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CHAPTER 11

DESIGN OF SIMPLE DISCRETE CONTROL SCHEMES

A common control problem is that of how to maintain some
output variable as close as possible to a target value in a system
subject to disturbances. We now discuss this problem using the
previously discussed stochastic and dynamic models to describe
disturbances and system dynamics.

We shall continue to assume that data is available at
discrete equispaced time intervals when opportunity can also be
taken to make adjustments. We shall also assume that no appreciable
extra cost is associated with corrective action. This is the case
for most chemical processes subject to manual or automatic control.
It is then sensible to seek control schemes which minimize some
overall measure of error at the output. The overall error measure-:
we use is the mean square error.

In some instances one or more sources of disturbance may
be measured and these measurements used to compensate potential

deviations in the output. Such action is called feedforward

control. In other situations the only evidence we have of the
existence of the disturbance is the deviation from target it produces
in the output. When this deviation itself is used as a basis for

adjustment we have feedback control. In some instances a combination

of these two modes of control is desirable and this we call

feedfébrward  —~feedback control.




We first show how one can design control schemes of the
various types to yield minimum mean square error at the output.
The effect of input errors are then considered. We later show how
process data and, in particular, data collected during the operation
of a pilot control scheme may be used to obtain better estimates of
the model and its parameters. This allows us to employ an interative
approach in arriving at an optimal control scheme, We finally
consider the design of control schemes when the variance of the

input is constrained.

11.1 Feedforward Control

We now consider the design of discrete feedforward control
schemes which give minimum mean square error at the output. A
situation arising in the manufacture of a polymer is illustrated

in Figure 11.1. The viscosity Y of the product is known to

t
vary in part due to fluctuations in the feed concentration z,

which can be observed but not changed. The steam pressure Xt

is a control variable which is measured, can be manipulated, and
is potentially available to alter the viscosity by any desired
amount. and so0 to compensate potential deviations from target. The
total effect in the output viscosity of all other sources of

disturbance at time t is denoted by n,.

11.1.1 Feedforward control to minimize mean square error at the

outEut

We can suppose that Zy s xt, n, are deviations from
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deviation from target viscosity = € = n, + 6_1(B) w{B) Z b
where X is held fixed at value
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Figure 11.1 - A gystem at time t subject to an observed disturbance z,

and unobserved disturbance nt with potential compensating

variable Xt held fixed at Xt =0



reference values which are such that if the conditions z = 0,

X

0, n = 0 were continuously maintained then the process would
remain in an equilibrium state such that the output was exactly
on the target value Y = 0.

The dynamic relation which connects the observed

disturbance zy {(feed concentration) and the output Yt

(viscosity) is

Y, = s t(B)e®) B®z

t t°

Similarly the dynamic relation which connects the compensating

variable X (steam pressure) and the output Yt (viscosity) is

t

" -1 bl
= Ll (B)L2(B) B™ X .

X t

t

Then if no control is exerted (the potential compensating variable

Xt is held fixed at X, = 0) the total error in the output viscosity

will be

_ -1

Clearly it ought to be possible to compensate the effect

of the measured parts of the overall disturbance by manipulating Xt.

Now changes will be made in X at times t, t-1, t-2, ...

immediately after the observations z., z,_;, Z,_, are taken.

Hence we have a "stepped" input and we denote the level of X in

the interval t to t+1 by X At time t, and at the point P in

t+’



the diagram:
the total effect of the disturbance (z) is

sHBu(B) z_,

the total effect of the compensation (X) is

-1
L1 (B)L,(B) X, o, -

The effect of the observed disturbance z will then be

cancelled if we set

LI]'(B)LZ(B) X - s l®u®m z

t-f+ t-b

(11.1.1)

: -1 -1
that is L, (B)L,(B) X - & T(B)uw(B) zi_ () £y

Case 1 b > f

The control action (11.1l.1) is directly realizable only
if (b-f) > 0. This is to say if the number of whole periods of
delay b between the time at which an increment of the disturbance
is observed and the time it affects the process is longer than the
number of whole periods of delay f before action can influence
the output. The desired control acticn at time t is to set the
manipulated variable X to the level

_ L, (B)u(B)

X = ————— b4 .
t+ Lz(B)6(B) t-(b~f)

Alternatively it is often more convenient to define the control

action in terms of the change x, =X, - X _;, which is to



be made in the level of X. This is

Ll(B)w(B)

x = -

t (11.1.2)

Taea -z ).
L, (B)§ (B) t-(b-£f) t-1- (b~-£)

The situation is illustrated in Figure 11.2. The effect at P

from the control action is -G-l(B)w(B)zt_b and this exactly

cancels the effect at P of the disturbance. The component of

the deviation from target due to =z is (theoretically at least)

t
exactly eliminated and only the component n, due to the unobserved

disturbance remains.

Case 2 (b—-f) negative

It can happen that £ > b. This means that an observed
disturbance reaches the output before it is possible for compen-

sating action to become effective. In this case the action

§(B)L,(B) X, = -Ly(B)uw(B) z (¢ p, (11.1.3)

is not realizable because at time t when the action is to be

taken the relevant value Zit (£-b) of the disturbance is not yet

available. One would usually avoid this situation if one could
(if some quicker acting compensating variable could be used
instead of X) but sometimes such an alternative is not available.

Now if the disturbance z, can be represented by the
linear model
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then

Ziwf-b zt(f-b) + et(f-b) .

In this expression

e (£-P) = ai e ptVi2tas-p-1t ro0 T VEpo1%t4

is the forecast error. Then we can write (11.1.3) in the form
G(B)LZ(B)Xt+ = -Ll(B)w(B)zt(f—b) - Ll(B)w(B)et(f-b)

Now et(f-b) is a function of the independent random

deviates a (h > 1) which have not yet occurred at time t

t+h
and which are independent of any variable known at time ¢t
(and so are unforecastable). It follows that the optimal action

is achieved by setting

Ll(B)w(B) ~
Xep = - zt(f-b) (11.1.4)
Lz(B)G(B)

that is by making the change in the compensating variable at
time t equal to
LI(B)w(B) ~ "

X, = - — z, (£~b) - z__,(f-b) (11.1.5)
t L, (8)5(B) t £-1 ,



This results in an additional component in the deviation €4

from the target, and now

e, = n,+ 8 (BB e _ (D) .

The scheme is illustrated diagramatically in Figure 11.3.

11.1.2 An Example. Control of the specific gravity of an

intermediate product

In the manufacture of an intermediate use for the

production of a synthetic resin the specifié gravity Yt

of the product had to be maintained as close as possible to the
value 1.260. This was actually achieved by a mixed scheme of
feedforward and feedback control. We consider the complete scheme
later and discuss here only the feedforward part. The process has
rather slow dynamics and also the disturbance is known to change
slowly so that observations and adjustments are made at two hourly
intervals. The uncontrolled disturbance which is fed forward is

the feed concentration =z which is referred to an origin of 30

t
grams per litre. The relation between specific gravity and feed

concentration over the range of normal operation is

Yt = 0.0016 zy

where Yt is measured from the target value 1.260.



~10~

deviation from target output €&,

T +6-1(B)w(B)et_f(f—b)

Vg
1 ! -1 I“
0 (Blw(B) z,_y - {8 (B)w (B) z,_g (£-D)}
Unobserved
disturbance
- -1
57" (B)w(B) B L, (B)L, () BE
t
Compensa.ting“%z":,f =z X
variable j=1
Control equation
L.{B) w(B) .
QObserved 1 ~ ~
___________ = - (£~ -z -
disturbance @ > 177 L,(B)0 (B) {z-E-w) -2, (£-p)}
Figure 11.3 'Feedforward control scheme at time t

when £ > b
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This relation contains "no dynamics" because the feed
concentration can only be measured at the inlet to the reactor

so that in our general notation
§{(B) =1, w(B) = 0,0016, b=20 .

Control is achieved by varying pressure which is referred to a
convenient origin of 25 p.s.i. The dynamic relation between

specific gravity and pressure was estimated as

(1 - 0.7B) Yt = 0.0024 B xt+

so that

Ll(B) = (1 - 0.7B), L2(B) = 0.0024, £ = 1.
So far as can be ascertained the effects of pressure and feed
concentration are approximately additive in the region of normal
operation. The control equation is therefore

_ _ {1 -0.7B) 0.0016
t 0.0024

X ;t(l) .

Study of the feed concentration shows that it may be represented

by the linear stochastic model of order (0,1,1)

v z, = (1 - BB)at, with 6 = 0.5.

For such a process

zt(l) = (1 - e)zt + 06 z (1)

t-1

(1 - 6B) zt(l) = (1 - @) Z,
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- = (1-0)
Zt(l) = m)- Zt .

Thus, finally the control equation can be written

_ _ (1 - 0.7B) 0.0016 (0.5)
Xer 7 0.0024 (1 - 0.5B) 2t (11.1.6)

or

- 0.33 {z_~0.7 z o (11.1.7)

X,, = 0.5X . el

t+ t-1+
Table 11.1 shows the calculation of the first few of a
series of settings of the pressure required to compensate the

variations in feed concentration given the starting conditions

for time t = (O of Zo, = 1.6, xo+ = ~-0,63
Concentration Pressure
t z, + 30 z, Xt+ xt+ + 25 X,
31.6 l.6 -0.63 24.4
1 31.1 1.1 -0.31 24.7 0.3
2 34.4 4.4 -1.36 23.6 -1.1
3 32.0 2.0 -0.32 24.7 1.1
4 28.2 -1.8 0.91 25.9 1.2

Table 11l.1: Calculation of adjustments for
feedforward control scheme

-

Once the calculation has been started off it is sometimes more
convenient to work directly with the change Xy to be made at

time t using



-13-

x = 0,5 x

. e - 0.33 {vz_ - 0.9 vz,_,} . (11.1.8)

Figure 11.4 shows a section of the input disturbance and the
corresponding output after applying feedforward control. The
lower graph shows the calculated output (specific gravity) which
would have resulted if no control had been applied. These values

Yt are, of course, not directly available but may be inferred from

the values Y,' which actually occurred using

t
0.008 z,
Yo = YW * 10558
l.€.
Y, = 0.5Y¥ _, +Y'+ 0.008z .

As a result of feedforward control the root mean sguare error
deviation of the output from target value over the sample record
shown is 0.003. Over the same period the root mean square error
of the uncorrected series would have been 0.008. The improvement
is marked and extremely worthwhile, However, it appears that
other unidentified sources of disturbance exist in the process

as evidenced by the drift away from target. This kind of

tendency is frequently met with pure feedforward schemes but may
be compensated by the addition of feedback control as is discussed

later.
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DISTURBANCE CONTROL VARIABLE
X
“t-1 “t g t-1+
Previous Present Adjust ,
Pressure Previous
Feed Feed
, , Now Pressure
Concentration Concentration to
—— 10 -T- 10 !_ 29 -+ 29
- —— 1-
=T T -T- 28 - 28
—t— 20 —— 20 - 27 —— 27
-P L
4 e T
-1 -1 —t= 26 -~ 26
-+ L
1 + ]
-+ +-
25 2h
4 24 - 24
+
-1 23 —+ 23
n ] -+ L
== 50 - 50 —_— 21 - 21
E D C B A

Figure 11.5 Nomogram for feed forward control scheme
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11.1.3 A nomogram for feedforward control

If changes are made fairly infrequently and if the control
equation is fairly simple the theory we have outlined may be used
to obtain optimal manual control. It is then convenient to use
some form of control chart or nomogram which can be easily understood
by the process operator.

For illustration we design a nomogram to indicate the
appropriate feedforward control action for the previous example.

The control equation is

(1 - 0.5B)Xt+ = -0.33 (1 - 0.7B) T,

and since (1 - 6B) = (L - &) (1 + 1%5’ )

this may be written in difference notation as

(1 + V)Xt+ = =0.2 (1 + 2.33V)zt (11.1.9)

To design a nomogram which allows us to compute the value
of

r, = (1+E,V)xt+ =

+ +£ (X

e t+ Xeo14)

we construct three vertical scales to accommodate xt-l+ ’

Xt+ and Ty like the scales A, B, and C in Figure 11.5 and mark

them off in units of X, and space them so that BC/AB = E.

Then by simple geometry it is evident that the value of r,
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may be obtained by projecting a line through the points

corresponding to X and Xt+ on the A and B scales unto

t-1+

the C scale--the scale of rt .

To achieve the control action of equation (11.1.9)
we must equate two expressions of this type and we need five
scales as shown in Figure 11.5. Four of these,namely A, B,

D, and E, are to accommodate X, ., X z,, and z, 4 respectively

t+’
and a further scale C allows the right side of the equation to
be equated to the left. The scales are arranged
(i) so that the origins pressure = 25 p.s.i.,
feed concentration = 30 grams per litre are
in the same horizontal line and so that 1 unit
of Zy equals -0.2 units of X,

BC

{(ii) so that i = 1, = 2,33.

DE

To illustrate the use of the chart we show the calculation of
the action appropriate at time t = 2, We project unto the C
scale at P the line joining the previous feed concentration

(zl+ 30) = 31.1 on the E scale and the present feed
concentration (zz+30) = 34.4 on the D scale. We then join this

projected point P to the points marking the previous pressure

xt++ 25 = 24.7 on the A scale and read off the value Xt++25 = 23.6

to which the pressure must now be adjusted and held for the next

two hours,
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11.1.4 Feedforward control with multiple inputs

No difficulty arises in principle when the effect of

several additive input disturbances Zyr Zos eecr z, are to be

compensated by changes in X using feedforward control. Suppose
the combined effect in the output of all the disturbances is
given by

b.

-1 3
S (Blw, s
GJ ( )w}(B)B th

<
|
It~ »

j=1

and as before the dynamics for the compensating variable are
given by

Y, = L-l(B)LZ(B)Bf X

t t

Then doing precisely as before the required control action is

to change X at time t by an amount

K
- -1 -1 - 1
xy = ~Ly (B)L, (B).Xl 857 (B)us (B) [2j,t+f—bj ?§,t+£-b -1l

J=
(11.1.10)
where
zjrt‘l‘f—bj _zjrt+f"bj_l f-bj = °
z. -z, =
3,t+f-bj j,t+f-bj-1 (11:1:11)
z. £-b.)-z. f-b. f-b. > 0
j,t( J) th'1( J) J

1f, as before, n, is an unidentified disturbance then the error

at the output will be



~19-

€t = nt+

e Py

-1
ﬁj (B)mj(B)ej,t-f(f bj) (11.1.12)

j=1

where ey . c(f-bj) = 0 if f-by < 0.

On the one hand this type of control allows us to take
prompt action to cancel the effect of disturbing variables, and

if f-bj < 0, to anticipate completely such disturbances at least

in theory. On the other hand to use feedforward control we must
be able to measure the disturbing variables and possess complete
knowledge--or at least a good estimate--of the relationship
between each disturbing variable in the output. In practice we
could never identify and measure all of the disturbances that
affected the system. The remaining disturbances which we have
denoted by n., and which are not affected by feedforward control,
could of course increase the variance at the output or cause
the process to wander off target as in fact happened in the
example we discussed.

Clearly we should be able to prevent this from happening

by using the error itself to indicate an appropriate

€t

adjustment--that is, by the use of feedback control.
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11.2 Feedback Control

Consider the feedback scheme shown in Figure 1l.6.

Here n, measures the joint effect at the output of unobserved

disturbances and is defined as the deviation from target that
would occur in the output at time t if no control action were

taken. It is assumed to follow some linear stochastic process

defined by
n, = @“1(B)e(B)at (11.2.1)
or by
n, = 1+] B a, (11.2.2)
i=1l
where A1s B0 sees a, is a sequence of uncorrelated random

variables. Arguing precisely as before we have at the point P

for time t

Total effect of disturbance n

t

Total effect of compensation LIl(B)Lz(B) X

t-£+

11.2.1 Feedback control to minimize output mean square error

The effect of the disturbance would be cancelled if it

were possible to set

_ -1
X = —Ll(B)L2 (B) n (11.2.3)

t+ t+f °

Since f 1is positive this is not possible, but we can obtain
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output deviation from target € = G (£)
® —~®
A
- nt_f (f)

-1
L1 (B) LZ(B) gf

Control equation

L,(B) L,(B) ¢1-B)

%t L(B)IL,B) ot

g ewmm emmi e amp g — —p— i et g e o e e ewm wmm mm mmm e e e — v —— —

— me e mm e e we ww G dme M W R m o

Figure 11.6 Feedback control scheme at time t
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minimum mean square error controlled by replacing Nyis by the

~

forecast nt(f); that is, by taking the control action

= -1 5yn

The change or adjustment to be made in the manipulated

variable is thus

~

= ng_; (£) (11.2.4)

- -1 -
x, = Ll(B)L2 {B) nt(f)

in which case the error at the output at time t will be the forecast

error for lead time f for the n, process, that is

eg = eg(H) -

~

Now n (£} - n,_,(f) is not known directly but it can nevertheless

be deduced from the sequence €., €. s E¢_o5r ++- which is available.

Thus,

De+f i At

I
|
-+
il &~
©
)

{ag gt¥iap e re e ja g} + (Wea +opja, +..0)

et(f) + ;t(f) .

Furthermore, we can write

Nyys L,(Bla  ¢+L;(Blag .
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Knowing the model n = ¢_l(B)B(B)at = ¥(B)a, for the stochastic

process we can deduce the operators L3(B) and L4(B) in the

relations

et_f(f) = L,(B)a,, nt(f) = Ly(B)ay (11.2.5)

and hence the relations

~ L3(B) L3(B)
nt(f) = L_4_(Fr et_f(f) = -L-4—(§T£t.

Finally then, the feedback control equation resulting in
smallest mean square error at the output may be written

Ll(B)L3(B)
Xt+ = - W Et . (11-2.5)

Alternatively, if as is frequently convenient, we define the

control action in terms of the adjustment x, = X _ =X,
to be made at time t, then
L, (B)L, (B) (1-B)
¥t T T TL(BIL,(B) “t (11.2.7)
2 4
where
n (f) - n _,(f) = Ly(B)(1-B) a, .

11.2.2 application of the control equation: relation with

three-term controller

In this book we are principally concerned with the
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derivation of the optimal control equation which indicates how the
manipulated variable should be changed to maintain the controlled
variable close to some target value. In practice the actual
measuring and the computing and carrying out of the required action
can be done in a number of ways. At one end of the scale of
sophistication one may have electrical measuring instruments the
results from which are fed to a computer which calculates the
required control action and directly activates transducers which
carry it into effect. At the other end of this scale one may have
a plant operator who periodically takes a measurement, reads off
the required action from a simple chart or nomogram and carries

it out by hand. The theory which we have described has been used
successfully in both kinds of situations. We go to some pains to
describe in detail some of the manual applications because we feel
that the use of elementary control ideas to assist the plant
operator to do his job well has been somewhat neglected in the past.
Althoughundisputably more and more schemes of automatic control are
coming into use there is still a great deal of manual operation and

this is likely to continue for a long period of time.

The three-term controller

A type of automatic control device which has been in use
for many years is the "three-term controller." Controllers of
this kind may operate through either mechanical, pneumatic,
hydraulic, or electrical means and their operation is based on

continuous rather than discrete measurement and adjustment. If
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€¢ is the error at the output at time t, control action may
be made proportional to € itself, its integral with respect to
time or its deriwative with respect to time. A three-term
controller uses a linear combination of all of these so that if

L indicates the level of the manipulated variable at time t

the control equation is of the form

dat

X, = ky 3¢ *kpey * k[ gat
where kD, kP, and kI are constants.
In some situations only one or two of these three modes

of action are used. Thus we find instances of simple proportional

control (kD = 0, kI = 0), of simple integral control (kD = 0,

kP = 0), of proportional-integral control (kD = 0}, and of

proportional-derivative control (kI = 0).

The discrete analogue of this continuous control egmation is

X = kDVet + kpe

£+ + kISat (11.2.8)

t
or in terms*of the adjustments to be made

+ kPVet + kIst .

* In previous papers [1],[2] we have used a different nomenclature.

For example an adjustment xt=kIet was there referred to as proportiona

contrel. This control action is equivalent to xt+=kISet that is to

integral action in the level X of the manipulated variable. It is
this latter nomenclature which has been traditionally used by control
engineers and which we adopt here.
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We shall find that many of the simple situations which we meet
do lead to control equations containing terms of these types.
for example, if the naise can be represented by a (0,1,1) process

Vnt = (1—eB)at, whilé the dynamics can be represented by the

first order system (1 + EV) Y, =g X, _,., (11.2.6) reduces to

- _ (1-8)¢& _ (1-8)
Xt+ = —-—'—-g Et —-—g—— SEt .

The action called for is thus the direct analogue of proportional-
integral control.

it is clear, however, that by no means all control actions
that might be called for by (11.2.6) could be produced by a three-
term controller and rather simple examples occur where other modes
of control are called for. With the present computer capability
for direct digital control, there is no longer any need to restrict
control to these conventional modes. We now consider some specific

examples.

11.2.3 Some examples of discrete feedback control

Examgle 1

In a scheme to control the viscosity Y of a polymer
employed in the manufacture of a synthetic fiber, the controlled
variable viscosity was checked every hour and adjusted by
manipulating the catalyst formulation X. The desired target
value for viscosity was 47 units., The dynamic model between

X and Y was adequately described by the simple first order
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system with no delay

(1-6B)Y, = (1-8)gX__;, -

Furthermore, the true constant of the system was short compared
with the sampling interval, § being estimated as 0.04, so

that an estimated 96% of the eventual change 6ccurred in the
sampling interval of one hour. To a sufficient approximation,,
therefore, we can set § = 0. Furthermore, catalyst formulation
changes were by custom scaled in terms of the effect they were
expected to produce. Thus, one unit of formu}ation change was
such as would decrease viscosity by one unit. Hence g =-1

and the dynamic equation was taken to be

Yo = 9X _ 4, with g = -1

or in terms of our general dynamic model

Ll(B) =1, L2(B) =qg = -1, b=0 .

The disturbance n, at the output,which it will be recalled is

t
defined as the variation in viscosity if no control were exerted,

was adequately described by the stochastic process of order (0,1,1}

Vnt = (1 - eB)at with & = 0.53,A = (1-8) = 0.47
so that
n {l)-n _,(1) = A a, = (1-B)Ly(B)ay
Et = et(l) = at
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and L3(B)(1-B) = A = 0,47, L4(B) = 1,
The adjustment called for at time t is therefore

_ Ly (B)Ly(B) (12B) ...
t L, (B)L,(B) £ - g ft -

That is

X, = 0.47 Et or Xt+ = 0.47§$e

t L]

In this situation then,where the inertia of the system
is not large compared with the sampling interval, optimal control
requires the discrete analogue of simple integral eontrol action.
We can derive the required control action for this type of example

somewhat more directly as follows:

Predicted change at the output nt(l)—nt_l(l) = Aa,

Effect of adjustment = gx; .

Therefore, the adjustment required to compensate is such that

gx, = —Aat. But with this adjustment, the error at output is By = Ap.
Thus the optimal feedback control equation is x£ = - é £

The efficiency of control action of this kind is very
insensitive to moderate changes in parameter values and to a

sufficient approximation we can take

x, = 0.56t .

A convenient chart for use when, as in this example, manual control

action was employed is shown in Figure 1l1l.7a.
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On this particular process control had previously been
carried out using a chart based somewhat arbitrarily on a
sequential significance testing scheme. It had turned out in
this connection that it was convenient to add or subtract from
the catalyst formulation in standard steps. Possible actions
were:

no action, + one step, or + two steps of catalyst formulation.

Significance testing procedures have little relevance in
the present context. However, this scheme did have the advantages
(i) that it had not been necessary to make changes every time and
(ii) when changes were called for they were of one of five definite
typeg,making the procedure easy to apply and supervise. These
features can, however, very easily be included in the present
control schéme with very little increase in the error by using a

"rounded" action chart.

Rounded Charts

A rounded chart is easily constructed from the original
chart by dividing the action scale into bands. The adjustment
made when an observation falls within the band is that appropriate
to the middle point of the band on an ordinary chart. Figure 11.7b
shows a rounded chart in which possible action is limited to -2,
-1, 0, 1, or 2 catalyst formulation changes. Figures 1l.7a and b

have been constructed by back calculating the values of a,

from a set of operating data and reconstructing the charts that
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would have resulted from using an unrounded and a rounded scheme.
The increase in mean square error (less than 5% for this example)
which results from using the rounded scheme is often outweighed
by the convenience of working with a small number of standard
adjustments. The effect of rounding is discussed in more detail

in Section 11.5.

Example 2

At a later stage of manufacture of the polymer the
objective was to maintain the output viscosity Y as close as
possible to the target value of 92 by adjusting the gas: rate.
Hourly determinations of viscosity were made and as a result
suitable adjustments were made. We shall discuss here the planning
of the pilot control scheme for this process. We later describe
how the data collected during the running of this preliminary pilot
study was used to reestimate parameters and so to arrive at an
improved control scheme. At this stage of the investigation some
data was available which showed the variation which occurred in
viscosity when no control was applied (when the gas rate was
held fixed). This data came from a previous period of operations
during which compensations for variations in viscosity were made
at a later stage. This data is in fact the 310 observations
of Series D in Chapter 4 which was identified as an I.M.A. of

order (0,1,1) Vnt = (1 - BB)at with 8 close to zero (that is

Ay = 1l - 6 close to unity).
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There was good evidence that over the range of operators
the steady state relation between gas rate and viscosity was linear
and that a unit change in gas rate produced 0.20 units of change
in viscosity so that the steady state gain was taken to be
g = 0.20. Experimental evidence of questioned reliability
indicated simple exponential dynamics with no dead time such
that about half of the eventual change occurred in one hour.
Thus we have tentatively for the dynamic relationship

connecting viscosity y and gas rate X

(1 - 0.5B)Y, = 0.10 X,

Also, using the disturbance model

we have L4(B) =1, L3(B)(1—B) = 1 and the appropriate

feedback control equation is

L, (B)L. (B) (1~B)
x = - 13 e - {1-0.58)

t LZ(B) L4 (B) t 0.10 t

or X, = - IOet + 5¢

t t-1 '

where € is the output deviation from target at time t.

If the action is expressed in terms of the backward
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difference V we have

x, = =5(+V)e, or X, = - {5¢, + 5S¢}

so that what we have is a combination of "integral" and

proportional control.

A projection chart

The situation in which the disturbance n can

t

be represented by a linear model of order (0,1,1)

Vn = (1 - 6B) a

t t

and the dynamic model is of the simple exponential form

Y. = g(l1+ £v) 1x

t t-1

is of sufficiently common occurrence to warrant special mention.

In general, the control adjustment will be

% = = llﬁ:_ﬂl (L + EV) €

& 5 & (11.2.9)

and

X = - ME +MS€

£+ g £ 5 & . (11.2.10)

With manual control this proportional-integral action
is conveniently indicated by a suitable "projection" chart.
That shown in Figure 1ll.8a which was, in fact, used to implement

the control action in the example described above will illustrate
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the general mode of construction. The deviation from the

central target line when read on the viscosity scale will

correspond to the et's. A second scale is also shown indicating

the control action X, to be taken, with zero action (xt = ()

aligned with the target value. The scales are arranged so

that one unit in the output viscosity (€.) scale corresponds to

_ (1-6)

5 units on the control action scale.

We can read off the appropriate action at time t by

projecting £ time units ahead a line through ¢ and €1

(or equivalently through the last two viscosity measurements).
For the present pilot scheme & = 1 so we must project one time
unit ahead. The control action at time ¢ = 2, for example, is
found by joining the viscosity values at time t = 1 and t = 2

by a line projecting one step ahead and reading off the value -30
on the action scale. This indicates that the gas rate should be
decreased by 30 units and held at the new value until further

information becomes available at time t = 3.

A rounded chart

As we have mentioned previously exception is sometimes
taken to control schemes based on charts like the one above in
that they require that action be taken after each observation.
It may be felt that action ought to be taken "only when it is

necessary." Two different kinds of reasoning may underlie this
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feeling,one having a more valid basis than the other.
(i) The practioner who is familiar with
statistical significance tests and standard
control charts may be persuaded that he ought
to have real evidence that "the process has
deviated from target" before any action is
taken. When, as in the mass production
metal working industries (where standard
quality control procedures have traditionally

been used) an additional cost is incurred

every time a change is made, it is possible to
justify the consequences of this thinking if

not the thinking itself [2], [3]. However, in
the process industries normally the process
operator (or the controlling computer) is going
to be on duty anyway to check the process
periodically so that there is no additional cost
in making a change. In this latter case it is
appropriate simply to minimize some measure of
deviation from target such as the mean square

error and this is what we do here.

(ii) A second and more sensible argument might
be that in any industrial operatdon it is always
advantageous to simplify as much as possible the

actions that the plant operator is expected to take.
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If a chart could be devised which without

much loss required him to take one of a small

number of distinct actions this would be an

advantage.

As we have seen before, this objective is easily gained
by the use of a “"rounded" chart. A suitable "rounded" chart for
the present example is shown in Figure 11.8b. 1In this chart the
action scale has been divided into 5 bands each 30 gas rate units
in width. The bands correspond to the 5 actions: reduce gas rate
by 60, reduce gas rate by 30, no action, increase gas rate by 30,
increase gas rate by 60. The viscosity is plotted and the points
projected exactly as before but the action is "rounded" and
corresponds to the central value of the band in which the projected
point falls. The chance of a projected point falling outside the
outer band is small and such points are treated as having fallen
within the appropriate outer band. To put it another way the
outer bands are extended to stretch to plus and minus infinity.

The result of using a rounded chart is, of course, to
increase somewhat the variance of the output viscosity about target
but even with such severe rounding as is illustrated the increase
is usually not very great. In section 11,5 we discuss the general
question of the effect of added noise in the input of the process.
Using the derivation there given, it turns out that the increase
in the standard deviation of viscosity about the target produced

by the rounding illustrated is about 7%. The points which have
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been placed on the rounded chart in Figure 11.8b for illustration
were, in fact, back calculated assuming that the same disturbance
is present as for the unrounded chart in Figure 1l.8a. It is
shown later that provided % is not too close to 1 (that is,
provided the time constant of the system is not too long compared
with the sampling interval) a rounding interval I as wide as one
standard deviation of x may be used without causing a large’
increase in the variance of the output.

For the particular choice I = ¢ and assuming a Normal

X

distribution we would have the following distribution of actions

mo 10 —1%0 to -%o to %0 to l%o to
Zone 11 1 * 1x lx .
Action -20_ -0y 0 %% 20
Prob:blllty 6.7 24,2 38.3 24,2 6.7

Strictly speaking the theoretical results concerning the increase

to be expected in O due to rounding assume that there are also
zones centered on 3°x' -30x, 4cx, —4cx, and so on. However, the

total probability of a point falling into these outer zones would
be only 1.24% and the effect of combining them all into the

+ Zox zones is small.
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Specifically it can be shown that for a scheme of the

type considered here if the rounding interval is Rox where

2

Oy is the variance of the x without rounding
- 2 2
or = (128) (1487) 42 (11.2.11)
gz (1"6) 2

then to a close approximation the standard deviation of the output

is increased by the factor F where

2 2
R®  (1+65) (1-8) (1+6°) (11.2.12)

2 "1-es) (1+0) (1-82)

F2 = 1 +

For the chart in Figure 11.8b 6 = 0, & = 0.5, R » 1 S0

that F = 1,07,

Example 3

For further illustration we consider the slightly more
complicated situation which occurs when the dynamics may be
represented by a first order system with dead time (delay). Thus

with

1

VY, = g(1+gV) — {(i-v)x }

t t-f V¥e-f£-1

we have now

L) (B)/L,(B) = (14£V) {g(1-v")}

If the disturbance n, is represented as before by a process

of order (0,1,1)
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vn = (1-6B) a

t t '
we find that nt(f) - nt_l(f) = (1-6) a,
- - _ 2 £-1
et(f) = 1 + (1-6) {14B+B*+...+B } T

f"l]_

so that L3(B)(L-B) (1-6), L,(B) = 1+(1-6) {1+B+B%+...+B

Thus using (11.2.7) the optimal action is given by setting X,

so that

{1~-vv} {1+(1—8)(B+Bz+...+Bf_l)}x

(1-6)
£ - T (1+F,V)Et

(1~-6) (1+£EV) e

x, = = (1-8) (X =X, _¢) - g (1I-v") £ (11.2.13)

t

We notice that the introduction of delay into'the dynamic model
results in a mode of control in which the present adjustment
depends on past action over the period of the delay as well as

on present and past errors €. In particular in the common

situation where f = 1 we obtain

= - (1-8)
xt = vit 3 (1+EV)et .

A delay nomogram

Using the same argument as Bbefore it is very easy to

design a nomogram to compute the required action

(11.2.14)

. _ (1-8)
(l-vV)xt = ——z;—— {(1+EV) Et .
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Suppose we had an example with the same background as before
where it was desired to maintain viscosity at the value 92 as

nearly as possible. Suppose now, however, that
B = 0.5 £ = 0.7 v = 0.25 g = 0,20

then the required adjustment is

X 0.25Vx, - 2.50(-:t - 1,75Ve

t t t

that is X

-0.33x,__; - 5.67¢, + 2.33¢

1 t-1 °

This action is computed by the nomogram of Figure 11.9 with stales
A,B,E,D indicating respectively Eer €pqr Xpr Koy and a scale

C used to equate the two sides of the control equation. The

scales are arranged so that

(i) zero action and target value are aligned
(ii) one unit in the viscosity scale is equal to
(1-8) _ . .
- = -2.5 units in the gas rate scale.

(iii) the distances between the scales are such

that AC/AB = £ = 0.7 , CE/DE = v = 0,25,

On the nomogram shown in Figure 11.9, a value of 92 for
the viscosity has just come to hand. A straight line joining
this to the previous viscosity reading of 96 is projected to cut
the C scale at a point marked X. A line drawn through X and the
value =32 corresponding to the previous adjustment cuts the action
scale at 20. This tells us that the present optimal adjustment is

to increase the gas rate by 20 units.
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dead time in the system
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It may be remarked that in this particular example the
current value of viscosity is on target. Nevertheless, taking
into account the previous behavior of the process and its
dynamic-stochastic eharacteristics corrective action is still
called for. The plant operator must increase the gas rate by
20 units if he is to follow a policy which will minimize the
mean square deviation from target viscosity.

As before, if it were desired to simplify the control
action a "rounded" nomogram with the action scale divided up into

a suitable number of zones could be used,

11.3 Feedforward-feedback control

As we have mentioned before where possible identifiable
disturbances should be eliminated by feedforward control and the
remainder of the disturbance dealt with by feedback control.
Figure 11.10 shows part of a combined feedforward-feedback scheme

in which k identifiable disturbances Zys Zyr eeer Zy are fed

forward. It is supposed that nt' is a further unidentified

disturbance and that

-1
85 (BYuy(B) ey . ¢(£-by)

=
]
=]
+
n e~y

j=1

(with e, t_f(f—bj) = 0 if f-bj £ 0) is the same noise augmented
, £

by any further noise coming from errors in forecasting the

identifiable inputs and such that
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L, (B) (1-B) . .
T T St T e (®) mne (B

11.3.1 Feedforward-feedback control to minimize output mean

sguare error

Arguing as before the optimal control action is

Ll(B) k -1
X% & - LZIBS L Gj (B)mj(B) {zj,t+f-bj - zj,t+f-bj—1]
L, (B) {1-B) {:11.3.1)
* 3L (B) €t
4
where

. (f-b.)~-2. -b,), £-b. >0
25 ((E-bs)=z;  j(E-by), £-b,

In the diagram the output for the right hand box is split into

two parts only for diagnostic convenience.

11.3.2 An Example of feedforward-feedback control

We illustrate by discussing further the example used
in Section 11.1.2 where it was desired to control specific
gravity as close as possible to a target value 1.260. Study of

the deviations from target occurring after feedforward control
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showed that they could be represented by the I.M.A. process

of order (0,1,1)

Vnt = (1 - O.SB)at

where the a are a sequence of uncorrelated random variables.

t
Thus

Ly (B) (1-B) R
——EZTﬁT—nw a, = nt(l) - n,_,(1) = 0.5, = et_ltl) = £y

~

and with the remaining parameters as before, namely

s 1(B)w(B) = 0.0016 , b =0
-1 _ {1 ~ 0.7B) _
L,"(B)L, (B) = 55721 o E=1
and 2. (1) - z, (1) = —23 _ (2 -z, .)
t £-1 T 6.58 (Z¢ = %g-1)) -

Using (11.3,1) the optimal adjustment incorporating feedforward

and feedback control is

_ {1 -0.78B} (0.0016) (0.5) . _
Xp = 00024 T 055 (Z¢ %p-1} ¥ O.Seé] (11.3.3)
i.e. x, = 0.5x__ -0.33(1-0.7B) (z,-2,_,)-208(1-0.7B) (1-0.5B) ¢

or x, = 0.5xt_1—0.332t+0.562 -0.23z, _ -208e +250¢ -73e,_,. (11.3..

t-1 2 t-1
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Figure 11.11 shows the section of record previously
given in Figure 11.4 when only feedforward control was employed
and the corresponding calculated variation that would have
occurred if no control had been applied. This is now compared
with a record from a scheme using both feedforward and feedback
control. The introduction of feedback control resulted in a
further substantial reduction in mean square error and corrected
the tendency to drift from target which was experienced with the
feedforward scheme.

Note that with a feedback scheme, the correction employs
a forecast having lead time f whereas with a feedforward scheme
the forecast has lead time f-b and no forecasting is involved
if f-b is zero or negative. Feedforward control thus gains in
the immediacy of possible adjustment whenever b is greater than
zero.

The example we have quoted is exceptional in that b = 0
and consequently no advantage of immediacy is in this case gained
by feedforward control. It might be true in this case that
equally good control could have been obtained by feedback alone.
In practice possibly because of error transmission problems the

mixed scheme did rabher better than the pure feedback system.

11.3.3 Advantages and disadvantages of feedforward and of

feedback control

With feedback control it is the total disturbance as
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evidenced by the error at the output that actuates compensation.
It is, therefore, not necessary to be able to identify and
measure the sources of disturbance. All that is needed is that

we characterize the disturbance n, at the output by an

appropriate stochastic process. Because we are not relying on
"dead reckoning,” unexpected disturbances and moderate errors
in estimating the system's characteristics will normally result
only in greater variation about the target value and not (as
may occur with feedforward control) in a consistent drift away
from the target value. On the other hand especially if the
delay £ is large the errors about the target (since they are
then the errors of a remote forecast) may be large even though
they have zero mean.

Clearly if identifiable sources of disturbance can be
partially or wholly got rid of by feedforward control then this
should be done. Only the unidentifiable error has then to be
dealt with by feedback control.

In summary then although we can design a feedback
scheme which is optimal, in the sense that it is the best possible
feedback scheme, it will not usually be as good as a combined
feedforward-feedback scheme in which sources of eliminatable

error are got rid of before the feedback loop.
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11.4 Pitting dynamic-stochastic models using

operating data

11.4.1 Iterative model building

It is desirable that the parameters of a control system
be estimated from data collected under as nearly as possible the
conditions which will apply when the control scheme is in actual
operation. The calculated control action using estimates so
obtained properly takes account of noise in the system which
will be characterized as if it entered at the point provided for
it in the model (see Section 11.5.3). This being so, it is
desirable to proceed iteratively in the development of a control
scheme. Using technical knowledge of the process together with
whatever can be gleaned from past operating data, preliminary
stochastic and dynamic models are postulated and used to design
a pilot control scheme. The operation of this pilot scheme then
quickly supplies further data which may be analyzed to give
improved estimates of the stochastic and dynamic models which can

then be used to plan an improved scheme.

11.4.2 Estimation from operating data

It will be sufficient to consider a feedforward-feedback
scheme not necessarily optimal and with a single feedforward
input. If we suppose at first that b-f is positive, then

whether the inputs z, and X, it will be true that
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e =1n. + 6 L(B)w(B)z

-1
t t ep T Ly (BIL,(B}X, ¢ (11.4.1)

where n_ = ¢ (B)o(Bla,. If o(B) = ¢(B)VC
then
a, = 6071 (B (v s Bu@ iz LTt B, (B)VX _pp (11.4.2)

In simple cases we can now investigate the estimation situation

and estimate the parameters by plotting Eat2 for a grid of values

of the parameters.

Alternatively and more generally we can use the non-
linear least squares iterative routine to obtain the estimates.
This we can do following precisely the procedure described in
Chapters 5 and 10.

Equation (11.4.2) allows the at's to be calculated for

any chosen values of the parameters. As before, therefore, we

need only program the recursive calculation of the at's and

insert this sub-routine into the general non-linear estimation
program which computes the derivatives numerically and automatically
proceeds with the iteration.

Alternatively the appropriate Newton-Gauss algorithm
can be employed explicitly. Starting with preliminary estimates

for the parameters and knowing € z,, and Xt' we can compute

t’ "t

the quantities
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o _ -1 a -1 a -1 d

a, = ¢O(B)e° (B) 4V €4 50 (B}wo(B)V Ze b LlO(B)Lzo(B)V Xe g
(11.4.3)

o _ -1 -1 d

Ly = ¢O(B)eo (B)GO (B)mo(B)v 2z, (11.4.4)

o _ -1 -1 d

Et = ¢O(B)9° (B)LlO(B)LZO(B)V Xy (11.4.5)

and then obtain improved estimates from the approximate

linearization

ag = - (¢(B)-¢_(B)) ¢;1(B)a?} + (8(B)-6_(B)) 9;l<B)a2

-1 o -1 o
- (G(B)—GO(B)) 50 (B)Ct_ + (w(B)-wo(B)) W (B)Ct_b

-1 0

-1 o
Lzo(B)F,t_f + a, (11.4.6)
When b-f is negative there is advantage in aggregating the

noise n, = nt' + e, _g(f-b) as illustrated in Figure 11.10

and estimating an overall model for n, .

Feedback Control

When we have only a feedback system as in Figure 11.6,

Equation (11.4.2) simplifies to

a, =g¢()e @ {v¢

-1 d
& €,~Ly " {B)L,(B)V X, (11.4.7)



-54-

and the estimation proceeds exactly as before but with the

term in zt omitted.

As usual at the beginning of the recursive calculation
we may need values of the various series which have occurred
before the process was observed. The ways in which this problem
may be dealt with are discussed and illustrated in the example

that follows.

11.4.3 An Example

In the second feedback control example in Section 11.2.3
the objective was to maintain the viscosity of a polymer as
close as possible to the target value of 92 by hourly readings
of viscosigy and adjustment of the gas rate. The previous
discussion was concerned with the design of a pilot control scheme
based on information of questionable accuracy. Essentially the
pilot scheme assumed that the stochastic and dynamic models
were

Vn

(l—BB)at (11.4.8)

(1-6B)Y, = g(1-8)X,_, (11.4.9)

+
with 8 = 0, & = 0.5, g = 0,20.

These models led to the equation x, = -1@e  + 5e,.q as

defining the optimal adjustment at time t. Part of the actual

operating record using this scheme is shown in Figure 11.12. The
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changes in gas rate X, and the corresponding deviations from

target €, now supply the data from which new estimates may be

obtained. We proceed on the assumption that the form of model
is adequate but that the estimates of the parameters 6, §, and

g may be in error. 1In this case (1l.4.7) reduces to

a, = (1-88)"1 ve,_ -(1-6B) l(1-8)gx,_; (11.4.10)
Writing y, = (l-GB)-l(l-G)gxt_l, the model is represented by
the pair of eguations

a, = Bat_l + Vet - Y
(11.4.11)
Ye = Oyg_; t+ (1-8)gx, 4

For illustration, the set of eight pairs of values of X, and

€¢ given in Table 1l1.2 were taken from a series

consisting of 312 observations made during 13 days of running of

the pilot scheme.

t 1 2 3 4 5 6 7 8
Xy 30 0 -10 0 -40 0 -10 10
€¢ -4 -2 0 0 4 2 2 0

Table 11.2 Eight pairs of values of (x ,e,)

series from pilot scheme.
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The complete pair of time series is given in Appendix All.1l.

Table 11.3 shows the beginning of the recursive calculation

of ag for the parameter values 6 = 0.2, § = 0.6, g = 0.25.

For these values equations (11.4.1l1) become

o _ o )

ag = 0.2ap_; + Ve -yp (11.4.12)
o _ o

Yo = O.6yp_; + 0.1x._; (11.4.13)

The data are given in columns (1), (2), and (3) of Table 1l.3.
The entries in column (4) are obtained using (11.4.13) and
represent the changes at the output which are produced by the

changes x Columns (5) and (6) are obtained by simple

t.
arithmetic and column (7) from (11.4.12)., In this table Yy

and a, have been inserted for the unknown starting values. The

entries in the table show the influence which the choice of
these values has on subsequent calculations.
A number of points are clarified by the table.

(1) We notice that the choices of a and Yy
influence only the first few values of ag.

This will be true more generally except for
parameter values in ranges for which the
weight functions for thé noise model or for

the dynamic model are very slow to die out.
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With the approach we adopt here the true
values of the parameters are unlikely to
be within these critical ranges.

(2} When, as in this example, data is cheap

we can substitute guesses for a, and Y
and throw away the first few values of az

to allow transients arising from non

optimal choice of a; and y; to die out.

(3) On the usual assumption of Normality for
the a's, the maximum likelihood solution

will be given by treating a, and y, as

nuisance parameters where values have to
be estimated. They may then be treated
in exactly the same manner as are the other

parameters a, and Yy being set equal to

guessed values and the general non-linear
routine applied with derivatives determined
numerically.

Alternatively the values of the at's with those

starting values a, and Yy which give a minimum sum of squares

conditional on the choice of the "main" parameters may be

computed and employed in subsequent least squares calculations.
We illustrate with the data of Table 11.3 where the calculation

is particularly simple. The values ag and yi which minimize
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Za?zfor the particular choice of parameters 8 = 0.2, 6 = 0.6,

g = 0.25 are found by "regressing" column (a) on columns (b)

and (¢) in Table 11.4.

(a) (b) (c)

0.00 -1.00 0.00
-1.00 -0.20 0.60
0.00 -0.04 0.48
~0.08 -0.01 0.31
3.93 0.00 0.19
2.76 0.00 0.12
2.93 0.00 0.07
1.02 0.00 0.04

Table 11.4 Calculation of maximum likelihood

estimates of starting values.

The elements in the table are all taken from the extreme
right-hand column of Table 11.3. The elements in column (a)
are the constant terms and the elements of columns (b) and (c)
are the coefficients of —ag and -yg respectively. Because the

coefficients in columns (b) and (c) rapidly die out,for the

~

purpose of computing ag and yg we need be concerned only with

the first values of the series. 1In fact for the particular case
considered above we need only take account of the first eight

entries. The normal equations are then



0.2008

0.69290

~

yielding ag =
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_ o _ o
= 1.0417a; 0.1423y]
o o
= 0.1423a] + 0.7435y]
i
0.33 yg = 1.00 for the starting values

The nature of the sum bf squares surface for this example

can be seen from Figure 11.13.!| The contours were obtained by

interpolating in a grid of computed values. In each case

starting values were obtained

in the manner described above. The

The approximate three dimensional 95% confidence region is

indicated by the shaded region,

As an additional check| the non-linear least squares routine

was run using starting values

employed in the pilot control scheme.

The iteration proceeded as shown in Table 11.5.

Iteration 6

0.01
-0.06
-0.11
-0.02

0.08

0.10

0.11

0.11

~N W o W = O

Table 11.5

Sum
w = (1-9§) ) of Squares

0.10 0.50 6,247.6
0.09 0.53 5,661.3
0.08 0.61 5,275.9
0.06 0.71 5,115.9
0.05 | 0.77 5,067.6
0.05 0.77 5,065.2
0.05 0.77 5,065.1

0.77 5,065.1

0.055

Convergence of parameters in simultaneous
fitting of dynamic and stochastic models

The sample autocorrelition function for the residual at's

is shown in Table 11.6 together with the sample cross

correlation function between the a 's and the x lg

t
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It is clear that in this example the estimates 6 = 0,
g = 0.20 used in the pilot scheme were about right but the
value § = 0.5 was too high for the estimate of the dynamic
parameter, a value of approximately 0.3 now being indicated.
As a result of the reestimation of the parameters, the control

scheme

was changed to

X = =22,5e, + 18 ¢

=1

11.5 Effect of added noise in feedback schemeg.

In what has gone before we have emphasized the importance
of estimating the parameters of the system under as nearly as
possible the actual control conditions which will be obtained in
the final scheme. The main reason for this is to ensure that
all sources of noise are taken account of. If we estimate the
system parameters under working control conditions then we will
automatically estimate the noise as if it all originated at the
source provided for it in the model. The effect of this will be
that parameter estimates will be obtained which will give near

optimal control action under actual working conditions.
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By contrast suppose the stochastic and dynamic models
were estimated "piecemeal." For example, we might use records

which indicated the noise actually originating at P in

Figure 11.14 to estimate the noise model for n,. Provided the

amount of additional noise was not excessive the control scheme
obtained using this estimate might still be reasonably good.
However, the ignoring of large additional noise sources could
lead to inefficient control action.
In the sections that follow we investigate for a feedback
scheme the following problems:
1) The effect of ignoring added noise
2) "Rounding? the control action as a source of
added noise
3) Differences in optimal action produced by
added noise
4) Effective transference of the noise origin which
occurs when data are collected under operating
conditions similar to that obtained in the final

control scheme.

11.5.1 Effect of ignoring added noise - rounded schemes

Consider the feedback control loop of Figure 1l.14 in

which the noise actually originating at P is n_ and

Vdn = ¢_1(B)0(B)at. As has already been shown, on the assumption

t
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that nt

from the control equation

L, (B)L, (B)
X = = €
t+ L2(B§L4(B) t

is the only noise component, optimal action results

(11.5.1)

with nt(f) = L3(B)at, et_f(f) = L4(B)at, €y = et_f(f).

Suppose now that an additional source of noise exists so that

the action actually taken is

L, (B) L, (B) '
Xep = ° L, (BJL,(8) ey +u.’) .

Then at P,

-1 f '
€y nt—Ls(B)L4 {B)B (et+ut)

or L3(B)L21(B)u - L3(B)L;1(B)Bf+1 e .

' -
t-f D¢

~

But n, = nt_f(f) + et_f(f)
and n o (5) = nL.eutmsf e ()
t-f 3 4 t-f *
Hence n, = (L (B)L“l(B)Bf+1 e (£)
t 3 4 t-f *

Adding (11.5.3) and (11.5.4), we obtain

LB (Brul_, = (L)L (BB} (e _ (£)-cp).

(11.5.2)

{(11.5.3)

(11.5.4)

(11.5.5)
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Now since

¢—1(B)6(B)at

<3
=]
]

o1 ®o (BIL; (B) e _ (£) (11.5.6)

<}
=
]

t-£
substituting (11.5.4) in (11.5.6) gives

v, et et = s tmremL;l(e) .
Thus (11.5.5) may be written

Lyt evley o = s tme @t {e () - €,

e, = et_f(f)-L3(B)¢(B)9“1(B)Vdu£_f (11.5.7)

and e, _ (f) = Ly(Blay = a;+y;a, 1+ te 3 £4
is independent of wug . .

If the additional noise ug is represented by the stochastic

process
d

1 _
with bé ’ bé-l s ».. uncorrelated random variables, then

{(11.5.7) becomes
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d-d

= L4B)a +L, (B)¢(B) 6”1 (B) ¢  (B) 6, (B)V bél

-f

€p (11.5.8)

1 ¢ & will be a stationary process. For

and provided 4 > 4
any choice of the parameteic models for the noise at P, the
additional noise in the system, and the dynamics, the

variance €y at the output can now be calculated.

Errors in X,

If we wish to think of the ignored error as occurring
in the adjustments x, we can write the control equation as

L,y (B)  Ly(B) (1-B)

% = - e, +u
t L2 (B) L4 (B) t t

L, (B) L, (B) (1-B)
t L (BIL,(B)

I
=

where u

Equation (11.5.7) then becomes

1

= -1 -1 d-

t

and if the errors in X, follow a stochastic process

d,
0,(B)7 2u, = 6,(B)b,

€ = L4(B)at+L11(B)L2(B)L4(B)¢gB)e"l(B)¢51(B)62(B)v b,_¢ (11.5.9)
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Provided then that 4 > d2' €, will follow a stationary process

t
and its variance may be calculated for any given choice of

parameters,

Ignored observational errors in x,_ for a simple control scheme

For illustration we now study the effect of ignoread
observational errors in Xy for an important but simple control
scheme of the type considered before in Section 11.2. The

disturbance and the dynamics are defined respectively by

Vnt = (1 -~ 9§B) a, (11.5.10)
_ (1-8)
VYt = gm xt_l (11-5.11)

and the optimal control adjustment assuming no errors in the

loop is

o (1=8) . .
xt = —(—m-rg (1 GB)Et with Et at.

We suppose that the adjustment actually made is

' =
xt xt + ut

with the adjustment errors u,, U, 1+ Ui _j--- uncorrelated and

. . 2 -1 _ (1-8B) =
having variance 04° Then Ll(B)L2 (B) = 1i=8)g ' £ 1,
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L,(B) (1-B) = (1-8), L,(B) = 1, ¢ 1(B)0(B) = (1-6B), ¢, (B)O,(B) = 1,

d =1, d, = 0. Substituting these values in (11.5.9), we obtain

_ (1-~6)
€g T a, + (I—%ﬁflileﬁj U1
2

- g2 4 _92(1-8)2(1+88) o )
€ 2 (1-868)(1-62)(1-8%) U

To make comparison simpler it is convenient to express %4
as a multiple kcx of the standard deviation o of x when

no additional noise is present.

Then

_ay2 2
62 = k202 = gz (Z917Q48T) e (11.5.12)

u X 92(1—6)2 a

Finally, if the additional noise in x raises the variance
to (1+k2)o; then the variance of the deviation from target output

is increased according to the equation

02 = o2 {14k {1208)(1-0) (1+87) (11.5.13)
(1-86) (1+8) (1-62)

Rounding error in the adjustment

In particular, (11.5.13) allows us to obtain approximately

the effect of "rounding" the adjustments x, as is done, for example,

t
in the chart of Figure 11.8b. Suppose that the rounding interval

is Ro . Very approximately we can represent the effect of
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rounding by adding an error u, to Xy which is uniformly

distributed over the interval ch. Also, although there will be
some autocorrelation among the ut's, for most practically occurring
cases this will be slight and so we assume them to be uncorrelated.

With these approximations

2 Jq 4 R2(1+66) (1-6) (1+82)
£ a 12 2 -
(1-668) (1+8) (1-82)

For the chart of 11.8b 6 =0, 6§ = 0.5, R = 1 so that

N
[H

Q
i

1.0670a .

11.5.2 Optimal action when there are observational errors

in the adjustments x

t

{(11.5.9) makes it possible to calculate the effect

of added noise in X, When the optimal scheme which assumes

no added noise is used. It is of interest to derive the optimal
scheme for specified added noise and to see how it differs from
the scheme which assumes no added noise. We use for illustration

the example considered before,
Suppose the control action actually taken is

x _ (1-8) (1-6B)
t g(1-9)

L(B) Et + u,
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where again Uyr U yr +++ are uncorrelated with variance 0;

and that the disturbance n

¢ can be represented by an I.M.A.

process of order (0,1,1). We wish to choose L(B) so as to
minimize 02.
Considering, as before, the situation at the point P

in the feedback loop we obtain the equality

- {1 - _ _ -1
(l-B)t-:t = (1 B)L(B)et_l+(l BB)at + g{1-6) (1-6B) ut-l
that is
(1-6B){l-—B+(1-e)BL(B)}et = (1—5B)(1—6B)at+g(l~-6)ut_1 . {(11.5.14)

Now the right hand side of (11.5.14) is a representation of
a second order moving average process with added white noise and
can therefore (see Section 3.4.2) be represented by another

second order moving average process with representation

(1 - n,B - nsz) b

1 t
where b,, b, _;/, ... is a sequence of uncorrelated random

variables. The problem is, therefore, reduced to that of

choosing L({B) so that‘Var(et) is minimized where

(1-6RB) {l-B+(l-6)BL(B)}et = (1-1r1}3—n2132) b, -
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Alternatively, we can write this equality in the form

— - — 2
I 2 2 2
so that oc (1+wl + wz + o..) oy

2

and 0. 1s minimized only if 0 = wl = wz = ¢3 = ...

We require then that

(1-6B) {1-B+(1-6)BL(B)} = 1—11113-1:2132

That is
(1+6—n1) - (6+w2)B

L(B) = (1-6) (1=38) .

The optimal adjustment is, therefore,

(l+6—n1) - (5+ﬂ2)B
ot = 7 g(1=3) ¢

Now substituting (11.5.15) in (11.5.14) we have

2 — - — -
(l-nlesz )et = (1-8B) (1 BB)at + g(1-48) U,

(11.5.15)

(11.5.16)

whence 7, and w, may be found by equating covariances of lags 0,

Writing r = oé/c; we obtain
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(1+n2+w§)r 1+ (6+0) 2+ (60)2+g2(1-6)?2

1

]
Q| _a
O =i
-

wl(l—nz)r (6+6) (1+60) (11.5.17)

~T, I = ée.

Optimal rounded control scheme

For illustration eonsider again the rounded chart of
Figure 11.8b, Making the same approximations as before we consider
what would have been the optimal control scheme given that the
additional rounding error is to be taken account of.

Suppose, as before, that ¢ =0, 6 = 0.5 , R=1,

o2 2 2
“u o _ 1 (1-8)°(1+8°)
Ué 12 g2 (1_6)2
Then T, = 0 ’ myo= 0.5/r
r+0£25 = 1+ 0.52+ 1:23 - 3 3542 .
Hence r = 1.134 “l = 0,43 ﬂz =0 .,

Substituting these values in (11.5.16) we now find that the

optimal control adjustment is

x = 10.68¢_ - S.OOEt_

ot £ with oe = 1.0650a .

1
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This may be compared with the scheme

X = 10.00¢

£ - 5.00¢

with o = 1.0670a

t t-1 €

which was actually used and which is optimal on the assumption
that there is no added error. Clearly in this case the choice
of optimal control equation is not much effected by the added

noise.

Changes in the optimal adjustment induced by noise in the input

= k2g? = kz(1-9)2(1+52) 2

If, as before, we write o? o
then from equations (11.5.17) we have
m, = - %Q (11.5.18a)
o= (6+giéé+ae) (11.5.18b)

2
1+ (8+0)*(1v8e)* | (%2)2 = 1+(6+8) 2+ (80) 24k 2 (1-9) 2 (1+82)

(r+66) 2
(11.5.18¢)

where as before r = oé/c; .

In practice when relating r to k? it is easiest to solve (11.5.18c)

for k? for a series of suitably chosen values of r and then obtain

the corresponding values of LEY and LB by substituting in (11.5.18a)

and (11.5.18b).
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In the example above a moderate amount of additional
noise (due to severe rounding) did not greatly increase c;
nor was the optimal scheme which took account of the added
noise much better than the scheme which ignored it. This kind
of conclusion applies for moderate added noise levels over wide
ranges of the parameters. It does not apply, however, when ¢
approaches unity (the system has a time constant which is large
compared with the sampling interval) and for very large
components of added noise in the loop. To throw some further
light on these questions/we consider some examples. In each
case we take k? = %% with R = 1 so that ;5 = 0.29. This

X

then corresponds to adding noise u with o4 the same as that of
rounding error with the rounding interval egqual to Oy {(where
Oy is the standard deviation of x for the no noise case).

We now consider the two cases:

1 8 = 0.5 § 0.5

Case (1) g

Case (2) g 1 8 =0.5 6§ =10.9

The optimal control schemes corresponding to these parameters
are summarized in Pable 1147. To further appreciate the
result of Table 1l1.7 we notice that if instead of writing the

control equation in terms of the adjustment x, = X =X, ,,
we write it in terms of th level Xy at which the manipulated

variable is maintained from time t to t+1;then all of the
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schemes above would be of the form

X = k_€

£+ p + kISE

t t

calling for proportional-integral control action.
The adjustment equation is then

k

_ P
Xt = kI 1 + E-:E v E . (11.5-19)

We see from the table that with 6§ = 0.5 (the time constant of
the system of moderate size compared with the sampling interval)
k

the ratio of proportional to integral control EE = 1.0 and

I
the introduction of the noise does not change the nature of

the optimal control very much. However, when § = 0.9 (so thatt

the time constant of the system is very large compared with the

sampling interval) the ratio of proportional to integral control
k

is large (k—P = 9.0) . The optimal scheme accommodates to the
;I

added noise by increasing the amount kI and drastically cutting

k

back on the ratio Kg of proportional to integral control.

We can use the ratio

E = Variance of optimal "added noise” scheme 100
Variance of optimal "no added nolse" scheme

to increase the efficiency of the optimal "no added noise" scheme

in the noisy situation. Thus for the schemes considered above
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99.54% for § = 0.5

o]
H

I
o
.
V=)
.

75.31% for §

o]
n

and

For further illustration Figures 11.15 (a) and (b} show

the changes in the efficiency factor E and the values of kI

and kP/kI as more and more noise is introduced into the loop
for the two cases (6 = 0.5, 6 = 0.5) and (6 = 0.5, 6 = 0.9)
previously considered. 1In inspecting these graphs it should
be borne in mind that

(i) in industrial control applications even a

10% error in the input might be rather

100¢
9 <10

unusual and certainly in the range 0 <
even with 6 = 0.9 the efficiency of *
the scheme which assumes no ignored noise is
quite good.

(ii) if the parameters are estimated from operating

data the added noise will have already been

taken account of in the basic scheme.

Nevertheless, if the parameters had not been estimated in
this way and if there was a great deal of added noise in the
input which had been ignored in designing the scheme then control
could be very inefficient. For these examples the optimal schemes
for added noise involve a greater use of integral action and a

small ratio of proportional to integral action.
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11.5.3 Transference of the noise origin

It is instructive to consider the derivation of (11.5.15)
in the previous section from a different point of view. We
have there supposed that although the intended action was

__ (1-8) (1-6B)
ot = -5~ L®eg

because of the error u, the action actually taken was

t

<« = - (1-8)(1-8B)
t g (1-3)

L(B)et +u .

We have derived the appropriate operator L(B) to give optimal

control in these circumstances.

Now the effect of the additional noise u, is that

after being acted upon by the dynamics of the process an additional
t-1

{(1-38) .
component STZKE_ j£l uj is produced at P. We could equally

well regard this component as part of the noise source at P.

In fact the situation is as if the noise entering at P was

-1

\ {1-6) °©
n,' = n_+ %TUE'“ -Z uy

i=1

In that case
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1 - - g(l"s)
Vgt = (-0Blag + HITEt w
(1-8B) ¥n.' = (1-8B)(1-8B)a, + g(1-8) u,_,

- - 2
(1 nlB ﬂzB ) bt

where Tyr Ty and bt are defined precisely as before.

We can now apply the general equation (11.2.7) for optimal

adjustment
Ll(B)L3(B)

X, = L, (BIL, (B) (1-B) e, with e  =e _.(f).

The total noise at P is now represented by the process of

order {(1,1,2)

(1-m.B - ﬂsz)
[} -
vnt+1 - 1 - 3B bt+1
so that
n n (1-m,B - nsz)
nt(l)-nt_l(l) = 1 - 3B - {1-B) bt+1
(148=1.)=(S+7.)B L, {B8) (1-B)
- 1 2 b = 3 b
- 1 - OB t L4.(B) t

and £ = 1 so that et = bt.

Also Ll(B)/Lz(B) = (1-6B)/g(1-68) .

Optimal adjustment is thus obtained as before by setting
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(l+6-n1) - (6+w2)B
X = - €
ot g(l-9) t

This device of transference of the noise origin can be applied
more generally to obtain optimal control action with additional

noise of any kind entering the system at any point.

Implications for estimates of dynamic-stochastic model

The fact that the noise origin can be transferred in the
manner described above has a very important practical implication
which has already been referred to. This is that provided the
parameters of the system are estimated from actual operating records
when closed loop control is being applied, the estimates will
automatically take account of added noise and a control scheme
based on these parameters will be optimal for the actual situation
in which added noise occurs. On the other hand a scheme based on

estimating the actual noise n, which really originates at the

point P in Figure 11.6 could fail to give optimal control. For
example, consider again the simple scheme with added noise in
the input x discussed in Section 11.5.2. In practice to use such
a scheme we would need to know the form of the appropriate
stochastic and dynamic models and have estimates of the parameters.
If we were successful in characterizing the actual noise
at P by, for example, performing an experiment in which the
process was run with the manipulated variable X held fixed we

would be led to the noise model Vnt = (l-eB)at . If under
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normal operating conditions there was really a great deal of
additional noise entering the system from observational errors

in x which were not present under the conditions of the
experiment then the scheme ignoring this additional noise

could be rather inefficient. On the other hand if data collected
during the actual running of a closed loop control scheme not nec=
essarily optimal were used to estimate parameters, added white

noise u, in the adjustments X, would lead to the noise at

P being estimated as

Vn! = (l-GB)‘l(l—'rrlB-'usz) b

t t

and would lead to the design of an optimal scheme,

11.6 Feedback control schemes where the adjustment

variance is restricted

The discrete feedback control schemes previously discuesed
were designed to produce minimum mean square error at the output.
It was tacitly supposed that there was no restriction in the

amount “of adjustment X, that could be tolerated to achieve this.

It sometimes happens that we are not able to employ these
schemes because the amount of wvariation which can be allowed in

X, is restricted by practical limitations. Therefore, we

t
consider how a particular class of feedback control schemeg would

need to be modified if a constraint was placed onﬁVar(kt).
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We consider again the important case in which the

disturbance n

£ at the output can be represented by a model

n = (l1-6B) a

t (11.6.1)

t
of order (0,1,1) while the output and input are related by
simple exponential dynamics so that

_Ii-__S_GB)_ Yo = 9 X, (11.6.2)

where it will be recalled that 1-§ may be interpreted as the
proportion of the total response to a step input that occurs
in the first time interval. As we have seen the control

equation yielding minimum output variance is

_ _ A (1-5B)
Xt = g —m— Elt (11.6.3)

where A = 1-6 and Et = at.

If § is negligibly small, optimal control is

. _ A I ST
obtained from X, = g €y and then V(xt) = ;}'Ua k say.
. g 1+62
When 6 is not negligible, however, V(x, ) =k .

If & 1is near its upper limit of unity V(xt) can become very

large. For example, if § = .9 (so that only one tenth of the
eventual change produced by a step input is experiences in the

first interval) then B(xt) = 181 k. The reason for this large

variance is, of course, that as & approaches unity the

contrel action
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takes on more and more of an "alternating" character, the
adjustment made at time t reversing a substantial portion

of the adjustment made at time t-1. Now, in fact, a value

of § = 0.9 corresponds to a time constant for the system of
about 22 sampling intervals. The occurrence of such a value
would immediately raise the question as to whether the
sampling interval were being taken too short. Whether in

fact the inertia of the process was so large that little would

be lost by less frequent surveillance.

Now (see Section 11.7) the question of the choice of
sampling interval must depend on the nature of the disturbance
which infects the system. Because the properties of the
disturbance usually also effect system inertia, in many cases
it would be conecluded that the sampling interval should be
increased. Nevertheless, cases have occurred in practice [4 }
where a sensible sampling interval has been used and yet the
excessive size ofvar(xt)has rendered a scheme which minimizes
output variance impossible to operate.

Consider now the situation where the models for
disturbance and dynamics are again given by (11.6.1) and (11.6.2)
but some restriction of the input variance is necessary. The
unrestricted optimal scheme has the property that the errors in

the output €y et—l' €p_pr e+ are the uncorrelated random

deviates a., @, _qv 8 _5r ... and the variance of the output
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Ué has the minimum possible value U;. With the restricted schemes

the variance o; will necessarily be greater than 0; and the errors

€ € at the output will be correlated.

£’ Fe-17 Sge2r v

We shall pose our problem in the following form: Given

that 02 be allowed to increase to some value c; = (l+c) c;,

where ¢ is a positive constant, to find that control scheme which

produces the minimum value for Var(x,).

1l.6.1 Derivation of optimal adjustment

Let the optimal adjustment expressed in terms of the a 's

be
x. = -XL() a (11.6.4)
t g t tTe
— 2
where L{(B) = 20 + 115 + 123 + ...

Then referring to Figure 11,16 we see that the error €, at the

output is given by

S a (11.6.5)

_ _ L(B) (1-9)
€ = & t\A - I £-1 °

The coefficient of a, in this expressicon is unity so that

we can write

€ = {1 + Bu(B)} a (11.6.6)

t t

where u(B) = u; + u,B + u3Bz+ ces
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g(l-6)B
1-6B
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Figure 11.16

A feedback scheme for exponential
dynamics and a (0,1,1) disturbance model
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Also, in practice control would need to be exerted in terms of

the observed output errors €, rather than in terms of the at's

so that the control equation actually used would be of the form

- 1 L(B)
Xy = 3 T+ By (B) €y - (11.6.7)

Equating (11.6.5) and (11.6.6) we obtain

(1-6)L(B) = {A - (1-g)u(B)} (1-6B) (11.6.8)

Since 6, g, and c; are constants we can proceed conveniently by

finding an unrestricted minimum of

(1-8) *g?v(x,) e
Flp = 5 L= E;Q - (1l+¢) (11.6.9)
%a Ca

Equivalently, using covariance generating functions we require
an unrestricted minimum of the coefficient of B® = 1 in the

expression

G(B) (1-8) 2L(B)L(F) + v{1+Bu(B)}{1+Fu(F)}

that is, in

G(B) = (1-6B) (1-86F){A-(1=+B)u(B)}{r-(1-F)u(F)}
(11.6.10)
+ v {1+Bu(B)} {1+Fu(F)!}
where F = B~ L, This we can obtain by differentiating G(B)

with respect to eachuk& (i=1,2,...), selecting the coefficients
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of B = 1 in the resulting expression, eguating them to zero

and solving the resulting equations. We have

5%7 G(B) = (1-6B) (1-6F) [-X{(l—B)Bi-1+Il—F)Fi—1}
1

. . 3
+(1-B) (1-F) (u ®) P ey (py 8E71) | (11.6.11)
+v [Bi+Fi+Bi'lu(F)+Fi'lu(Bﬂ .

After picking out the coefficients of B° =1 fori=1, 2, 3, ...

and setting each of these equal to zero we obtain the following

equations
(i=1) =2 (1+8+8%)+2(1+8+6%) Uy~ (1+Q A +Su +vy; = 0 (11.6.12)
(i=2) Aa—(1+6)2u1+2(1+5+62)u2-(1+6fﬁ3+6p4+uu2 = 0 (11.6.13)
'i>2 {8B?-(1+6) *B+2(1+6+87%) = (148) *F +SF +viu, = 0 (11.6.14)
The case where § is negligible

Consider first the simpler case where G‘is small and
can be set equal to zero. Then the equations can be written
(i=1) - (A-ug) + (uy=uy) + vy =0 (11.6.15)
(i>1) {B=-{(2+V)}+F} u. = 0 . (11.6.16)

J
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These difference equations have a solution of the form

where py and p, are the roots of the characteristic equation

(B2-(2+v)B+1l) =0 (11.6.17)

Evidently if p is a root then so is p_l. Thus the solution is

of the form My = AlpJ + Azp-j . Now if p has modulus less than

or equal to 1 then pﬁl has modulus greater than or equal to 1,

and since = {1+Bu(B)}at must have finite variance, A,

€t
must be zero with |p| < 1. By substituting the solution

uy = Alp3 in (11.6.15) we £ind that A; = X.

Finally, then uj = xp? and since uj and A must be real

then so must the root p. It follows that V must be positive and

so0 then must op. We have then that

_ _Ap
H(B) = rpﬁ 0 < p < 1 (ll.GclB)
4Bu(B) = 1+ {23 - E{Egg (8 = 1-2) (11.6.19)
and € 1-60B

t = 1-pB t
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V(st)
so that = 1+ . (11.6.20)

Also using (11.6,.8) with § = 0

= _ (1-B)ap _ A(1l-p)
LB =2 1-pB~ 1-pB (11.6.21)
- _ 1 (1-p)
Thus X, = e and
vix, ) 2 ’ )
t - AT f{1-0)” _ A (1l-p)
ol g2 1-p2 g TI:%T . (11.6.22)

Using (11.6.7) with (11.6.19) and (11.6.21), we now find that

the optimal control action in terms of the observed output error ¢

t
is
_ _1 a(1-p)
X T g 1-8pB  °Ct
= - - L=
i.e. Xg = (1-Mex, ;) - 23 (1-p) e, . (11.6.23)

Note that the constrained contreol equation differs from
the unconstrained one in two respects

(i) a new factor (1-A)p x 45 introduced thus

t-1
making present action depend partly on
previous action

(ii) the constant determining the amount of

proportional control is reduced by a factor l-p.
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We have supposed that the output variance be allowed toc increase

to some value c;(1+c). It follows from (11.6.20) that

c = Ap” i.e. p2 = £
1-p2 r24c
0 = c
A2+c

where the positive sqguare root is to be taken. It is convenient to

2

write Q = ¢/A%. Then Q = £ \ and p? = 1%6 and the output
l-p

variance becomes c;(l+sz).

In summary then, supposing we are prepared to tolerate an

increase in variance in the output to some value 0;(1+AzQ), then

1) we compute p = / Tgﬁ

2) optimal control will be achieved by taking action
X, = (1-M)p x,_, - = A(1-p)e
t t-1 g t
3) the variance of the input will be reduced to
- A? 1-p 2
Vix,) = gz T+p Ya

That is, it will reduce to a value that is R%

of that for the unconstrained scheme where

- 1-p
R = 100 [l+p] .
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Table 11.8 shows p and R fer values of Q between

0.1 and 1.0.

P

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.302 0.408 0.480 0.535 0,577 0.612 0©0.641 0,667 0.688 0.707

R 53.7 42.0 35.1 30.3 26.8 24.0 21.9 20.0 18.5 17.2

Table 11.8 Values of parameters for a simple

constrained control scheme,

For illustration suppose A = 0.4 then the optimal unconstrained

scheme will employ the contreol action

0.4

Xt T T g %t
o2
with €, = a,. The variance of x, would be V(x, ) = —= 0.16.
t t t t gz
Suppose it was desired to reduce this by a factor of four to the
2
c
value —% 0.04. Thus we require R to be 25%. The table
g

shows that a reduction of the input variance to 24% of its
unconstrained value is possible with Q = 0.60 and p = 0.612,

If we use this scheme the output variance will be

0?2 = c; {1 + 0.16 x 0.60} = 1.1002 .

Thus by the use of the control action

- -1
X, = 0.37 x,_4 g 0.16 e
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instead of

X, = - ==

0.4
t g

t

the variance of the input is reduced to about a quarter of its
previous value whilst the variance of the output is increased

by only 10%.

Case where § is not negligible

Consider now the more general situation where § is
not negligible and the system dynamics must be taken account of.

th

The j difference equation of (11.6.14) is of the form

1

(aB~24+8B" +'Y+BB+aBz)uj = 0

and if p is a root of the characteristic equation then so is oL,

Suppose the roots are p;, p,, le, p;l and suppose that p; and

p, are a pair of roots with modulus < 1, Then in the solution

= 3 3 -3 =]
My A1p7 + A5 + Agpy” + Agpo0

is required to have a finite

A3 and A4 must be zero because Et

variance.

The solution is then of the form

‘-Ij = Alpj + Ang L4 Ipll < 1 Ipzl < l'
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The A's satisfying the initial conditions defined by (11.6.12)

and (11.6.13) are obtained by substitution to give

_ Ap, (1-p,) _ Ap,y(1-py)
Al — T —— Az — e -
Py = Pa Py = P
If we write ko = Py + Py = PP, kl = PPy then
k_ - k.B
u(B) = A o 1 -
1-(ko+k1)B+le
and
1-k.B-(1-1) (k_B-k.B?2)
1+Bu (B) = 1 o 21 .
1—(k°+kl)B+le

Now substituting (11.6.24) in (11.6.8),

A(l—GB)(l-ko)

L(B) = 2
(1—5)(1—(k°+kl)B+le )
- L(B) ) A(1-6B) (l-ko) i
T+Bu (B} - (1_6){1_k13-(1—1)(koB—lez)}

(11.6.24)

{(11.6.25)

(11.6.26)

Using (11.6.7) we find, therefore, that the optimal control

is

action in terms of the error et

(l-GB)(l—ko)

E

X, = - ¢

A
t 9 (1-6) {2-kB~ (1-}) (k B~k B?)}

(11.6.27)
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l(l—ko)(I-GB)
t-2 T T g(1=9) € -

or X _ = (k1+(1—A)k°)xt_l-(l-l)klx

£ (11.6.28)

The modified control scheme thus makes x depend on both

t

X, and X, _, (only on x._, if X = 1) and reduces the standard

integral and proportional action by a factor 1-k0.

The variances of output and input

The actual variances for the output and input are readily
found for
(ko-le)

€ = at + A " a
1—(ko+kl)B+le

t-1 }

The second term on the right defines a mixed autoregressive moving
average process of order (2,0,1) the variance for which is readily

obtained to give

2 _ _ - 2
V(et) (ko+kl) (1 kl) 2k1(ko k1 )

=1 + A2 = 1+22Q .

°a (1-kp) {(1+k;)? = (k +kp)?)

(11.6.29)

Also from (11.6.26) Xy is a second order autoregressive

process so that

2 -
Vixg) ar (ko) (467 (k)20 gty ) 6. 30)

2 2 -
o3 g®(1+6§)? (1+ko+2kl)(1 k;)
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Computation of ko and kl

Returning to the difference equations (11.6.14) the

characteristic egquation may be written
B*- M B3+ N B2- M B+1 = 0

(148)2 g4 N = [L1+8)2+(148%)+y

where M = 3 3 .

It may also be written in the form

(B2-TB+P) (B2-p TmB+p71) = o
where T = pl+p2 and P = P1Poe
Equating coefficients
T +plr = M i.e. T = T%%
p+p lep7lp? =
Thus p+p L4 _em? N
(1+p) 2
i.e. (24P~ L) (p+p7Y) + M2 = N(+2+p”h)
(e+p~1) 2+ (2-N) (P+P7Y) + M2 - 28 =0 .

For suitable values of v this quadratic equation will have two
real roots

N -1 -1 - -1 -1
uy = PPyt e ge, and  u, =030y * P70,
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the root uy being the larger. The required gquantity P is

now the smallest root of the quadratic equation

p? - u,P + 1 =20

and T is given by

=

T = {P(u,+2)} :

Table of optimal values for constrained schemes

Construction of the table.

Table 11.9 is provided to facilitate the selection of
an optimal control scheme. The tabled values may be obtained as

follows for each chosen value of the dynamic constants 6.

and N =

(1+68) 2 (1+6) 24+ (1+6 %) +v
5 5

1) Compute M

for a series of values of v chosen to provide

a suitable range for Q.

o=

r y 2

sm-2)+ (|52 4 onem?

2) Compute uy

1 M2
and u, i(n—Z)— 5~ +2N-M



-102-

3) Compute k =P:i=-];u - lu 2—1
1 2 71 271

~
]
"
g
]

kl(u2+2) -k

(ko+k1)2(l—kl)-zkl(ko-ki)

(1-ky) {(1+k;) 2+ (k _+k,) 2}

4) Compute Q =

(1—k0){(1+62)(l+k1)—26(ko+kl)}

U

5) Compute R

(l+ko+2k1)(l—kl)(1+62)

6) Interpolate among the R, kor kl values at

convenient values of Q.

Use of the table

Table 11.9 may be used as follows. The value of §

is entered in the vertical margin. Using the fact that
Vie,) = (l+12Q)c;r_ the - percentage increase in output

variance is 100Q0A%. A suitable value of Q is entered in the

horizontal margin. The entries in the table are then

(i) 100R the % reduction in the

variance of Xy

(ii) ko

{iii) ky -
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100Q

20 40 60 80 100

0.9 100R 21.7 11.3 6.7 4.5 3.1
ko 0.44 0.585 0.68 0.74 0.78

kl 0.18 0.27 0.34 0.39 0.44

0.8 100R 22,0 11.7 7.2 4.8 3.4
k0 0.44 0.585 0.68 0.74 0.78

k1 0.18 0.27 0.33 0.38 0.43

0.7 100R 22,7 12.4 8.0 5.6 4.1
ko 0.44 0.585 0.68 0.74 0.78
kl 0.17 0.25 0.32 0.36 0.40

0.6 JOOR 24.1 13.6 9.0 6.6 5.0
k0 0.44 0.58 0.67 0.73 0.78
kl 0.16 0.24 0.29 0.33 0.365
0.5 100R 26.5 15.5 10.5 7.9 6.2
ko 0.43 0.58 0.67 0.72 0.77
kl 0.15 0.21 0.26 0.29 0.32
0.4 1OOR 28.5 17.7 12.7 9.8 7.9
ko 0.43 0.57 0.66 0.72 0.76
kl 0.13 0.18 0.22 0.245 0.265

0.3 100R 31.5 20.5 15,2 12.0 9.9
ko 0.43 0.57 0.65 0.71 0.75

kl 0.105 0.145 0.17 0.19 0.20

0.2 100R 34.8 23.6 18.0 14.5 12,2
ko 0.42 0.56 0.64 0.69 0.73

kl 0.07 0.10 0.12 0.13 0.14

0.1 100R 38.2 26.7 21.0 17.3 14.6
ko 0.42 0.55 0.63 0.68 0.72

kl 0.04 0.05 0.06 0.065 0.07

Table 11. 9 Table to facilitate the calculation

of optimal constrained control schemes
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For illustration suppose A = 0.6, & = 0.5, g = 1.

The optimal unconstrained control equation is then

X, = -1.2(1-0.5B) ¢

t
and V(xt) = 1.800;. Suppose that this amount of variation

in the input variable produces difficulties in process operation

and it is desired to cut V(x.) to about 0.500;, that is, to

about 28% of the value for the unconstrained scheme. Inspection
of the table in the column labelled § = 0.5 shows that a
reduction to 26.5% can be achieved by using a control scheme

with constants ko = 0.43, k1 = 0.15; that is, by employing

the control equation

x, = 0.32x,_;-0.06x,_,-0.57 x 1.2(1-0.5B)e, .

This solution corresponds to a value Q = 0.20. The variance

at the output will, therefore, be increased by a factor of

1+12Q0 = 1+0.620.2 = 1.072 that is by about 7%.

11.6.2 A constrained scheme for the viscosity/gas rate example

In the second example in Section 1ll.2 we considered a
chemical process in which viscosity was controlled to a target value
of 92 by varying the gas rate. For the pilot control scheme A = 1.0,

{6= 0), & = 0.5 so that the optimal control action was
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11,7 Choice of the sampling interval

In comparison with continuous systems discrete systems
of control such as are disucssed here can be very efficient
provided that the sampling interval is suitably chosen. Roughly
speaking we want the interval to be such that not too much change
can occur during the sampling interval. Usually the behavior of
the disturbance which has to pass through all or part of the
system reflects the inertia or dynamic: properties of the system
so that the sampling interval will often be chosen tacitly or
explicitly to be proportional to the time constant or constants
of the system. In chemical processes involving reaction and
mixing of liguids where time constants of 2 or 3 hours are
common ,rather infrequent sampling, say at hourly intervals and
possibly with operator surviellance and manual adjustment, will
be sufficient. By contrast where reactions between gases are
involved a suitable sampling interval may be measured in seconds
and automatic monitoring and adjustment may be essential.

In some cases experimentation may be needed to arrive
at a satisfactory sampling interval and in others rather simple
calculations will show how the choise of sampling interval will

effect the degree of control that is possible.

1l1.7.1 An illustration of the effect of reducing sampling

freguencz

To illustrate the kind of calculation that is helpful,
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suppose again that we have a simple system in which using a
particular sampling interval the disturbance is represented by

an I.M.A., process of order (0,1,1) Vnt = (1-6B)at and the

dynamics by the first order system (l-GB)yt = g(1-§) Xigqe

In this case if we employ the optimal adjustment

= - {1-8) -
X, 31I-8) (1 GB)et (11.7.1)
then the deviation from target is €, = A and has variance
2 _ a2

In practice the question has often arisen: How much
worse off would we be if we took samples less frequently? To
answer this question we must consider the effect of sampling

the stochastic process involved.

11.7.2 Sampling an I1.M.A. process of order (0,1,1)

Suppose that with observations being made at some "unit"

interval we have a process

= - i = 2 = 2
vn, (1-¢4B) a, with Var (at) oy = of

where the subscript 1 is used in this context to denote the

choice of sampling interval. Then, for the differences vn,

the autocovariances Yor Y1¢ etc, are given by
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_ 2y 2
Yo = (1+61)0l
Y, = 0,97 (11.7.2)
Yj = 0 j=2,3,--om
Writing L= (v *2v,) /vy
we have r = —(1-91F/el

so that given y_ and y, the parameter A of the I.M.A. process
o 1

may be obtained by solving the quadratic equation
-— 2 — _—— 3
(1 01) g (1 Bl) + 0
selecting that root for which -1 < 81 < 1.

2 — —
Also 0] = Yl/el . (L1.7.3)
Suppose now the process ng is observed at intervals of h units
(where h is a positive integer) and the resulting process is

denoted by m Then

t.‘
Vmg = ngmng = (agrag gteeetag ) -0@p rag oteeetagp)

+o..

Vme 1= nt—h—nt-2h=(at~h+at—h-l+°"+at-2h+l)—e(at-h-l +a_op!

etc.



-111-

Then for the differences th the auto covariances

Yo(h), Yl(h), etc. are

Yofh) = {(1+8])+(h-1) (1-8)*} o}
yy(h) = -80} (11.7.4)
vy = 0 (3 =2,3,...)

It follows that the process me is also an I.M.A, process of

order (0,1,1)

th = (l—BhB)et
where €.r € _ 1+ -+ are a sequence of uncorrelated deviates
with variance oﬁ.
Y, . (h)+2y. (h) _ay 2
Now o 1 - h{(l-96)
Yl(hT
so that
-5 )2
h(1-8)2 (1-9,) (11.7.5)
-0 “_F;-"_ vl
. - _ 2 = - 2
Also since Yl(h) = Ghoh 601
2
o]
2 = 2 . (11.7.6)
01 h
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We have shown, therefore, that the sampling of an

I.M.A. process of order (0,1,1) at interval h produces

another I.M.A. process of order (0,1,1). From (11.7.5) we

can obtain the value of the parameter Bh for the sampled
process and from (11.7.6) we can obtain the variance oﬁ
of that process in terms of the parameters 6, and oi of the

original process.

In Figure 11.19 6, is plotted against log h, a

h
scale of h being appended. The graph enables one to find the
effect of increasing the sampling interval of a (0,1,1) process
by any given multiple. For illustration suppose we have a

process for which Bl = 0,5 and 0 = l. Let us use the graph

to find the values of the corresponding parameters 62, 84,

2
4

when the sampling interval is (a) doubled (b) quadrupled.
Marking on the edge of a piece of paper the points h =1, h = 2,
h = 4 from the scale on the graph we set the paper horizontally
and so that h = 1 corresponds to the point on the curve for

which 61 = 0.5. We then read off the ordinates for 62 and 94

corresponding to h = 2 and h = 4. We find

8, = 0.5 62 = 0.38 84 = 0.27 .
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Using (11.7.6) the variances are in inverse proportion to the

values of 8 so that
2 - 2 - 2 _
Cl - 1.00 ’ 02 - 1932 ’ 04 - 2-17 L]

Suppose now that for the original scheme with unit

interval the dynamic constant was 61 (again we will use the

subscript to denote the sampling interval). Then since in real time
the same fixed time constant T = -h/fn 68 applies to all the

schemes we have

§, = &§2

2 §, =6

L
4 1 -

The scheme giving minimum mean square error for a particular

sampling interval h would be

(l-Bh) h
xt(h) = (l-GlB) Et(h)
(1-6,) 3
or xt(h) N O X 5 v e (h) . (11.7.7)
g t
1-8,
Suppose, for example, with 61 = 0.5 as above, 61 = 0.8 so that
62 = 0.64, 64 = 0.41, then the optimal schemes would be
h=1 x.(1) = -23 (144v)e_ (1), 02 = 1.00 , g2c% = 6.50
t g t ' Te * ’ X iy

_ __ 0.62 2 _ 2.2 _
h =2 x,(2) = 25 (141.78V)e, (2), 0f = 1.32, g0} = 5.50
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- - _ 0.73 2 _ 2.2 _
h =3 xt(4) = 15—— (1+0.69Y) Et(4)'0€ = 2.17 ,g Gx = 3.84.

In accordance with expectations, as the sampling interval is
increased and the dynamics of the system have relatively less
importance the amount of "integral" control is increased and

the ratio of proportional to integral control is markedly
reduced. We have noted earlier that in some cases an excessively

large adjustment variance o}

would be a disadvantage. The
values of gc; are indicated to show how the schemes differ in

this respect. The smaller value for c; would not of itself,

of course, justify the choice h = 4, Using an optimal constrained
scheme such as is described in 8ection 11.6 with h = 1 a very

large reduction in Oy would be produced with only a small increase

in the output variance. For example, entering Table 1ll1l.5 with

d = 0.8, 100Q = 20, we f£ind that for a 5% increase of output
variance to the value (1+A2Q)oi = l.OSGi the input variance
for the scheme with h = 1 could be reduced to 22% of its

unconstrained value so that gzc; = 6.50 x 0,22 = 1.43.

Using (11.6.28) we obtain h = 1 (constrained scheme)

x, = 0.40x

0.5
£ t”1-0.09xt_2~0.56 —E—(l+4V) et(l) '

2 2.2 __
62 = 1.05 , g0l = 1.43 .
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In practice various alternative schemes could be set out with
their accompanying characteristics and an economic choice
made to suit the particular problem. In particular the
increase in output variance which comes with the larger
interval would have to be balanced off against the economic

advantage of less frequent surveillance.
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APPENDIX All.l

Pilot Scheme Data
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