ¢;, ari € R%, g, g € R*, b, € R

The solution of a convex cone problem can be obtained numerically using
publicly available software such as SDPT3 (Tiitiineii et al. (2003)) and DSDP5

(Benson & Ye (2004)).
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3.4.2 RKE with [, Loss

To convert the problem of equation (3.4.1) into a convex cone programming
problem, without loss of generality, we let € contain m distinct (i,7) pairs,
which we index with » = 1,2, ..., m. Define [y to be the N-dimensional identity
matrix and e,,, to be vector of length 2m consisting of all zeros except for the
rth element being 1 and (m + r)th element being —1. If we denote the rth
clement of Q as (i(r),j(r)), and with some abuse of the notation let i = i(r),
7 =j(r) and w € Py, with w(r) = w(r + m) = Wy ey, r=1,...,m, we can

formulate the problem of equation (3.4.1) as follows:
mingrouz0 W -+ Ay - K
gt iy — By K + B U=y Vg (3.4.3)

K& Sy, 4E P

Though simple, it is non-trivial for us to show in the following theorem that by
solving the convex conic problem above, we will always get what we desire. The

proof of this theorem can be found in the Appendix A.2.

Theorem 3.4.1. The optimization problems (3.4.1) and (3.4.3) have the same
global minimum which, because of the convezxity of problem (3.4.3), is equal to

every local minimum of (8.4.3).

The convexity (see Appendix A.2) of problem (3.4.3) gives us the computa-
tional convenience in obtaining the global minimum of problem (3.4.1) through

convex programming. Even though, problem (3.4.3) is not guaranteed to be
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strictly convex, we are guaranteed to have achieved (numerically) the global
minimum of problem (3.4.1) if the local minimum conditions for (3.4.3) are ver-
ified, since every local minimum of a convex problem coincides with its global
minimum. These multiple local minima if exist, consist a flat (with the same
value) convex region.

This formulation involves semi-definite cone and linear cones. We can also
formulate it as a pure semi-definite programming (SDP) problem, which after
minor modification can be adopted for the RKE problem with square loss and

trace penalty.

3.4.3 “Newbie” Formulation

We now consider the situation in which a solution Ky of (3.4.1) is known for
some set of N objects. We wish to augment the optimal kernel (by one row
and column), without changing any of its existing elements, to account for a
new object (a newbie). That is, we wish to find a new “pseudo-optimal” kernel
f(NH of the form:

Ky b

1

K = =0, (3.4.4)
T ¢

(where b € RY and c is a scalar) that solves the following optimization problem:

MiNe>0p D oo Wi |divt1 — Biv+1 Kyl (3.4.5)

s.t. b e Range(Ky), ¢—b"Kib >0,
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where K73 is the pseudo-inverse of Ky and W is a subset of {1,2,..., N} of size
t. The quantities w;, i € U are the weights assigned to the dissimilarity data for
the new point. The constraints in this problem are the necessary and sufficient
conditions for IM{NH to be positive semidefinite.

Suppose that Ky has rank p < N and let Ky = TAT'7, where vy, is the
orthogonal matrix of non-zero eigenvectors and A is the p x p matrix of positive
eigenvalues of K. By introducing the variable b and setting b = TAY2b, we
can ensure that the requirement b € Range(Ky) is satisfied. We also introduce

the scalar variable é and enforce ¢ > ¢ by requiring that

|1 2]

Z = [ J € Ss. (3.4.6)

Using these changes of variable, the condition ¢ — b7 Kb > 0 is implied by the

[

c

condition

=[e b7 € Qpua.
Further we define the N x (p+1) matrix X o [0 2AY2], where O is the zero
vector of length N, and let ¥;. be the row vector consisting of the p41 elements of
row i of . We use Ky (4,1) to denote the iith entry of Ky and define the weight

vector w € Py with components w(r) = w(t+7) = wyy, ¥ =1,...,t. We then

replace problem (3.4.5) by the following equivalent convex cone program:

min - w-u (3.4.7)
Zr0u>0,2
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gt =l

di,f\f-‘r—l e I<JV(?’7?/) =i i Z it Ei. - diek et‘?‘ Pl =g 01 v‘i":l,Q,.<.,t:
01

ZESQJ EEQP+1: 'U:EPQt,

where ¢ = i(r) as before. Note that the constraints on Z ensure that it has the
form (3.4.6).
The positive semi-definite constraint on Z and second-order cone constraint

2 > b b, which by definition of ¢ and b is exactly

onz = [¢ b7]T gives ¢ > ¢
the positive semi-definite condition of Ky, in the “newbie” problem. And

similarly we know we are doing the right thing by the following theorem.

Theorem 3.4.2. The optimization problems (3.4.5) and (3.4.7) have the same
global minimum which, because of the convexity of problem (3.4.7), is equal to

every local minimum of (3.4.7).

There are some interesting things about this newbie problem. One interest-
ing observation is the fact that by augmenting the RKE kernel Ky for “train-
ing” data to accommodate one more newbie (then, more and more), the rank
of the kernel will either increase by one if ¢ — BT Kb > 0 or remain unchanged

£~ bTKﬁb = 0. Thus the quantity (c—b" Kb) can scrve as a indicator whether
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or not a newbie “brings” something “new”. If the training data is Representative
enough, we should expect this quantity to be close to machine zero (numeri-
cally). Another observation is that if we do have ¢—b" Kb > 0 significantly, by
projecting the newbie solution for (3.4.7) back to the lower rank space (expanded
by Ky), we almost always won’t get the restricted newbie solution (require the
augmented kernel to be the same rank as Ky, i.e., ¢ — bT Kb = 0). This ob-
servation actually shows that our kernel approach to this newbie problem is
non-trivially innovative because we suspect that the problem will become non-
convex if we force ¢ — bY Kb = 0 instead of ¢ — b7 Kb > 0. Both observations

are more precisely described in two lemmas in the Appendix A.5 and A.6.

3.4.4 Choosing Elements of ()

If the dissimilarity information is symmetric (i.c., d;; = d;;), we can choose {2
to be the subset of {(4,7) : i < j} for which information is available. However,
the codes we use for solving formulation (3.4.3) (SDPT3 and DSDP5) require
0(m?) storage (where m is the size of ), which is prohibitive for the appli-
cation we describe in Section 3.6. Hence, we define 2 by randomly selecting a
subset of the available dissimilarity information in a way that ensures that cach
object i appears with roughly the same frequency among the (i, j) pairs of (2.
Specifically, for each i, we choose a fixed number k of pairs (i,7) with j # i
(we call the objects j “buddies” of i) and add either (i,7) or (j,7) to the set (2,

reordering if necessary to ensure that the first index of the pair is smaller than
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the second. (It is possible that (j,4) has been placed in {2 at an earlier stage.)
We choose the parameter £ sufficiently large that the solution of (3.4.3) does
not vary noticeably with different random subsets.

The “newbic” formulation (3.4.5) is comparatively inexpensive to solve, so
we take ¥ to be the complete set of objects for which dissimilarity information

d; n41 1s available.

3.4.5 Eigenanalysis, Tuning, Truncation

The left five panels of Figure 3.4.1 illustrate the effect of varying A on the
cigenvalues of the regularized estimate of K obtained by solving (3.4.3). The
data is from the example to be discussed later in Section 3.6, with N = 280
objects and k = 55 “buddies” for each of the N objects. Note that the vertical
scale is in units of log,, A. As X increases the smaller eigenvalues begin to shrink,
although in this example there is a very broad range of values of A, spanning
several orders of magnitude, where the sensitivity to A is barely visible. At
A = 1078 the condition number of K is about 10%, As A\ goes much past 200 in
this example, the penalty on K dominates and the dissimilarity information in
the data is suppressed.

It is desirable to have a kernel with rank as low as possible while still re-
specting the data to an appropriate degree. Even if the rank of the regularized
kernel estimate is not low, a low rank approximation obtained by setting all

but a relatively small number of the largest eigenvalues to zero might retain
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Figure 3.4.1: Left five panecls: log scale eigensequence plots for five values of
A. As \ increases, smaller eigenvalues begin to shrink. Right panel: first ten
ecigenvalues of the A = 1 case displayed on a larger scale.

enough information to provide an efficient way of doing classification or clus-
tering. In the work described here, as well as in various simulation studies, we
started with a very small positive ), increased A in a coarse log scale, and then
experimented with retaining various numbers of eigenvalues to get a low rank
approximation to K. The rightmost panel in Figure 3.4.1 shows the first 10
eigenvalues for the A = 1 case, in an expanded log scale. Natural breaks appear
after both the second and the third ecigenvalues. Setting all the cigenvalues of
K after the largest p to 0 results in the vth coordinates of the jth object as
z;(v) = VA, (4),v = 1,2,...,p, where the \,, ¢, are the first p eigenvalues

and cigenvectors of K and ¢,(7) is the j component of ¢,. We remark that the
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coordinates of the N objects are always centered at the origin since the RKE
estimate of K always has the constant vector as a 0 eigenvector. This auto-
centering effect is a byproduct of trace regularization. When tuning parameter
A is positive, the RKE kernel will be centered automatically. This can be easily
understood though thinking the following: If we only shift the origin away from
the center (i.e. sample mean) of a group of data points in Euclidean space, the
resulting gram matrix will have the same loss but bigger trace than the gram
matrix for the centered configuration. Therefore, only centered kernel can be
RKE minimizer.

In the example discussed later in Section 3.6 with four classes of labeled
objects, the choice of A =1 and p = 3 provided plots with a clear, informative
clustering on the labels, that was verified from the science of the subject matter.
We note that using the estimated K or a low rank version of it as the kernel in
an SVM will result in linear classification boundaries in the object coordinates,
(piecewise linear in the case of the multicategory SVM (MSVM) of Lee et al.
(2004a)). It will be seen in the plots for labeled objects in Section 3.6 that
piecewise linear classification boundaries in p = 3 coordinates would apparently
do quite well. However, that will not necessarily always be the case, and a
more flexible workhorse kernel in the p object coordinates can be used. The
MSVM in Lee et al. (2004a) comes with a cross validation based method for
choosing the MSVM tuning parameter(s) in a labeled training set. In principle,

the parameters A and p here can be incorporated in that method or other related
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methods, as additional MSVM parameters. Further examination of principled
methods of choosing A and p along with MSVM tuning parameter(s) will be

deferred to later work.

3.5 Applying RKE to Simulated Data

3.5.1 Procrustes Measures

For the simulated data, the truth is known. A reasonable measure of the dis-
tance/dissimilarity between two kernel matrices is needed to characterize the
goodness of fit for different estimates. In some related literature, it is called
Procrustes measure.

A suitable measure proposed in Sibson (1978) is based on the positional
differences after matching two gram matrix under translation, rotation and
reflection. Suppose A and B are two centered gram matrices, then the measure

is calculated as follows:
G(A, B) = trace(A) + trace(B) — 2trace(AY*BAY?)Y2, (3.5.1)
The normalized version of this measure is simply:
Yp(A, B) = G(A, B)/(trace(A)trace(B))"2. (3.5.2)

Alternatively, if we care only about the pairwise distance information, we can

introduce another normalized measure:

. . 1. .
Ya(A, B) = " ldya — dynl/ ) 5 (dija+ dijs), (3.5.3)

i<j <]
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Table 3.5.1: Procrustes Measurc between Result and Truth for different s

A=0.1]A=400| A =420 | A =450
v | 0.090 | 0.0089 | 0.0081 | 0.8693
va | 0.0309 | 0.0269 | 0.0253 | 0.9032

where dj;4 and d;jp are pairwise squared distance between object i and j, in-

duced by A and B respectively.

3.5.2 An Example of Simulated Clusters

We simulated three clusters in the two-dimensional Euclidean space. The data
points, 63 of them in fotal, are random samples from three distinct bivariate
normal distributions. To check the ability of our method to recover the cluster-
ing structure under noise, we obtained the dissimilarity data using the following
procedure. We first added two noisy coordinates to cach data point. These two
noisy coordinates follow two independent normal distributions with relatively
small variances. The squared Euclidean distances between all pairs of data
points, i.e. d;;s in our notation, were then binned into 10 equal sized bins over
the interval from the minimum to the maximum of those positive d;;s. The
value of cach d;; was then replaced by the center value of the bin to which it
belongs. It is an analog of the scenario where only ranks are provided as the
distance/dissimilarity measure. The noisy d;;s were then treated as observed
dissimilarity data. Note that, the binning procedure here can introduce very

non-Fuclidean noise.
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Figure 3.5.1: Noisy Clusters: Original data. Black stars are three left-out
“newbies” from three clusters respectively. The size of this plot has been inten-
tionally shrunk to be comparable to the corresponding plots in Figure 2 on the
next page.

Since the sample size is small in this simulated example, we didn’t follow
the neighborhood construction procedure discussed in Section 3.4.4. Instead,
we used all distinct pairwise squared distances. We also saved aside one data
point from each cluster to test our “newbic” algorithm. The RKE and newbic
formulations we used here for this example are square-loss formulations (A.1.1)
and (A.1.3) in the Appendix A.1. The original clusters are displayed in Figure
3.5.1, with different colors and symbols for different clusters. The true newbie
positions are marked with black stars. The same colors and marks are used for
the RKE recovered configurations in the upper right and lower right plots of
Figure 3.5.2. In Figure 3.5.2, the upper two plots are RKE results with A = 0.1,
while the lower two are RKE results with A = 400. As we can see both the
recovered configurations and the newbie posit.ioﬁs are fairly close to the truth.

However, the estimated kernel with A = 0.1 has many eigenvalues besides the
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Figure 3.5.2: Noisy Clusters: Effect of A on the Regularized Kernel Estimate
using (A.1.2). The two upper plots are RKE results with A = 0.1. The upper
left one is the eigensequence plot. The upper right one is the plot of principal
coordinates for recovered configuration and “newbies”. The two lower plots are
RKE results with A = 400.
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most significant two, corresponding to small noisy dimensions; while for the
estimated kernel with A = 400, most of these noisy eigenvalues “dropped” to
machine zero. That clearly showed the desired effect of the trace regularization
term promoting dimension reduction. Moreover, when A = 0.1, we got the
Procrustes measures 7, = 0.090 and vz = 0.0309, while when A = 400, we had
vp = 0.0089 and 74 = 0.0269. This suggests that through tuning A in a proper
way, we can improve the accuracy of the estimated kernel. The “optimal” A
obviously lies within certain appropriate range on the positive real axis because
if we make the A too big, it will eventually suppress every eigenvalue close to
machine zero and the RKE kernel will become a kernel of all noise when the

Procrustes measures blow up (See Table (3.5.2)).

3.6 Protein Clustering and Visualization with

RKE

3.6.1 Background

One of the challenging problems of contemporary biology is inferring molecular
functions of unannotated proteins. A widely used successful method of pro-
tein function prediction is based on sequence similarity. Statistically significant
sequence similarity, which is typically based on a pair.wise alignment score be-
tween two proteins, forms the basis for inferring the same function. Two major

related problems exist for predicting function from sequence. The first problem
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is the clustering of large number of unlabeled protein sequences into subfami-
lies for the purpose of casing database scarches and grouping similar proteins
together. The second problem is concerned with assigning new unannotated
proteins to the closest class, given the labeled or clustered training data. There
is a substantial amount of literature addressing these two problems. Krogh et
al. (1994) employs profile hidden Markov models (HMMs) for both problems.
Clustering of proteins is obtained by a mixture of profile HMMs whereas assign-
ment of new protein sequences to the clusters/classes is based on the likelihood
of the new sequence under each of the cluster specific HMMs. Later, Jaakkola
et al. (2000) addresses the second problem by first obtaining an explicit vector
of features (Fisher scores) for each protein sequence and then utilizing a variant
of SVMs, using a kernel called the Fisher kernel for classification purposes. The
feature vector for each protein sequence is based on the likelihood scores of the
input sequence evaluated at the corresponding maximum likelihood estimates of
the HMM parameters fitted on the training data. More recently, Liao & Noble
(2003) similarly uses SVMs for protein classification. However, in contrast to
obtaining a feature vector by likelihood scores, they define a feature vector for
each protein sequence as a vector of its pairwise sequence similarity scores to all
other proteins. Alternatively, Leslic et al. (2004) represents protein sequences
as vectors in a high-dimensional feature space using a string-based feature map
and train an SVM based on these vectors using a mismatch kernel. These latter

works clearly illustrate the advantage of representing each protein sequence by
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a high-dimensional feature vector in some coordinate system and the power of
kernel methods for protein classification. The RKE methodology presented here
provides an efficient way to represent each protein sequence by a feature vector
in a chosen coordinate system by utilizing the pairwise dissimilarity between

protein sequences.

3.6.2 Data

We illustrate the utility of RKE methodology using a dataset of globins that
was first analyzed in Krogh et al. (1994) by a profile HMM approach. The
dataset, distributed with the HMMER2 software package (Eddy (1998)), has
a total of 630 globin sequences. The globin family is a large family of heme-
containing proteins with many sub-families. It is mainly involved in binding
and/or transportation of oxygen. For illustration purposes, we randomly choose
280 sequences from these data so that three large sub-classes of the globin family
(alpha chains, beta chains, myoglobins) are included along with a heterogeneous
class containing various types of chains. This selection resulted in a total of 112
“alpha-globins”, 101 “beta-globins”, 40 “myoglobins”, and 27 “globins” (the
heterogencous class). The proportion of sequences in each class were taken to

be proportional to the class sizes in the original dataset.
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3.6.3 Implementation of RKE

We used the RKE formulation of Section 3.4.2 for this application. The Bioconductor
package pairseqsim (Gentleman et al. (2004)) was used to obtain global pair-
wise alignment scores for all pairs of N = 280 sequences. This procedure gave
a total of N(N — 1)/2 = 39060 similarity scores, which we then normalized to
map into the interval [0,1]. We used one minus cach of these numbers as the
dissimilarity measure for each pair of sequences. During this process, alignment
parameters were taken to be equal to the BLAST server (Atschul et al. (1990))
defaults. To construct the active index pair set £, we used the procedure de-
scribed in Section 3.4.4 with & = 55 randomly chosen buddies for each protein
sequence. The set £ thus contained approximately 14000 sequence pairs, cor-
responding to about 36% of the size of the complete index set. Replicated runs
with £ = 55 proved to be nearly indistinguishable, as judged by examination
of eigenvalue and 3D plots and the Procrustes measure v, as defined in Section
3.5.1 (74 is typically less than 5% for each pairwise comparison). The tuning

parameter A is set to 1 in the plots that follow later in this section.

3.6.4 Visualization of the Globin Sequence Space and
Results
Figure 3.6.1 displays the 3D representation of the sequence space of 280 globins.

This figure shows that the first three coordinates of the protein sequence space,

corresponding to three largest eigenvalues, is already quite informative. The
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Figure 3.6.1: 3D representation of the sequence space for 280 proteins from
the globin family. Different subfamilies are encoded with different colors: Red
symbols are alpha-globin subfamily, blue symbols are beta-globins, purple sym-
bols represent myoglobin subfamily, and green symbols, scattered in the middle,
are a heterogeneous group encompassing proteins from other small subfamilies
within the globin family. Here, hemoglobin zeta chains are represented by the
symbol of red +, fish myoglobins are marked by the symbol of purple [, and the
diverged alpha-globin HBAM_RANCA is shown by the symbol of red *. Hemoglobin
alpha-D chains, embedded within the alpha-globin cluster, are highlighted using
the the symbol red A.
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four main classes of the globin family are visually identifiable: The four colors
red, blue, purple, and green represent alpha-globins, beta-globins, myoglobins,
and globins, respectively.

Further investigation of this 3D plot reveals several interesting results. First,
we observe that the five hemoglobin zeta chains, namely HBAZ HORSE, HBAZ _HUMAN,
HBAZ_MOUSE, HBAZ_PANTR, HBAZ PIG, shown by red +, are located close to cach
other and embedded within the alpha-globin cluster. Zeta-globin chains are
alpha-like polypeptides and arc synthesized in the yolk sac of the early embryo.
It is well known that human zeta-globin polypeptide is more closely related
to other mammalian embryonic alpha-like globins (i.e., zeta-globins) than to
human alpha globins (Clegg & Gagnon (1981)). Furthermore, the zeta-globin
gene in humans is a member of the alpha-globin gene cluster. Second we note
that HBAM_RANCA, which is represented by red * and is a hemoglobin alpha-
type chain, seems to be isolated from the rest of the alpha-globin sequences.
A possible explanation might be found in the structure of this protein. Maeda
& Fitch (1982) notes that the gene encoding this protein appeared through a
gene duplication of hemoglobin and this took place near the time of the du-
plication that gencrated the alpha and beta chains. Our third observation is
that the myoglobins MYG_MUSAN, MYG_THUAL, and MYG _GALJA, denoted by purple
[, which are all fish myoglobins (Mustelus antarcticus (Gummy shark), Thun-

nus albacares (Yellowfin tuna), Galeorhinus japonicus (Shark)) - appear to be
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slightly separated from the rest of the myoglobin cluster. This is quite a remark-
able observation because fish myoglobins are known to be structurally distinct
from the mammalian myoglobins (Cashon et al. (1997)) and the RKE method
nicely highlights this distinction on the basis of primary sequence data only.
The 3D plot also reveals sub-clusters in the alpha-globin cluster. For example,
all the 10 hemoglobin alpha-D chains (shown by red A in Figure 3.6.1) are
clustered together within the alpha-globin cluster.

In a recent work, Hou et al. (2005) provided a 3D plot of the protein struc-
ture space of 1898 chains. These authors utilized multi-dimensional scaling to
project protein structures to a lower dimensional spacc based on the pairwise
structural dissimilarity scores derived from 3D structures of proteins. Our ap-
plication of RKE to the globin family, which is a few levels down from the top
level of the protein structure hierarchy considered by Hou et al. (2005), provide
an analogous 3D plot for the sequence space of the globin family. It is quite
encouraging that sub-protein domains of this family are readily distinguishable
from the 3D embedding of the protein sequences. It is also worth mentioning
that our current application is concerned only with pairwise sequence similarity,
which can be obtained efficiently. However, clustering at the higher levels of the
protein structure hierarchy is known to benefit enormously from 3D structural
similarities and we plan to perform clustering at that level in future work (see

Section 3.7 for details).
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3.6.5 Classification of New Protein Sequences

We next illustrate how the newbie algorithm can be used to visualize unan-
notated protein sequences in the coordinate space of training data obtained
by RKE. We used the following sequences as our test data: (1) HBAZ_CAPHI:
hemoglobin zeta chain from goat Capra hircus; (2) HBT_PIG: Hemoglobin theta
chain from pig Sus scrofa. Figure 3.6.2 displays the positions of these two test
sequences with respect to 280 training sequences. We observe that HBAZ _CAPHI
(black circle) clusters nicely with the rest of the hemoglobin zeta chains, whereas
HBT_PIG (black star), which is an embryonic beta-type chain, is located closer to
beta-globins. Additionally, we also used 17 Leghemoglobins (black triangles) as
test data and found that these cluster tightly within the heterogeneous globin
group. This observation is consistent with the results of Krogh et al. (1994),
who also found a heterogeneous globin cluster with a tight sub-class of Leghe-
moglobins among their seven clusters obtained by a mixture of HMMs. These
results indicate that RKE together with newbie algorithm provide a powerful

means for clustering and classifying proteins.

3.7 Discussions

We have described a framework for estimating a regularized kernel (RKE method-

ology) from general dissimilarity information via the solution of a convex cone
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Figure 3.6.2: Positioning test globin sequences in the coordinate system of 280
training sequences from the globin family. The newbie algorithm is used to
locate one Hemoglobin zeta chain (black circle), one Hemoglobin theta chain
(black star), and seventeen Leghemoglobins (black triangles) into the coordinate
system of the training globin sequence data.
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optimization problem. We have presented an application of the RKE method-
ology (including the “newbie” algorithm) to homology detection in the globin
family of proteins. The most striking result here is perhaps the fact that a sim-
ple 3D plot is sufficient for visual identification of the subfamily information.
However, in other applications, the plot coordinates (or higher dimensional co-
ordinate vectors obtained by retaining more eigenvalues) may be used to build
an automatic classification algorithm via the (principled) multicategory sup-
port vector machine (MSVM) (Lee et al. (2004a)). That algorithm comes with
a tuning method, it partitions the attribute space into regions for each training
category, and it also comes with a method for signaling “none of the above”.
Multicategory penalized likelihood estimates may also be used if there is sub-
stantial overlap of the data from different classes (Wahba (20025), Lin (1998),
Wahba et al. (19954a), Zhu & Hastie (2004)).

A much harder problem in the context of protein classification and cluster-
ing is remote homology detection, that is, detecting homology in the presence
of low sequence similarity. Since our framework accommodates an arbitrary
notion of dissimilarities, we can easily take advantage of various types of dis-
similarities such as presence or absence of discrete sequence motifs (Ben-Hur
& Brutlag (2003)) and dissimilarities based on the primary, secondary, and
tertiary structure (Tang et al. (2003)), and obtain optimal kernels from each
piece of information or data set. Without using labeled training sets, relations

between a pair of kernels from different sources of information (or their lower
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rank approximations) can be quantified in various ways. A simple example is a
measure of correlation: ), dfﬁcfffg (2 cf,fjﬂ)l/ s (ffjﬁ)l/ ) where o and 3
index the different sources of information and s is a real number to be chosen.
With labeled data, these kernels can further be examined and combined in an
optimal way, as for example in Lanckriet et al. (2004), in the context of classi-
fication. As emphasized above, a striking feature of the presented methodology
is the fact that it can exploit any type of dissimilarity measure, and data sets
with missing information. These properties are clearly beneficial in biological
data analysis, since many biologically relevant dissimilarities may not naturally
result in positive semidefinite kernels (pairwise alignment scores, for example)
which are cssential for powerful classification methods such as SVMs.
Homology detection is one type of computational biology problem for which
our framework offers rigorous, flexible tools. However, there are many other
computational biology applications which can naturally be handled within this
framework. Clustering of transcription factor position weight matrices (binding
profiles) is one such application. With the increasing growth of transcription
factor binding site databases, such as Sandelin et al. (2004), a need for charac-
terizing the space of DNA binding profiles and for developing tools to identify
the class of newly estimated/studied profiles is emerging. A characterization

of all available experimentally verified binding profiles such as in Sandelin et

al. (2004) might provide invaluable information regarding the possible class of



binding profiles. Such information can then be utilized in supervised motif find-
ing methods such as Keleg et al. (2003). A natural dissimilarity measure for
binding profiles is the Kullback-Leibler divergence. Clustering of the experi-
mentally verified binding profiles based on a regularized kernel estimate of such
dissimilarity measure might group binding profiles in a way that is consistent
with the DNA binding domains of the transcription factors. We envision that
this m'lght generate a “protein bindiﬁg profile space”, as the work of Hou et al.
(2005) generated a “protein structure space”.

Future work of interest includes both extension of the methodology and ex-
tension of the applications; in biology, the clustering of proteins at the top level
of the protein hierarchy; and in other contexts, medical images in particular.
We can also investigate other choices of loss and penalty functionals to achieve

better dimension reduction.
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Chapter 4

Robust Manifold Unfolding with

Kernel Regularization

4.1 Summary

We describe a robust method to unfold a low-dimensional manifold embedded in
high-dimensional Euclidean space based on only pairwise distance information
(possibly noisy) from the sampled data on the manifold. Our method is derived
as one special extension of the recently developed framework called Kernel Reg-
ularization, which is originally designed to extract information in the form of a
positive definite kernel matrix from possibly crude, noisy, incomplete, inconsis-
tent dissimilarity information between pairs of objects. The special formulation
is transformed into an optimization problem that can be solved globally and
efficiently using modern convex cone programming techniques. The geometric

interpretation of our method will be discussed.
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4.2 Introduction

The dimensionality reduction problem appears in many resecarch fields, where
scientists try to conduct exploratory analysis or visualization of multivariate
data. One special scenario happens often, when the goal is to find a meaning-
ful/expected low-dimensional structure behind high-dimensional observations,
or more precisely, to recover a low-dimensional parameterization of high-dimensional
data assuming the data all lie on a low-dimensional manifold. In several re-
cent papers (Tenenbaum et al. (2000), Roweis & Saul (2000), Belkin & Niyogi
(2003), Donoho & Grimes (2003), Weinberger et al. (2004)) a large family of
algorithms has been proposed to solve this particular type of dimensionality
reduction problem (hereinafter, manifold-unfolding problem), in the spirit of
reconstructing the manifold structure globally, but respecting only local infor-
mation from the observed data. It is also well known (Weinberger et al. 2004,
Ham et al. 2004, Scholkopf et al. 1998, Williams 2001) that the solution to the
manifold-unfolding problem is closely related to finding a symmetric positive
definite kernel (hereinafter “kernel”). Recall that an N x N kernel obtained
from data relating N objects may be used to assign Euclidean coordinates to
the NV objects in some p < N Euclidean space.

In a recent work Lu et al. (2005) (see Chapter 3), a novel framework called
Kernel Regularization is proposed to extract information in the form of a ker-
nel matrix from possibly crude, noisy, incomplete, inconsistent dissimilarity or

distance-like information between pairs of objects, while controlling a certain



complexity measure of the kernel. A special formulation of the framework was
applied to configure a set of proteins globally in a Euclidean space based on pair-
wise dissimilarity information only (see Chapter 3). The configuration (in the
form of a kernel) obtained can then be used by any clustering or classification
algorithm for further inference if visualization is not the only purpose. Kernel
regularization can be used replace of the roles of two traditional techniques,
multidimensional scaling (MDS) and principal component analysis (PCA), in
a unified fashion using the special formulation in Chapter 3. However, the
manifold-unfolding problem is different from the problem targeted in Chapter
3, where global information needs to be preserved.

In this chapter, we describe a kernel approach to solve the manifold-unfolding
problem using another variation/formulation of the kernel regularization frame-
work. We adopt the same essential idea as in Tenenbaum et al. (2000), Roweis
& Saul (2000), Belkin & Niyogi (2003), Donoho & Grimes (2003), Weinberger
et al. (2004) which is, loosely speaking, to respect local information while flat-
tening the global structure. Nevertheless, our method is more flexible than the
others in terms of the assumptions on the data. All previous methods assume
(at least implicitly) that there is no noisc associated with the observed data,
while our method allows the existence of noise. One scenario of the noisy-
version manifold-unfolding problem is when the observed scattered data points
can fall off the ‘fl‘ue’ underlying manifold. More precisely, one can assume the

direct distance between observed data points and the target manifold follows



o6

a compactly supported distribution with zero mean and relatively small vari-
ance compared to the global spread of the original manifold . Another possible
source of noise is measurement error for either point coordinates or pairwise dis-
tances. A related issue here is that to the extent that the desired solution to the
manifold-unfolding problem is translation and rotation invariant, a reasonable
method should depend only on pairwise distance information. The procedures in
algorithms proposed in Roweis & Saul (2000), Belkin & Niyogi (2003), Donoho
& Grimes (2003) use more than pairwise distances (at least, procedure-wise),
while implementation of our method, like the algorithms in Tenenbaum et al.
(2000), Weinberger et al. (2004), needs only pairwise distances. It is also worth
mentioning that, when the distance/dissimilarity information is actually noisy,
it might also be non-Euclidean (e.g., the triangle inequality can be violated).
Then, in that case, the algorithm in Weinberger et al. (2004) will try to solve an
infeasible optimization problem. Nonetheless, our method can naturally handle
this noisy situation. Moreover, our algorithm is insensitive to the non-convex
case investigated in Donoho & Grimes (2003), which causes the algorithms pro-
posed in Tenenbaum et al. (2000), Roweis & Saul (2000) to fail. So our method
is robust for the manifold-unfolding problem in the sense that it can handle
both noisy and non-convex data.

This chapter is brganized as follows. In Section 4.3, we review the Kernel
Regularization framework before proposing a new formulation of it in order

to solve the (noisy) manifold-unfolding problem. We also discuss the geometric



interpretation of different formulations. In Section 4.4, we show some simulation
results from implementing our method. Finally, we conclude in Section 3.7 with

a summary and discussion of future work.

4.3 Regularized Kernel Embedding

4.3.1 Framework of Kernel Regularization

In the same spirit of all regularization methods, the Kernel Regularization
method is designed to estimate a target, in our case, a kernel, from observed
information, while controlling a certain complexity measure of the resulting es-
timate to prevent overfitting. The most general framework can be expressed as

the following optimization problem:

min L(data, K) + N\J(K), (4.3.1)
KeSn

where Sy is the convex cone of all real nonnegative definite matrices of dimen-
sion N and L is some reasonable loss function on K. J is a kernel penalty
(regularizing) functional, and A is a tuning parameter balancing fit to the
data and the penalty on K. The choice of L obviously depends on the func-
tional /distributional relationship (given or from model assumptions) between
the observed data and target kernel, which is usually straightforward after
the underlying problem is clear. On the other hand, a reasonable J can only
be found after one understands/defines the complexity of the estimated kernel

properly for a particular problem. Moreover, computational convenience should



be considered when choosing L and J. In most cases, we want use L and .J
which makes the resulting optimization problem convex.

The Kernel Regularization framework proposed in Chapter 3 is motivated
by the need to extract useful information from various kinds of dissimilarity
information. Given a set of N objects, suppose we have obtained a measure of
dissimilarity, d;;, for certain object pairs (i, 7). So the dissimilarity measure be-
comes the proxy to construct the loss function for the target kernel. Also, trace
is chosen to be the kernel regularizing function J in order to promote dimen-
sion reduction in this case. Omne special formulation of Kernel Regularization

framework in this scenario is the following:
min wij|di; — Bij - K| + A trace(K), (4.3.2)

where € is the set of pairs for which we utilize dissimilarity information and the
w;;s are weights that may, if desired, be associated with particular (i, j) pairs.
The natural induced dissimilarity, which is a real squared distance admitting
of an inner product, is CLJ- = K(i,%) + K(j,j) — 2K(4,j) = By; - K, where
K(i,j) is the (7, 7) entry of K and B;; is a symmetric matrix of dimension N
with all elements 0 except Bi;(i,¢) = By;(4,7) = 1, By;(4,7) = By;(4,4) = —1.
The inner (dot) product of two matrices of the same dimensions is defined as:
A-B =3, A(i,j) B(i,j) = trace(AT B).

There are essentially no restrictions on the set of pairs other than requiring
that the graph of the objects with pairs connected by edges be connected. A

pair may have repeated observations, which just yield an additional term in
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(4.3.1) for cach separate observation. If the pair set induces a connected graph,

then the minimizer of (4.3.1) will have no local minima.

4.3.2 Deriving the Regularized Kernel Embedding For-
mulation

Denote the observed squared distance between z; and z; by d,;. Let (4,7) €
if z; is one of the k-nearest neighbors of z;, according to this observed squared
distance.

We formulate the problem as finding a new positioning of the N points in

R? so that
(i) the repositioning respects local distance;

(ii) the repositioned points lie in a subspace of R? with as low a dimension as

possible.

Denote the points after repositioning as y;, ¢ = 1,..., N. That is, the po-
sitioning moves the original point z; to y;, ¢« = 1,...,N. These N points are
still in R?, but we hope they lie in a low dimensional subspace in RP. Denote
the distance between y; and y; in R? by r;;. Notice that the positioning that
satisfies these two conditions is not unique. In fact, for any positioning that
satisfies (i) and (ii), rotating the coordinate system or shifting the points by a
common vector results in a different positioning that also satisfies (i) and (ii).

To take care of the shifting problem, we require that the repositioned points are
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centered at 0,, the origin of the coordinate system. That is, § = % le yi = 0p.
As will be seen later, we shall take care of the rotation problem by formulating
the problem in terms of the reproducing kernel matrix generated by the repo-
sitioned points, instead of the repositioned points themselves. The reproducing
kernel matrix K is the NV by N matrix with the element K(¢, j) = (v, y;), where
(+,-) is the Euclidean inner product in R?. Notice this matrix is invariant under
rotation of the points ;.

Condition (i) requires that

]

Now notice that among all possible positioning that satisfies condition (i),
the positioning that meets condition (ii) is one in which the distance between
pairs of the repositioned points in R? are maximized. This is most easily seen
in the broken stick example coming up later, but it is also easy to see in general.

Therefore we try to maximize Zf\;l E;V:l r7; subject to (4.3.3). To balance the

fidelity to local distances and the maximization of distance between all pairs,
we usc a penalty approach and try to minimize:

N N

Z (d-ij v T;Zj)Z - A Z Z’I‘?j, (434)

(i,4)€9 i=1 j=1
where A > 0 is a tuning parameter. Alternatively, we can try to minimize

N N

Y dd =il = A0 ks (4.3.5)

(i,5)en =1 j=1
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Adopting the matrix inner product definition defined in Section (4.3.1)

N N N N
33 = Y K(i,i) + K(j,5) — 2K(i, /)
i=1 j=1 =1 j=1

= NI K-2Y > K(,9)

i=1 j=1

= 2NI:-K-2E-K=2(NI-FE):K,
where [ is the N-dimensional identity matrix and F is the N by N matrix with
all elements being 1. Plugging rfj = K(i,1) + K(j,7) — 2K (4, ) into (4.3.4) or

(4.3.5), the problem becomes: find K positive semidefinite to minimize

S (dy — K(i,i) — K(j,§) + 2K (i,5))) =2MNI = E)- K, (4.3.6)
(1,5)€Q
or
Z |di; — K(i,1) — K(j,7) + 2K (3, §)| — 2A(NI — E) - K. (4.3.7)
(i,5)€0

We can also add weights w;; into the first summation. There is an additional
constraint needed to guarantee that the points are centered at 0,. It is casy to
show that if K is positive semidefinite, then § = 0, is equivalent to Ke = 0p,
where e is the p by one vector whose elements are all ones, and this constraint
can be added to the above optimization problems. This constrained minimiza-
tion problem can be recast as a convex cone programming problem and there are
efficient algorithms developed in the convex optimization community for solving
this type of problems. Notice that under the Ke = 0, constraint the objective
function can be further simplified a little since if K is positive semidefinite,

then Ke = 0, is equivalent to £ - K = 0. Once the matrix K is obtained, the
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dimension of the subspace of the repositioned points is p = rank(K). Alter-
natively, the cqnstraint Ke = 0, may be omitted and K centered later. This
will be discussed further below. We can use the spectral decomposition, i.e.,
K =T'DT where I' is p by N consisting of p rows of eigenvectors of K, and D
is the p by p diagonal matrix of non-zero eigenvalues {\,}, to get the principal
coordinates Y = DY?T with columns of Y to be y;s.

One thing that we need to be careful about is that the neighbor set §2 should
not be too small. Otherwise the objective function may diverge to —oco. The
necessary and sufficient condition to avoid this situation is that the edges in
construct a connected graph for all data points.

Now, it is easy to see that (4.3.7) differs from the formulation (4.3.2) only in
the choice of kernel regularization function J(K). In (4.3.7), J(K) = trace(K) =
I- K, while in (4.3.2) J(K) = —=2(NI — E) - K. It is worth pointing out that

they are both linear thus convex in K.

4.3.3 Regularized Kernel Embedding Formulation for [,

Loss

To convert the problem of equation (4.3.7) into a convex cone programming
problem, without loss of generality, we let 2 contain m distinct (i, ) pairs,
which we index with r = 1,2,...,m. Let N x N matrices [ and E be defined as
before. Define e,,, to be vector of length 2m consisting of all zeros except for

the rth clement being 1 and (m + 7)th element being —1. If we denote the rth
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clement of (2 as (i(?‘),j(?)), and with some abuse of the notation let i = i(r),
7 =j(r) and w € Pa, with w(r) = w(r + m) = wip) jp), r=1,...,m, we can

formulate the problem of equation (4.3.2) as follows:

mingsou>0 W' % —2A(NI — E) - K (4.3.8)
S.t.dij s B'ij - K + Emyr " U = D, V,«,

K& SN: u € PZm-

The solution to (4.3.8) might not be centered. To obtain sensible principal
coordinates of the corresponding configuration using the spectral decomposition,
we can center the solution kernel following a simple procedure. Define a to be the
column with ith entry the average of the ith column of K, ¢ to be the scalar as
the mean of all elements in K and e to be vector of snitable dimension consisting
of all 1’s. A kernel K can be centered simply by: K engered = I —ael —ea” +cE.
An alternative way to handle this centering step, as discussed before, is to
directly impose the centering condition E - I = 0, which is actually a linear
constraint and can be directly incorporated into the convex cone formulation
(4.3.8). Then, we can also simplify the kernel regularization function from
—2(NI—E)- K to areduced form —2(N7)- K. However in our experiment with
the examples here, the optimization problem without the £ - K = 0 constraint
converges faster.

The Regularized Kernel Embedding formulation with square loss can also
be casily obtained after simple modification of the square formulation in the

Appendix A.1.1.
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4.3.4 ‘Newbie’ Formulation

A very useful ‘newbie’ algorithm was developed in Chapter 3 to find the coordi-
nates for new data points (newbies) within the previously constructed configu-
ration. The corresponding newbie problem is essentially the minimization of the
sum of losses involving the newbie only. We adopt the same idea here for the
manifold-unfolding problem except we restrict the summation even further to a
reasonable neighborhood of the newbie. The neighborhood construction prob-
lem will be discussed in general in the following section. However the algorithm

remains the same.

4.3.5 Choosing Neighbors

Choosing neighbors for each sampled data point is a very important/tricky step
for almost all methods including ours that are in the spirit of ‘thinking globally
while fitting locally’. However, it is not discussed in detail in previous papers.
A simple way, which is adopted by most algorithms, is to choose k nearest
necighbors for all data points. Then the neighbor-choosing problem degenerates
into a neighborhood-size-choosing problem. In exploratory studies, where the
truth is not known, the only thing onec can do might be to start from a ‘suitable’
neighborhood size based some prior knowledge or intuition, and then vary the
size to sce how the results change. As we discussed previously, the neighborhood
size has to be big enough so that the neighbor edges and all points consist of a

connected graph. On the other hand, if the neighborhood size is too big, we are



respecting more than just the local structure, and also, the computation cost
usually goes up quickly. A good choice of k£ and the sensitivity of the results to
k depend on the density and distribution of the sampled points on the manifold.
In previous papers, with dense enough samples for the examples, the authors
simply choose moderate neighborhood sizes. In this paper, we also adopt this
approach in the simulated examples.

Nonetheless, in some cases, fixing a neighborhood-size might not be a good
approach to setup a connected graph especially when the sampling is very un-
even across the underlying manifold or the manifold has very different curvature
from place to place. For the formulation proposed in this work, we have another,
possibly more stable way to tackle this issue. We can impose a compactly sup-
ported kernel around each data point to generate weights for all other points.
Only those points who get non-zero weights become candidates to be neighbors
for a particular data point, and their weights will be used to multiply the corre-
sponding loss terms in (4.3.6) and (4.3.7). A threshold number can also to set
so that every point only keeps no more than that number of closest neighbors
from all candidates. A suitable bandwidth of the kernel can be selected based
on the average closest-neighbor distance. The intuition of this approach is to

give higher confidence to the distances between closer neighbors.
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4.3.6 Parameter A

The tuning parameter A controls a balance between the twin goals we want to
achieve — as A increases, the average squared distance between points far apart
is allowed to increase, thus enhancing “flattening”, while as A decreases, the
solution is driven towards more closely respecting the observed local structure.

For an exploratory study, where the truth is not known, a sequence of /\s
within an appropriate range (usually in log scale) will give different results.
Then prior knowledge may help to choose a good A. For example, if it is known
that there is not much noise within the data and a low dimensional embedding
is preferred, one can gradually increase A to get rid of insignificant dimensions
until the sum of the losses exceed some limit.

However, if this manifold-learning task is just a part of bigger problem, e.g.,
clustering or classification, where we know the truth for training data, it will be
natural to tune A simultancously with other possible tuning parameters, using

standard tuning techniques like cross validation.
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4.4 Unfolding Simulated Examples

4.4.1 Unfolding the Swiss Roll with a Window Punched

Out

The first simulated example is a Swiss roll manifold with a rectangular window
punched out close to the center. This example was used in Donoho and Grimes
(2003) to show how a non-convex feature (the punched—out window) can cause
some previous methods like ISOMAP (Tenenbaum et al. 2000) and LLE (Roweis
& Saul 2000) to fail.

The following results are obtained on a random sample of 770 points, each
point with 6 neighbors. There is no noise in this example. Figure 4.4.1 gives
the scatter plot of original data points sampled on the manifold (except within
the punched-out window). Figure 4.4.2 is the true parameterization, and its
“rolled-up” version gives Figure 4.4.1. Figure 4.4.3 is the solution to our for-
mulation with (4.3.8), with the tuning parameter A = 7e — 7. In Figure 4.4.4,
the eigensequence of the corresponding solution kernel is plotted in descending
order on a log scale. We can clearly see the fact that the first two cigenvalues
stand out significantly in magnitude compared with the rest of the eigenvalues,
indicating a 2D embedding. (The last eigenvalue in Figure 4.4.4 is the com-
puter version of the zero eigenvalue that goes with the constant function.) The

principal coordinates in Figure 4.4.3 are constructed using these two significant

eigenvalues and corresponding eigenvectors.
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Figure 4.4.1: Swiss Roll: Scatter plot of original data points.
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Figure 4.4.2: Swiss Roll: True parameterization. Uunrolled version of Figure
4.4.1.
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Figure 4.4.3: Swiss Roll Unrolled: Regularized Kernel Embedding using (4.3.8),
A = Te — 7, first two principal coordinates.

4.4.2 Unfolding the Noisy Wisconsin Roll

This example is specially designed to show the robustness of our method, espe-
cially compared with the method proposed recently in Weinberger et al. (2004).
which has a basic idea very similar to ours. We consider two types of noise,
which are imposed on the pairwise distances between neighbors after the all
neighbors are selected. In this example, the data points are sampled on a ‘Wis-
consin roll’, which is a Swiss roll except there is a window in the shape of letter
‘W’ punched out (thus no points can be sampled with in it) which can be seen
clearly if the roll is flatten out.

To impose the first type of noise, twenty percent of the selected pairwise
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Figure 4.4.4: Swiss Roll: Eigensequence of the solution kernel, A = 7e —7. Note
log scale.

distances are multiplied by a uniform random number over the interval from
0.85 to 1.15. The second type of noise is in’croc_iuced to all chosen d;js (between
chosen neighbors) by binning them into 15 equal sized bins over the interval
from the minimum to the maximum among these d;;js. The value of cach d; is
then replaced by the center of the bin that it belongs to. It is an analog of the
scenario where only ranks are provided as the distance/dissimilarity measure.
A random sample of 861 points was used for this example with the neigh-
borhood size set to be & = 6. In both noisy situations, our method successfully
(with A in a proper range) converges to a global optimum with only two signif-

icant dimensions. See eigensequence plots Figure 4.4.7 and Figure 4.4.9. The
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Table 4.4.1: Procrustes Measure between Result and Truth

1st type of noise case | 2nd type of noise case
Yo 0.0055 0.0030
Y4 0.0154 0.0112

Procrustes measure shows our solution is very close to the truth (See Table
4.4.2), although the recovered embeddings shown in Figure 4.4.6 and Figure
4.4.8 are distorted a little bit from the truth (see Figure 4.4.5) due to the im-

posed noisc.

-5t
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Figure 4.4.5: Wisconsin Roll: True parameterization. Observations come from
rolled up version after adding noise.

On the contrary, the algorithm in Weinberger et al. (2004) fails to converge
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Figure 4.4.6: Wisconsin Roll with first type of noise, unrolled. Regularized
Kernel Embedding using (4.3.8), A = 0.002, first two principal coordinates.

because it tries to solve an infeasible primal problem for which the dual is un-
‘bounded. For the solvers we used, DSDP5 reported “ DSDP: Dual Unbounded,
Primal Infeasible” and SDPT3 reported “Stop: primal problem is suspected of
being infeasible”. These results are expected, because when a certain level of
noise is directly imposed on the distance information, it is very likely that no
Euclidean metric can fit the noisy distance data (for instance if the triangle
inequality is violated somewhere). Then problem set-up in Weinberger et al.
(2004) is infeasible in the sense that no solution can satisfy all the constraints

simultaneously.
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Figure 4.4.7: Wisconsin Roll: Eigensequence of the solution kernel, first type of
noise, A = (0.002.

4.4.3 TUnfolding a Broken Stick

In this section we describe a toy example for the purpose of highlighting the
difference between our method and the method proposed in Weinberger et al.
(2004). The primary difference between the two methods is that for the method
in Weinberger et al. (2004) local distances are enforced rigidly while here we
relax that requirement. We want to show that this relaxation can be very
important for manifold-unfolding problems even in the cases without noise.
The data points are randomly sampled on two branches of a ‘broken stick’
(see Figure 4.5.1). One branch is from the origin to the point (1,1) and the

other is from (1,1) to (2,0). We force the sample to include the point (1,1).
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Figure 4.4.8: Wisconsin Roll with second type of noise, unrolled. Regularized
Kernel Embedding using (4.3.8), A = 0.0025, first two principal coordinates.

The manifold unfolding goal here is to flatten out the stick. If any of the
pairs for which distance is selected to fit, has one member from the left branch
and the other member from the right branch (for example, see the black line in
Figure 4.5.1), then the method in Weinberger et al. (2004) will not be able to
flatten the stick. For our method, a small A will not ﬂatt.en the stick either, but a
sufficiently large A will. The result from employing the method in Weinberger et _
al. (2004) with k& = 5 is almost visually indistinguishable from the plot in Figure
4.5.1. With £ =5 and A too small (A = le—5) , our method also fails to flatten
the stick but recovers the original broken stick. Two outstanding eigenvalues are

obtained as can be seen in the upper left corner of Figure 4.5.2. However, with
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Figure 4.4.9: Wisconsin Roll: Eigensequence of the solution kernel, second type
of noise, A = 0.0025.

A sufficiently large (A = 0.3) we see only one outstanding eigenvalue, and so we
obtain the one dimensional flattened stick on the lower right corner of Figure
4.5.2. As expected, within our regularized kernel embedding framework, the

smoothness/dimensionality is controlled by the smoothing/tuning parameter A.

4.5 Discussions

In this chapter, we developed a robust manifold learning method as a variation
of the RKE framework proposed in Chapter 3. It is worth mentioning that, if
we choose to impose the centering constraint £ - K = 0 (although we can do

without this) in problems (4.3.6) and (4.3.7), the kernel regularization function
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Figure 4.5.1: Broken Stick: Original data. Heavy black line joins a pair of
points with the members from different sides of the break.

for manifold unfolding becomes J(K) = —2(NI — E) - K = —2NI - K =
—2Ntrace(K). Interestingly, in Chapter 3, the kernel regularization function
we use to promote dimension reduction is trace instead of the negative trace
(with a constant multiplier) here. So, different signs in front of trace actually
both promote dimension reduction but in different scenarios.

More interesting problems come up when there are multiple source of infor-
mation that arc believed to share the same underlying low-dimensional struc-
ture. Our method can be naturally extended to that case. Also, it is often un-
realistic to assume the given distance information is actually Euclidean. Then,
a non-metric variation of our method, i.e., only rank information among all dis-
tances will be used, can be very useful. Last but not the least, we will explore
the weighting scheme as we discussed in Section (4.3.5) to select neighbors in

order to achieve higher stability and robustness.
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Figure 4.5.2: Broken Stick: Effect of A on the Regularized Kernel Embedding
using (4.3.8). Small A does not flatten the stick, but a larger A does.
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Chapter 5

Concluding Remarks

Regularization methodology has proved to be a powerful tool in a variety of sta-
tistical practices, traditionally in preventing overfitting of nonparametric models
and more recently in model/variable selection and dimention reduction. Espe-
cially for massive data sets which are very typical challenges to statisticians
nowadays, where oftentimes, the statistical inference problems are buried inside
data mining tasks, regularization methods are not only elegantly concise but
also robust, given that the computation burdern can be well handled. On the
other hand, with the fast advance of computer technology (hardwares) and com-
putation algorithms (softwares), an impossible computation problem yesterday
might be a very casy onc tomorrow.

In this thesis, we investigate the methods of regularized estimation in three
different settings. The first one is a modification/generalization of traditional
nonparametric penalized likelihood method. The second and the third are two
special applications of the RKE framework proposed in this thesis to dissimilar-
ity data. In penalized logistic regression, our work shows that the regularization
method is very flexiable in accomodating new features of the data and provid-

ing robust estimation. Our success in extending the idea of regularization to
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dissimilarity data in kernel learning also reveals that the art of good estima-
tion/prediction lies in the good balance of fitting a model to the observations
and controlling the model complexity.

Our novel work in kernel regularization can be extended in serveral different
directions. One interesting future direction is to modify the RKE formulation
in Chapter 3 and/or Chapter 4 to a non-metric version, meaning that only
the ranks instead of the exact values of observed dissimilarity measures will
be used to estimate the target kernel. Non-metric RKE will be more flexible
to fit the data especially when the observed dissimilarity measure is very non-
Euclidean. Another interesting but more distinct future direction would be to
extend current RKE framework to solve feature-space kernel learning problems.
What we show in this thesis is all' within ‘object space’, that is the kernel we
try to estimate is characterizing only the relations between objects. One can
think about the situation where cach object is associated with a representing
feature vector, and the goal becomes to estimate a kernel in the feature space

that connects the features to the relations within objects.
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Appendix A

Derivation and Proof

A.1 Formulations with Square Loss Functions

We describe here the formulations of the regularized kernel estimation and new-
bie problems when a square loss function is used in place of an I; loss function.
We acknowledge the help of Kim-Chuan Toh who gave us a suggestion which
substantially improved our original formulation of the square loss algorithm, in

terms of computational complexity.

A.1.1 RKE Formulation

The sum-of-squares variant of Formulation (3.4.1) is
min wij(dij — By - K)* + Mrace(K). (A.1.1)
Let ;5 = /Wi;(dij — By - K). Then (A.1.1) can be rewritten as:

ming g Z(i,j)eﬂ 5% + Atrace(K)

s.t. Bij - K+ ﬁéw = diﬁ (Z,j) e (.
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We use r = 1,2,...,m to index the elements of £}, as in Section 3.2. To
convert the problem into a convex conic formulation, we introduce a variable
y = [a,81,0,...,0m) to be in a second-order cone and we define e, to be the

constant vector of length m + 1 consisting of all zeros except for the (r 4 1)th

| Lo
element being 1. We further let X = € Sy and 0; be the zero vector

a a

of length I. Finally, we obtain the following formulation for the problem above:

K

0
i
suts Bij K+ ﬁcr "y d'ij’ Vr
1 [ 0 0.5
[Dm {05 0
10
X = 1,
0 0

K=0, X=0, y€Qmnt1,

where K € Sy and X € S, and (7, j) = (i(r), j(r)) as in Section 3.2. This conic
formulation, unlike Formulation (3.4.3), involves both semidefinite cone and
second-order cone. However, because of the number of constraints differs only
by a constant 2 (i.e., independent on the size of the problem) from Formulation
(3.4.3), the space complexity of Formulation (A.1.2) is similar to Formulation
(3.4.3). In simulation experiments, we obtained similar results using the /; and

square loss formulations as A varics.



A.1.2 Newbie Formulation

The newbie problem with least-squares objective is

min Z;",E\IJ 'w.l'(di’NJrl = Bi,N+l > ]{j\1+1)2

s.t. b€ Range(Ky), ¢c— b Kb >0,

where ¢ € R and b € RP. After performing the same transformations as in

Section 3.3 and defining variables d; y41, ¥ and X similarly as above, we obtain

the following formulation of this problem as a convex conic program:

0 0
min X
0 1
10
s.t. A
00
150
- X
0 0
0 40:5 ’-1
Z — 7
05 0 {01,
0 05 il
-X— y
05 0 0,
00 A, :
-Z+I{N('f,,z)—2i.-:r:~—me,n-y
0 1
Z=0, X =0,

where Z € S5, X €5;, € Qpi1, Y € Qiya-

di,f\H»lJ V?‘:
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A.2 Proof of Theorem 3.4.1

Proof. Let [s7t7]7 = w in (3.4.3), where s and ¢ arc non-negative vectors of
length m. As in section 3.4.2, we denote the rth element of 2 as (i(r), j(r)),
and with some abuse of the notation let ¢ = i(r), 7 = j(r) and w € Py, with
w(r) = w(r + m) = Witr),jir), T = 1,...,m, we can rewrite the constraints in

(3.4.3) as:

dij — Bij - K =t(r) — s(r), ¥,

KeSy, selP,, te P,
Since s and t are non-negative vectors, we have:

tr) +s(r) = [t(r) +s(r)]
()] = [s(r)l] (A2.1)

= |diyj — Bij - K|, V..

v

Summing both sides of (A.2.1) over r gives the following inequality between the
first item of the minimization objects in (3.4.1) and (3.4.3) respectively when
all constraints are satisfied: w-u > Z(i!j)m wij|dij — Bij - K|. Therefore the
global minimum of (3.4.3) is no smaller than that of (3.4.1). On the other
hand, since ¢t and s (i.c., u) are dummy variables that can vary freely (with the
non-negative constraints), the equality in (A.2.1) is always achievable by letting
t(r) = dij — Bij - K and s(r) = 0 when dj; — By - K > 0 or 5(r) = By; - K — d;

and t(r) = 0 when d;; — B;; - K < 0,r = 1,...,m. So, the global minimum
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of (3.4.3) is also no bigger than that of (3.4.1). Hence, optimization problems
(3.4.1) and (3.4.3) have the same global minimum.

Moreover, since optimization problem (3.4.3) is a convex cone programming
problem bounded from below (with w € Py, zero is an obvious lower bound).
Every local minimum of it is equal to the its unique global minimum and thus
also the global minimum of (3.4.1). So computationally, it will be convenient
to solve for any local (which is also global) minimum of optimization problem

(3.4.3).

A.3 A sketch of the proof for the [, version of

Theorem 3.4.1

Notice that, when all constraints of the optimization problem (A.1.1) are sat-

a
isfied, y = € Q41 where § is the m-dimensional vector {3, @), 7 =
0
i)
1,...,m} as defined before, and X = € 5.
a a

Similarly as we prove Theorem 3.4.1, we first prove the global minimum of
(A.1.1) is no smaller than that of (A.1.2) by observing that a > a2 > Y- | §(r)?,
where the first inequality is the direct result of positive semidefinite constraint
on X and the second follows the second order cone constraint on . We then

prove the global minimum of (A.1.1) is no bigger than that of (A.1.2) by showing

both inequalities are achievable, obviously, which completes our proof.



A.4 Proof of Theorem 3.4.2

Proof. First, we remark that the equivalence between condition (3.4.4) and the
constraints of the optimization problem (3.4.5) is simply the generalized version
of Schur complement Lemma (see Boyd & Vandenberghe (2004)).

Now, éincc the optimization target of Newbie problem is nothing but the
first item of that of RKE formulation (3.4.1), we will not repeat the similar part
as in the proof of Theorem A.2, but focus on the proof of the constraints part,
which is very straightforward.

We first notice that, the condition b € Range(K ) with the spectral decom-
position of Ky being defined as Ky = [AI'T, is equivalent to the existence of
a real vector b such that b = TAY2b. We then use this cquality to change the
variable in the inequality: ¢ —bT Kb > 0, which becomes ¢ —b7h > 0. But that
is guaranteed because ¢ > Ec)2 > bTh, where the first inequality is the result

def

of positive semidefinite constraint on Z as Z = € S5 and the second

g e
inequality follows the second order cone constraint on z as :Udg[é 67T € Gyt
in optimization problem (3.4.7). Thus we have proved that the constraints of
(3.4.5) are satisfied in (3.4.7). The rest we need to prove that optimization
problems (3.4.5) and (3.4.7) have the same global minimum follows similarly as
the proof of Theorem A.2. And again, since optimization problem (3.4.7) is a
convex cone programming problem bounded from below (with w € Pa;). Every

local minimum of it is equal to the its unique global minimum and thus also the
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global minimum of (3.4.5).
We will skip the proof for the I version of Theorem 3.4.2, for which all we

need are the already in this and previous section.

A.5 Newbie Lemma and Proof

Lemma A.5.1. Let b and ¢ be the global solution of the optimization prob-
lem (8.4.5). Let f(NH be the extended kernel defined as in (3.4.4). Suppose
Rank(Ky) = p < N. Then, Rank(Ky41) can only be equal to p or p+ 1. It

equals p if and only if c—bT Kb = 0. It equals p+1 if and only if c—b" Kb > 0.

Proof. Since ¢ — bTKjtb > 0 is a necessary condition for K’NH to be non-
negative semidefinite (see the remark at the beginning of the proof of Theorem
A4), we only need to prove the 'if” direction .

We first notice that since b € Range(Ky), Rank([Ky b]) = p. Also, by
the definition of pseudo-inverse (generalized inverse), b7 — BT KKy = 0%,
(Again, 0, is zero vector of dimension p.) Thus, if ¢ — bTK;\?b = 0, we have
v ¢ — ' KH[Kn b = 0%, which implies [b7 ¢] € Range([Kn b]). Hence,
Rank(Kn.1) = p. If ¢ — bTK$b = 6 > 0, since we have shown [b7 b7 KFb) €
Range([Kxy b)), it all boils down to whether [0% 6] € Range([Ky b))
Assume that is true. Then, there exist a N-dimensional vector g such that
g"[Ky b = [05 8. Thus g" Ky = 0%, which means g belongs to the null

space of K. Remember that b € Range(Ky). So we should have ¢7'b = 0



87

which is a contradiction to part of the assumption that ¢’b = § > 0. There-
fore the assumption is wrong and [b7 ¢ ¢ Range([Ky 0]), which implies

Rank(Ky,1) = Rank([Ky b)) +1 = p+ 1. This completes our proof.

A.6 Projection Lemma and Proof

An interesting feature of our kernel approach to the Newbic problem is that,
when the solution actually introduce an extra dimension to form the extended
kernel (i.e.c — bTKR}b > 0), if we simply project the newbie back into the space
expanded by K, almost always that projection is not the optimal solution for
the newbie problem restricted in the space expanded by Kpy. The following

lemma states this observation (in the case of [ loss) more precisely.

Lemma A.6.1. Let {z;;} be the known coordinates of N points, where i =
1,.... N indexes the points and 7 = 1,...,p indexes the dimensions. Lel * be
the dimension index of a newbie with {d.;, i =1,..., N} denoting the observed
dissimilarity measures (corresponding to squared Fuclidean distances) between
the newbie and the existing N ‘training’ points. Denote the unknown coordinate
of the newbie as x. ;, and the fitted dissimilarity dyi= Zle(:c*,j — )%, where
P = p if we restrict the newbte to be in the original p-dimensional space, or
P = p+1if we allow the newbie to introduce a new dimension while padding

the coordinates of the existing N points each will a zero. We redefine the newbie

problem as: Finding {x.;, j=1,..., P} that minimizes the I3 loss Ziﬂd*‘i —
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D).

Let {Z.;, j =1,...,p+ 1} be the solution to the newbie problem with P =
p+ 1. Suppose Z.pi1 # 0. Then Zf\_il(:?:” el =0, fory =1,...,8, L&,
the condition that 7, ;, 7 =1,...,p is the sample mean of the existing N points
is a necessary for {&.;, 7 =1,...,p} to be the solution to the newbie problem

with P = p. Obviously, this condition is very unlikely in real situations.

Proof. Suppose {%.;, j =1,...,p+1} is the solution to the newbie problem

with P=p+1and £,,.1 =c#0. Let d,; = Zfii(:r,*ﬁ — z;4)? with ;541 =

0, 2=1,...,N (padded zeros). Then first order condition for this to be optimal

solution states:

5 N N

a_q: Z(d*’iﬁﬂ?*’i)Q = Z(d*ei*(z*!i)(x*‘j*ﬁfi’j) = O, j = 1, R ,p+1 (AG].)
*J =1 i=1

If the projection {&,;, j = 1,...,p} is the solution to the newbie problem

with P = p, we write down the first order condition similarly as:

Z(d*ﬂ- —(dui —EN(@a; —7:15) =0, j=1,...,p. (A.6.2)

Bring (A.6.1) to (A.6.2) for 7 = 1,...,p, we have:

N
D (dei = (dui — ) (@0 — m1y)
=1
N N
= Y (g —leg) @y —Tig) + @ Y (Bag—Tig)
i=1 i=1
N
= &) (s — :3)
=1

=0, j=1,...,p.
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The second equality is due to (A.6.1). Now, since ¢* > 0, we must have

2?;1(53*,3' —1z;;) =0, for j =1,...,p, which completes the proof.
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Appendix B

Some Computer Codes

B.1 RKE for Multidimensional Scaling with [;

loss

function [D,K]=1lrkei(lambda,d,H,delta,method,sw,swl,ni)

e
h

T
To

T

absolute loss penalty Regularized Kernel Estimate

Written by Fan LU, Department of Statistics, UW-Madison

lambda : the scalar coefficient in front of the trace penalty on the kernel
d : given dissimilarity matrix n-by-n, missing entries are zeros
we usually assume (though not necessary for the algorithm):
1) dfi,j¥>=0 fer all 1"=j; 2) d(i,1)=0; 3) d(i,])=d(j.1)
H: H is both indicator matrix and weight matrix of the same size as d
the sum of loss part in the RKE formulation includes only the entries
of d for which, the corresponding entries in H are nonzero. And the

nonzero entries in H will also serve as the weights for inividual
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4 loss within the sum of losses. So, for the missing entries in d, the
- corresponding entries in H must be zero. Also because of 2) 3)

pA above, H is usually a (defaul: down) triangular matrix excluding

A the main diagnal. Uniform weighting scheme will correspond to

. assign all observed dissimilarity entry a weight of 1

% sw: 1: using given starting point (X0, Z0 stored in start.m), 0: otherwise,
b default: 0

% swl: 1: using hidden conditon to guarantee the self-centering conditionms,

% 0: not, default: 0O

% method: sdpt3 or dsdpb, default: sdpt3

% ni: # of iterative log(det) minimization, default 1 (no iteration, as in

A PNAS paper), see Boyd reference

% delta: a small positive scalar to add to main diagonal elements a non-full
A rank nonegative-definite matrix for inversion. Default: machine

precision

%% Checking the inputs
[n,m]=size(d);
if n"=m
error (’Need squre distance matrix’);
end

disp([’# of points= ’,num2str(n)])
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disp([’lambda= ’,num2str(lambda)])

%% Setting default arguments
if nargin <8
ni=1; %% Default: no log(determinant) miniziation steps
if nargin <7
swi=0; %% Default: no hidden condition necessary of MDS type of RKE
if nargin<6é
sw=0; %% Default: using solver default starting point
if nargin<5b
method=’sdpt3’; %/ Default method is ’SDPT3’
if nargin<4
delta=eps; %% Default: machine precision
if nargin<3
[x,yl=meshgrid(1:n); %% Default: fit all down
H=zeros(n); %% triangle d_ij elements
H(d>0)=1;
H(y<=x)=0;
end
end
end

end
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end

end

if any(size(H) =[n,nl])
error (’Weight Matrix must be the same dim of distance matrix’);

end

[iind, jind,Hijl=find(H); %%find nonzero values, zero d_ij won’t be fitted
nHij=length(Hij);
disp([’# of distinct pairs= ’,num2str(nHij)])

nHij2=nHij*2;

%% Preparing convex conic problem 3.4.3 in thesis in SDPT3 solver format
%/ Preparing optimization target coefficients in SDPT3 format
Hij=(Hij(:))’;

Hij=[Hij;Hijl;

Hij=Hij(:);

%% for target CxX
C{1}=sparse(1:(nHij2+n),1: (nHij2+n), [Hij;lambda/(1+delta)*ones(n,1)]);

nC=size(C,1)-n+1;

%/ Preparing constraints coefficients in SDPT3 format
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b=zeros(nHij,1);

%% b is the right side of the constraints: Avec T*X=b

%% the length of b is the number of constraints

%h For example, for the formulation 3.4.3, b

%% will be of length m, (but we better not set b as zero

%% vector, but containing d_ij values which are observed constants)

%% See also the SDPT3 reference

iA2=[];
for ij=1:nHij
i=iind(ij);

j=jind(ij);

%% NOTE i>j (down triangle!!!)
i A
1A2=[iA2, [i*(i+1)/2, (i-1)*i/2+j,j*(j+1)/2]];
else
iA2=[1A2, [ix(i+1)/2, (J-1)*j/2+i,j*(j+1)/2]];

end

b(ij)=d(i,j) ;%% Note: But if h(ij)=0,, the constraint doesn’t exist

end
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%% Preparing hidden conditions in SDPT3 format
if swl|lambda==0 %%if swl==1 or lambda==0 use hidden condition
disp(’Using hidden condition’)%%whether explicitly restrict K to be centered
Avec{1}=sparse( 2:3:(3*nHij-1),1:nHij,ones(1,nHij)*sqrt(.5),...
3*nHij,nHij+1);
jA2=1:nHij; jA2=repmat(jA2,3,1); jA2=jA2(:); jA2=jA2’;
d2=n*(n+1)/2;
iA2=[1A2,1:d42];
jA2=[jA2, (nHij+1)*ones(1,d2)];
d2=ones(1,d2)*2;
ij=0;
for i=l:n
ij=ij+i;
d2(ij)=sqrt(2);

end

Avec{1}=[Avec{1};sparse(iA2, jA2, [repmat ([1,-sqrt(2),1],1,nHij), ...
d2] ,n*(n+1)/2,nHij+1)];
b(nHij+1)=0;

else

disp(’Not using hidden condition’)
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Avec{1}=sparse( 2:3:(3*nHij-1),1:nHij,ones(1l,nHij)*sqrt(.5),3*nHij,nHij);
jA2=1:nHij; jA2=repmat(jA2,3,1);
Avec{1}=[Avec{1};sparse(iA2,jA2(:) ,repmat([1,-sqrt(2),1],1,nHij),...
n*x(n+1)/2,nHij)];

%% Avec is essentially the coefficients of the constaints: Avec T#*X=b;
%% the number of columns are the number of constraints (thus the length
%% of b). But every original matrix coefficient has to be first converted
%/ to the wvector formak ag svec(X)=[xll,sart(2)x12,x22 8qrt(2)x13, ... ,xmm]’
%% See SDPT3 and DSDP5 references

end

%% End of Hidden conditioms

%% SDP block sizes and types (see SDPT3 reference in PNAS paper)

blk{1l. .1} ="*g'; % SDP cones

blk{1,2} [2*ones(1,nHij) ,n]; %% block structure: nHij 2*2, and one n*n

%% note that I put all variables in one block strucured matrix

%% Clear redundant variables to save memory for convex conic solver
clear iind jind Hij
clear i j ij iA2 jA2 swl nHij2 nHij

if sw %% if sw==1 use special starting point



97

disp(’Using optimal starting point’)
load(’start®,?X0’,°Z0’)
%% feeding in sqlp (SDPT3 solver) the prepared b, blk, Avec, C
[obj,X,y,Z,info,runhist] = sqlp(blk,Avec,C,b, [],X0,zeros(length(b),...
1),20);
else

disp(’Using suggested starting point’)

if method(1)==’s’|method(1)=="8"

disp(’Will use solver: SDPT3’) Y%J%using solver SDPT3
whos, pack

%% Calling solver SDPT3 (install SDPT3, see SDPT3 reference)
%% feeding in sqlp (SDPT3 solver) the prepared b, blk, Avec, C
[obj,X,y,Z,info,runhist,Xiter,yiter,Ziter] = sqlp(blk,Avec,C,b);
if info(1)>0

X=Xiter; y=yiter; Z=Ziter;,

end
clear Xiter yiter Ziter

K=X{1}(nC:end,nC:end);

%% log(determinant) iterations

for i=2:ni
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disp(’ 7)
disp([’Iteration # ’,num2str(i),’ ....... ‘1
C{1}(nC:end,nC:end)=lambda*inv (K+delta*eye(n));
whos, pack
[ob] ,X,y,Z,info,runhiat Xiter,yiter ,Ziter] = ...
sqlp(blk,Avec,C,b, [],X,y,2);
if info(1)>0
X=Xiter; y=yiter; Z=Ziter,
end
clear Xiter yiter Ziter
K=X{1}(nC:end,nC:end) ;
end
else
disp(’Will use solver: DSDP5’) ¥%using solver DSDP5
%% DSDP5 solver provides program readsdpt3.m to convert
%% SDPT3 problem format to DSDP5 format
[AC,bl=readsdpt3(blk,Avec,C,b);
clear blk Avec C sw
whos, pack
%% Calling solver DSDP5 (install DSDP5, see DSDP5 reference)
[STAT,y,X]= dsdp(b,AC);

K=dmat (X{1} ((end+1-n*(n+1)/2) :end));



%% log(determinant) iterations

for i=2:ni
disp(’ )
disp([’Iteration # ’,num2str(i),’ ....... ')
AC{1,3}(:,end)=1ambda*dvec (inv(K+delta*eye(n)));
whos, pack
[STAT,y,X]= dsdp(b,AC, []1.,y);
clear STAT

K=dmat (X{1}((end+1-n*(n+1)/2) :end)) ;
end
end

end

%% Check the result

%% Eigenvalue eigenvector decomposition
ni=n-1;n2=n-2;

[eigv,tem]=eig(full(K));

tem=diag(tem) ;

%% first 3 principal coordinates
eigv(:,n)=eigv(:,n)*sqrt(tem(n));

eigv(:,n1)=eigv(:,nl)*sqrt(tem(nl));

99
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eigv(:,n2)=eigv(:,n2)*sqrt(tem(n2));

%% plotting eigen values

figure

plot (loglO(tem(n:-1:1)),’-0’)

title([’'Log_{10} Eigen values in descending order, \lambda=’,...
num2str (lambda)])

ylabel(’log _{10}(e.v.)?)

xlabel(’Rank of e.v.s’)

disp(’Largest 11 eigen values’)

tem(n-10:n)

fprintf (’\nSum of eigen values’’ squre roots= %e \n’,sum(sqrt(abs(tem))));

%% BRKE K induced D
tem=diag(K)*ones(l,n);
D=tem+tem’-2xK;
D(H==0)=0;

D=sparse(D) ;

%% Checking the centering and symmetric condition on RKE K
dimp(* )3
disp(’Checking the symmetry of result Kernel’);

if all((K-K’)<le-10)
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disp(’K is symmetric’);
else
disp(’K is not symmetric’)

end

diap(’ *);
disp(’Checking the normality of result Kernel’);
if all(sum(K)<le-5)&all (sum(K,2)<1le-5)
disp(’K is normal’);
else
disp(’K is not normal’)

end

%% Printing the values of total loss and penalty on the trace for RKE K
fprintf (’\nSum of loss= %e’, full(sum(sum(H.x*((abs(D-d))."2)))) );

fprintf (’\nPenalty on trace (with lambda)= %e \n’, full(lambda*trace(K)));



102

B.2 Newbie algorithm with /; loss

function [dh,x,ris]=embed3v3L(hdname,d,lambda,H,r)

%hdname: file name of the saved and to-save variable space

hd: observed dissimilarity data for newbies against training set

%lambda: the lambda used for the RKE

%H: as in RKE code

%»r: dimensions preserved in newbie algorithm, if r is integer greater than 1

% proportion of the trace preserved if r is between 0 and 1.

[nnew,N]=size(d);

= sris=[1g

if disempty(lambda)
load( ["temp’  hdnama] ,'K), V!, 1E? Jxd)
else
if prod(size(lambda))==
%/ Retrieve stored RKE kernels for certain lambda
sl=sign(lambda) ;
lambda=abs (lambda) ;
nlambda=num2str (lambda) ;
clambda=nlambda;

clambda(strfind(nlambda,’.’))="d’;
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clambda(strfind(nlambda,’-’))="m’;

if s1<0
load (hdname, ’fname’, [’k’,clambda])
eval (['K=k’,clambda,’;’])
else
load (hdname, ’fname’, [’K’,clambda])
eval ([’K=K’,clambda,’;’])
end
else
K=lambda; %) Use lambda to pass unstored K
end
%% Eigenvalue eigenvector decomposition
[V,El=eig(K);
[tem,ie]=sort(abs(diag(E)));
E=real (E(ie,ie));

V=real (V(:,ie));

oE=E;

K=(diag(K))’;

if nargin<b
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r=.999; %% Default percentage of trace preserved

end
it r<l
tem=diag(E);
%% Find the number of eigenvalues (from the biggest)
%% need to be preserved
r=find( (cumsum(tem(N:-1:1))/sum(¥))>r,1,’first’);
end

tem=N:-1:N-r+1;
E=-2%[zeros(N,1),V(:,tem)*sqrt(E(tem,tem))];
save([’temp’,hdnanme] ,’K’,’V’,’E’,’r?)

%% Careful the abuses of K and E for saving memory

end

if length(K) =N
error (’Wrong length of provided dissimilarity!’)
end

disp([’Embedding ’,int2str(nnew),’ new objects’])

if nargin<4|isempty(H)
H=ones (nnew,N) ;

end
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H(d==0)=0;

%% Set SDPT3 option values

OPTIONS.vers = 1
OPTIONS.gam = 0;
OPTIONS.predcorr = 1;
OPTIONS.expon = [1 1];
OPTIONS.gaptol = le-8;
OPTIONS.inftol = le-13;
OPTIONS.steptol = le-12;
OPTIONS.maxit = B0;
OPTIONS.printyes = 0;
OPTIONS.scale_data = 0;
OPTIONS.randnstate = 0;
OPTIONS.spdensity = 0.5;
OPTIONS.rmdepconstr = 0;
OPTIONS.cachesize = 256;
DPTIONS.smallblkdim = 15;

for io=1:nnew
[iind, jind,Hijl=find(H(io,:)); %find nonzero weights

nHij=length(Hij);
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disp([’# of distinct pairs= ’,num2str (nHij)])
nHijl=nHij+1;

nHij2=nHij*2;

%% Preparing convex conic problem 3.4.7 in thesis in SDPT3 solver format
%% Prepare coefficients for variable matrices in optimization target

%% in SDPT3 format

Hij=(Hij(:))?;

Hij=[Hij;Hij]l;

Hij=Hij(:);

C{1}=dparse(2;: (nHij2+2) ,2; (nHij2+2]} , [1;Hij]);

C{2}=sparse(zeros(r+1,1));

%% Prepare constraints coefficients in SDPT3 format
b=zeros(nHij+2,1);

b(1)=1;

b(3:end)=d(io, jind)-K(jind);

%% b is the right side of the constraints: Avec T*X=b

%% the length of b is the number of constraints

%% For example, for the formulation 3.4.3, b

%% will be of length m, (but we better not set b as zero

%h vector, but'containing d_ij values which are observed constants)
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%% See also the SDPT3 reference

Avec{1}=sparse([1:2,3*ones(1,nHij),5:3: (3*nHij1)], [1:nHij+2,3:nHij+2],...
[1,sqrt(.5),ones(i,nHij),ones(l,nHij)*sqrt(.S)],3*nHij1,nHij+2);

Avec{2}=[zeros(r+1,1),[-1;zeros(r,1)]1,(E(jind,:))’];

%4 Avec is essentially the coefficients of the constaints: Avec T*X=b;

Y% the number of columns are the number of constraints (thus the length

%% of b). But every original matrix coefficient has to be first converted

%% to the vector format as svec(X)=[x1l,sqrt(2)x12,x22,8qrt(2)x13,...,xon]"’

Y% See SDPT3 and DSDP5 references

%% Block sizes and types in SDPT3 format

blk{1,1} = ’s’; %% sdp cones

blk{1,2} = 2+ones(1,nHijl1); %% nHijl # of 2%2 cones
blk{2,1} = ’q’; %% second order cone

blk{2,2} = r+1; %% one for size r+1

%% Clear redundant variables to save memory
clear iind jind Hij tem

clear nHij2 nHij nHijl



end
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whos, pack %% Check memory condition
%% Calling solver SDPT3 (install SDPT3, see SDPT3 reference)
h#% feeding in prepared blk, Avec, C, b

(obj,X,y,Z,info,runhist] = sqlp(blk,Avec,C,b,0PTIONS);

tem=X{2}(2:end);

h#% Take out part of the output that is of interest
%#% which is the \"{c} in equation (3.4.6), which is
%% also the embeded coordinates

x=[x,tem] ;

g=(X{2}F(1))°2;

h# recording the residues c-b T*K +*b

ris=[ris, [c-tem’*tem;X{1}(2,2)-c]];

clear blk Avec C D

clear obj X y Z info runhist

% Calculating the fitted dissimilarity (d hat)

load( [’temp’,hdname],’K’,’E’)

dh=repmat ((K’+c),1,nnew)-E(:,2:end)*x;
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