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1. Introdiction and summary. This work is an investigation of a nonparametric

approach t¢ the problem of testing for a shift in the level of a process occurring
'
at an unkncwn time point when a fixed number of observations are drawn consecu-
tively in time. This problem frequently arises in quality control. Chernoff and
Zacks (2] nention that it may also be considered as being a simplification of a
tracking problem. We observe successively the independent random variables
Xl, Xé, ey XN which are distributed according to the continuous cdf Fi’
i=1, 2, ..., N. An upward shift in the level shall be interpreted to mean that
the random variables after the changé are stochastically larger than those before.
Two versiors of the testing problem are studied. The first deals with the case
when the initial process level is known and the second when it is unknown. In the
first case, we make the simplifying assumption that the distributions Fi are
symmetric before the shift and introduce the known initial level by saying that the
point of symmetry y is.known. Without loss of generality, we set y = 0.

Defining a ~lass of cdf's :% = {F: F continuous, F(x) = 1 - F(-x), - @ < x < =},

the problem of detecting an upward shift becomes that of testing the null hypothesis

H Fo(x) = Fl(x) = ... = FN(x), some F, c:;L

against the alternative

Ty Fo(x) = Fl(x) z ... ® Fm(X) > Fﬁ+l(X) = L., = FN(x), some F C:EL

F‘m+l # Fm’

wherem (0 <m £ N - 1) is unknown.
Yometines it may be of interest to investigate whether a process level is
stable without having precise knowledge about its initial value. In this

Situation, the problem of detecting an upward shift in level becomes that of

testing the null hypothesis



*
1,0 Fy(x) = Folx) = ooo = F(x)
against the alternatives

H*° Fl(x) = ... 0= Fm(x) 2 Fm+l(x) = ... = FN(x), F

1’ m+l # Fm’.

where m (1 ¢m < N - 1) is unknown. The distributions are not assumed to be
symmetric.

The taesting problem in the case of known initial level has been considered by
Page {111, Chernoff and Zacks [2] and Kander and Zacks [7]}. Assuming that the
observaticas are initially from a symmetric distribution with known mean vy,
Page propcses é test based on the variables sgn (Xi - Yo). Chernoff and Zacks
assume that the F}_are normal cdf's with constant known variance and they derive a
test for snift in the mean through a Bayesian argument. Their approach is extended
'to the one parameter exponential family of distributions by Kander and Zacks.
Except for the test based on signs, all the previous work lies within the framework
of parametric statistics. The second formulation of the testing problem, the case
of unknown initial level, has not been treated in detail. The only test proposed
thus far is the one derived by Chernoff and Zacks for normal distributions with
constant kaown vapiance. In both problems, our approach generally is to find
optimal invariant tests for certain local shift alternatives and then to examine
their properties. Our optimality criterion is the maximization of local average
power whers the average is over the space of the nuisance parameter m with respect

to an arbitrary weighting {qi, i=1,2, ..., N: q,

N
; ¥ o, z q; * l}. From the
i=1

Bayesian viewpoint, q; may be interpreted as the prior probability that Xi is the
" first shifted vériate. Although the average power concept has a Bayesian inter-
pretation, our derivation of locally optimal tests follows quite closely the

developments given in Lehmann (8] for the one sample location and the two sample

shift protlems. Invariant tests with maximum
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local averaze power are derived for the case of known initial level in Section 2
and for the case of unknown initial level in Section 3. In both cases the tests
are shown t» be unbiased for general classes of shift alternatives and for all
possible points of shift. The test statistics are distribution-free under the null
hypothesis .nd their large sample distributions are shown to be normal. They all
depend on tue weight function {qi} and this allows for flexibility in the choice of
test with rogard to whatever information is available on the possible point of shift.
This could vary from complete information where one would use a degenerate weight
function to the case of complete ignorance where a choice of uniform weights would
seem appropriate. With uniform weights, certain tests in Section 3 reduce to the
standard teits for trend while a degenerate weight function leads to the usual two
sample testi. In Section 4, we obtain the asymptotic distributions of the test
atatiastics under local translation alternatives and investigate their Pitman
efficiencigs. Some small sample powers for normal alternatives are given in

Section 5.

2.. Locally best invariant test (initial process level known). For testing H_

versus H , we use invariance considerations to reduce the data and then develop
distribut jon-free tests which maximize local average power againat specific
translation alternatives. The problem remains invariant under the group of all
transformations x; = h(xi), i=1,2, ... N where h is continuous, odd and strictly
increasing. A maximal invariant under the group is QB,_&) where R =(Rl, R2, ...,RN)
is the vector of ranks of lel, s |xN| and A = (A, Ay, -..phy) with A; = 0 (1)
if X, < 0 (»0), If ac-~ k/2N N!, any invariant test of size a will reject HO for
exactly k realizations of (R, A).

Let F(x) denote the common cdf under Ho‘ For the subfamily of translation
alternatives, Fm+1(x) = P(x - A), & > 0, the power B(& | m) depends not only on F

and the amount of translation 4, but also on the nuisance parameter m. In order to
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remove the parameter m, we turn our attention to the average power B (a) =
N

N

z 93 R{A | i - 1) where the welights satisfy q; 2 0 and Z q; = 1. The
i=1 i=l

stpructure f the invariant test which maximizes B (A) is exhibited in the

following :heorem.

Theorem 2. . Let the cdf Fe E% possess a density f(x) having the following

RroEerties:

(A) +(x) > 0 a. e. (Lebesgue) and f is absolutely continuous.

(B) sor a sufficiently small e¢ > 0, there exists a function H(x) with

o

f H(x) dx < = and for almost all x

su Flx + &) - f(x)
IG? ‘e | x | < H(x).

Then the irvariant test which maximizes the derivative of the average power at

A = 0 has & rejection region of the form

v ¢ (vRi))
(2.1) v= J o, sgn(X;)EL - —wyl
i=l F(V "17)
i
where the Ci'= X q, are the cumulative weights and V(l) < V(z) e € V(N)Aii

m=1 :
an ordered sample from a population having density 2f(x}, x > 0. (2.1) also

maximlzes the average power itself for all sufficiently small A > 0.

Proof. Let n = N - m where Xm+l is the first shifted variate. With amount of

translatior A, the probability of any specific realization A = a is given by

: ~m no= g, %
(2.2) P, (a]m =277 [F (-8)] [F (a}]
N
where a_ = I a,. Due to the symmetry of F, if X has cdf F(x - 4), the
izm+l

conditional density of |X[ given X > 0 is f(x - A)/F (4) and given X < O, it is

¢(x + A)/F (-A). Using this together with condition (A), we follow Lehmann [8],

p. 254, and express the conditional probability of any specific realization r of R
At —

given A = a as
A ~ . _l

N -m n - ao ao
(2.3) P(r | a, m) =({m 2 (F (-2)] F (8)1 %)
.
Noe(v P+ (1 - 2a) A)
E[,“ {r.) ]



From (2.2) and (2.3), we obtain

| gl N f(v 1) 4 by ;4)
(2.4) p(r,a | m = (N 2) E[T ) ]

At - iz1 f(v'Tihy

w:ere by 0 for { & mand b . = (L - Qai) for i > m, If PQ(E’.ﬂ) =
Z q P (1, §,| m - 1), the average power of an invariant test for shift A& is

m=1
obtained by summing P (r, a) over all (r a) belonging to the critical region.

By Neyman-Pearson's Lemma, it follows that the derivative of the average
power function at A = 0 is maximized by the rejection region aA PA(r a) | A=zo> C
Under condition (B), the dominated convergence theorem allows differentiation of

(2.4) under the expectation sign. To see this write (2.4) as PA(P'fil m) =

N {r.)
I (o f(v 1oy bm' A)] dv(l) ...'dv(N) where S = {v(l), v(z), ...,v(N):
§ i=1 .
NN R I <_v(N)}. For all |a] £ € £ 1, G(x) = H(x) + f(x) dominates

both f(x + b_. &) and |A-l[f(x +b 8- f(x)]| almost everywhere. Using the

identity

N N % i-1 N+l

n a, - B B, = (a, - 8;) 1 «a, n B, , with a_ = B = 1,

gep b g 4ogsr b Y ge0 Jkein K o TNl
we then have

N Gy N (ry) N (r,)
(2.5) AT (v +b ;8- 1 flv YN alv 7))
i=1 i=1 i=1l

and the right hand side is Lebesgue integrable over Euclidean N space and hence
over the susspace 5. Differentiating under the expectation in (2.4), it follows
after straishtforward manipulation that the rejection region is of the form (2.1).
The typ: of argument used by Lehmann (8], p. 287, shows that the average power
is also maximized for all sufficiently small 4. This completes the proof of the
theorem.
For a fow specific choices of the distribution F, the test statistics T of

(2.1) are given in Table 1. Large values of the test statistic are critical in

each case,
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Table 1. Tests with locally best average power against translation
alternatives in a process with known initial level.
Test Statistic
F
General weights UnlforT Yelghts Degineratf We%ghts
q; © /N qm+1—l, qi-O, i#m+l
N N N
Double 1 _
= . . - X. .
exponential T ile1.Sgn(x1) Nizli sgn(X;) i:£+ngn(x1)
N 1 N N
Logistic Ty * ) Q; sgn(X;) Ry N'E i sgn{Xy) Ry sgn(X;) R,
i=] i=l _ i=m+1
N (Ri) a1 N (Ri)' N (Ri)
Normal T(3) = z Q4 sgn(xi)E(H ) 5 { i sgn{Xi)E(H ) sgn(xi)E(H )
i=1 izl i=m+}
* w(l) < N(Q) . W(N) is an ordered sample from a Xy distribution.

shift might occur before the observations are taken.

The uniforr: weighting used in the third column allows for the possibility that a

Chernoff and 2acks [2] and

also Kander and Zacks [7] have assumed that the known process level corresponds to

the distribution of

with uniform weighting coincides with Kander and Zac
posterior :ikelihood ratio for a binomial sample.

this and Puge's test have been made in f21.

1

X. and this has led them to the uniform prior q; = (N - l)-l,
..sN. Apart from this minor difference, our optimal invariant test T(l)
k's test which is based on the

Some power comparisons between

Hijek [5) and Adichie[1] have studied

the large tample properties of test statistics of the form (2.1) which arise in

connection with a linear regression model having the Qi

independent variable.

When the point of possible shift

qm+l=l, qi=0 for iFm+l.

's as values of the

is known, the weight function becomes

The three test statistics for this case are given in the
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fourth col mn of Table 1. T(l) reduces to the sign test for location based on the
abservatious xm+l’ vaen XN. The forms of T(2) and T(B) in this case are
structuraliy similar to the Wilcoxon signed rank and the one sample normal score
tests base| on the above N - m  observations. The intrinsic difference is that

for T and T(a)' the ranking is considered over all N ovservations., It is

(2)
interestin; to note that in a two sample shift problem where one sample is known
to be from a distribution symmetric about O, the locally optimal invariant tests
for logist.c and normal distributions are T(2) and T(S) and not the Wilcoxon and
the normal.score tests. The reason is that a smaller invariance group is
appropriat:- here.

We nov investigate the unbiasedness of the class of tests (2.1) and more

generally, of any tests of the form
N
(2.6) (X) = izl Q; sgn (X;) U(R;)

where 0 ¢ 0y Q2 e 8 QN <1 is a given set of constants and U(+) is a function

<
~

of the ranls of the lXi , 1=1,2 ... N,

Theorem 2.7, If U(*) is a nondecreasing function, any test which rejects H_  for

large valus of T{x) is unbiased for testing H against H,.

Proof. Lei m (0 £ m & N - 1) be arbitrary but fixed. Define a class of mappings
L] t ' ' t
G- (xl, X, ...,xN) * (xl, Xy ...,xN) by x; = x; for i ¢ mand x; = h(xi) for

i > m where h is continuous, nondecreasing and h(x) 2> x for all x. For any

N

cdf I F. under H,, there exists an F E:BL and an h such that if (X , X,, ...,XN)
izl i lN o] (o] . N 1 2
- ' [} [}

is distributed as |l Fo’ (Xl, X2, ...,XN) will be distributed as [ Fi. It is

i=1 ' i=1
then sufficient to show that for each map of T, T(X ) 2 T(X) a.e. (Lebesgue),

(L8l, p. 2'8).
Consicer first a point x where the map is sign preserving in addition to

t
having the above properties. Let r and r denote the vectors of ranks of the



) B _ - - T - ) _ 7—%1:. - _ B _ _ i - - -
- - T - T Tl T T e =Tl T T p - T - - -
-~ = ~_absolute wnlues for x and x ~respectively. - Introduce -the index sets - - - -
- - - - - . . T g _ - = T - a SR - _
_ - 1, = is x, ;9,1'. <m} : 1 =1 _ _



the stepwite procedure of first mapping the points {xi: ie Jo} to the left of
. ]
zero but c:oser to zero than any other X5 then moving them across zero and finally

]
to {xi: ie JO}, we see that at each stage the value of T cannot decrease. This

completes the proof of the theorem.

The Qi represent cumulative weights and hence are nondecreasing. Therefore
any teét of the form (2.1) is unbiased for every weight function {qi} provided
that E[-f'(v(i))/f(v(i))] is nondecreasing in i. In particular, the tests in
Table 1 are all unbiased.

Except for T(l)’ any statistic of the Form (2.1) will generally have a
sample space consisting of QNN! points so that the setting of the exact critical
region might be very difficult even for moderate sample sizes. To obtain a

large sample approxlmatlon to the null distribution, consider the sequence of test

(Rygd,  (Rys)

;tatlstlcs TN = 121 QNi sgn (XNi) El-g (V )/glv )] where g is a known
density having cdf G e:zi)and satiefying the conditions of Theorem 2.1. Let
Lyg SO e © Zyy be an ordered sample from a uniform distribution on (0, 1)

and define a function Y(u) on 0 < u <1 by

(2.9)  ww = -g (@ NS

In terms of ¢ the test statistic Ty can be written as Ty = izl Qy; sen (xNi) Eqp(ZNi).
Under Ho, the distribution of TN depends only on the choice of g and the weight
function [qu} and not on the particular population cdf. We may therefore assume

that the ccmmon cdf of X, under H_ is G. Define a class of cdf's by

(2.10) =z {F: f (f (x) 2 F(x) dx < =, (A) and (B) of Theorem 2.1 hold}.

T

The following theorem is a direct consequence of Theorem 7.1 of Hdjek [5].

Theorem 2.%. If G e.F is symmetric and if the sequence of weights {qu} satisfies

£ im _Z Q bll = b2, g <.b2 < «», then under Ho’

Naw 1=]
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(1) (2 o 0

<

<y is an ordered sample from F.

i
where Qi = mzl 9, and V

The proof 's similar to that of Theorem 2.1 and hence is omitted.

The s.mplified forms of the test statistic (3.1) for logistic, normal and

& (2) _ N (5;)

double exp-nential distributions are T =} Qs., T = Q. E, (Vv )
. 11 . L i79
and T = E Qi Elsgn W J respectively, where EQ {v )} are the normal scores
i=1 .
and W(l) < w(?) < 4ea < H(N) is an ordered sample from the double exponential
distributinn.
‘ N
Chernnff and Zacks [2] obtained the test z (i - 1) (Xi - X) > C from the
izl

posterior likelihood ratio for normal observations with known variance. For the
special case of uniform weights the test statistics (3.1) have the same structure
except tha: functions of ranks are involved instead of the actual observations.

(1) Yo o
Note also ~hat T becomes § (i - 1) S; and the test is equivalent to Spearman's

i=1

rank correation test for trend. Because of this correspondence it is expected
that our trsts would perform well even when more than one jump occurs in the same

direction. With the weight function qm+1=l’ qi=0, ifgm+l. T(l) and T(z) reduce

to the standard two sample Wilcoxon and normal score tests respectively.

' *
Theorem 3.7. If U(+)} is a nondecreasing function, any test which rejects HO for
—eoren == . :
# *
large values of M(X) = { Qs U(Si) is unbiased for testing H_ wvs. H,.
i=1

Proof. Le» m (1 £ m < N) be arbitrary but fixed. Consider the same class of

transforma: ions (& introduced in the proof of Theorem 2.2, It is sufficient again

] 1 ] t 1
to show that MQ& ) 2 M(X) a. e, Let s = (sl, Sps cevs sN) be the vector of ranks

1 1 1
of the x,. Clearly i > m (g m) = s; % (g) Sy =>U(si) » () U(si). Hence

N

' m ' [
(3.2) T(x ) - T(x) = ] Q; [u(s;) - U(s; )] + ) Q; [u(s;) - U(s;)]
- Y =1 i=m+l
m . N 1 .
> Q, 1 (u(s;) - Ws)Hl+Q ) [U(s,) - U(s; )]
i=l izm+l

| . |
Q,, - Q) i=£+l (U(s;) - Ws;)] > 0. QED.

i
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We nov consider the asymptotic distribution of the class of statistics

N . (SNi) (SNi)
(3.3) 1, = ) Q E[-g (V )/g (V )1. .
N . Ni
i=1
Defining a function ¢ by
. - ! -1 -1
(3.4) wWu) = -g (6 (wW)/g (6 (W), 0 <uc<l
and letting ZNl < ... ZNN be an ordered sample from the uniform distribution on
N
(0, 1), the test statistic Ty can be expressed as T, = z Qu; E[w(ZNi)]. The

i=1
next theorem follows directly from ngek'[u], Section 6.

N
Theorem 3.5, Let Q, = Q,./N. IfG c:E;where is defined by (2.10) and if
e T — L LS~

the sequence of weights {qu} satisfies

N
.1 -2 _ 2 2
(A)  wimg ] Qg - QP = e 0 <c <o
N—w i=1
max 2
. (00_6)
(A) gim 1l ¢i ¢ N ""Ni N =0
2 N N — 2
1 (O - Q)
izl
' *
then under H ,
e st m—e— ()
Ty - E (Ty)

L
75 SN, .

V2 LI; ¢2(u) dul’

4, Asymptctic distribution under local alternatives and Pitman ARE. Although

desirable, an exact pbwer comparison of our tests with those of f11] and [2] for
various parent distributions would involve tremendous computational difficulties
even for moderate sample sizes. Consequently, we devote this section to the
derivation of the Pitman asymptotic relative efficiency (ARE). The usefulness

of this measure in our time series situation is somewhat questionable because the
assumption of a single shift in the process level may make little sense when the
sample size can be increased oniy by taking observations over an extended period

of time. lLowever, this objection could be ruled out in many cases where it is
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possible tc increase the size by sampling more frequently in a fixed time period.
We will treat in detail the class of tests (3.3). The development of the
corresponding results for the tests of Section 2 is similar.

Define a sequence of local translation alternatives {KN} by

byt Fi(x) = F(x), 121, 2, cooym re s

1/2

= F(x - 8N '), 1=ml, ..., N

tim (m/N) = A, 0 <A < L.

N-oe

where~:;is defined by (2.10). Let wN (1/(N + l)) = B[-g'(V(Ni))/g(V

(ND _ (N2) (M)

(Ni))]’

where V is an ordered sample from G s:3ﬁ Noting that
N : .

z Yy (SNj/(N + 1)) is constant for every N, we express the test statistic
i=1

(3.3) as

N

0 _ .‘-1/2 —_—

(4.2) ey = N 121 (Qqy - Q) ¥y (Syy/(N + 1)).
2 (12,0 a4 2 _ gl 2 ' , .

Set dw = IU $“(u) du and d¢ = ]0 $“(u) du where ¢(u) is defined by (3.4) and

“#(u) is the same function with g replaced by f and G by F.

Theorem 4.). Let G €_Ff where 7Jis defined by (2.10}. If the sequence of weights

{qu} satisfies

(A)  wim D o -Q/N=ac<=
izm+l

in additior. to (Al) and (AQ) of Theorem 3.3, then %im JE(Sg | KN) =.jV1u, c2 di),

where

(4.3) p= 8 a f; ¢(u) ¢(u) du.

Proof. The proof uses the principle of contiguity and is methodically based on
Hajek {5]. The important difference is that the coefficients (QNi - ﬁh) occurring

in the test statistic (#.2) do not appear in the alternatives {KN} while in [5]
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they do. ®e will sketch the main steps leaving out the detalls. Introduce

N
sx) = 2700,y = Y] [F (X )/6)], Wy = 2 { (r/2(x) - 1] and

N i=m+l
L, = l leg v, ., Where
N = Ni
(u.4) rNi(x) = -1 . i=1, 2, .
-1/2
f{(x - 6 N ) _
) . i m+l, s N
We have
(4.5) | E(U H* =z im Var (U H*) (1 ) al =1
. N | 5) = 0 &im Var (Uy | /- o "

and the application of Lemma 4.3 of [5] yields

- * 2 .2
(4.6) im E(W | H /(L - 2) 60 dp = 1.
© ¢
Further
( EL(W 24t
4.7) | (Wy - E{(Wy) - 6 Uy) | H,J
N sx, - e NP £ (X;) .
i 1 8 2
< 4 ): E[( -1 - 5 --*7— ) | Ho]
i=mel s(X;) £(X;)
2 N w -1/2 ,
= _I'LE__- J’ [S(X - e N ‘l/; - S(x) -5 (x)]g dx.
i=m+l - _ 6N

Using (4.%) and (4,7) together with Lemma 4.3 of [5], we obtain

*
PH

1 2 2 o
(u4.8) w!*«r;(l-x)e d¢+euN--—-~»o,

and then by application of the central limit theorem to the sequence {UN}, it

follows that
(4.9) zxmr(w lH)-./V- 1-2) 8 d , (L-21)08 di).

The conditions of Lemma 4.2 of [5] are satisfied. Therefore
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(4.10) W - L —2 1o 6% dl
g T B s’

;imoz(l.N | H:) M- %(1 -0 0° d:, (1 -2 o° di)

and the prolability measures are contiguous. The proof of the theorem may be
' ®
completed by showing that the limiting joint distribution of S; and Ly under Ho

is bivariat+ normal with correlation coefficient

' 1
(4.11) p = a 7 0¢(u) ¢{u) du )
1= d, d
c( ) o %
% . N
[ . . . ) -1/2

Under HO, Sr can be approximated in the mean square (c.f. {41) by SN = N {
' | i=1

l(ONi - Gh) w(F(Xi)). By (4.9) and (4.10), we have

#f
Py

1 2 .2 o)
L.N+5(l-)\)0 d¢+6UN-—->0
so that _
2

| *
¢ Ho)l

* ¥
zim,Z(:;N, LN]HO) = zimoz(sN, -0 U, -~ —;{1 -0 el a

' *
Applying the bivariate central limit theorem (Cramer [3], p. 11t) to (Sy» Ug)

and using tlle conditions (AQ) and (A3), we complete the proof.
In the special case of uniform weights, we have 6& = 1/2 and it is easy to

see that the conditions of Theorem 4.1 are satisfied with a = (1l - A)/2 and

¢ = 1/12, under {KN} the limiting distribution of Sﬁ is therefore

juzgiial_ll jé ¢(u) ¢(u) du, di/l?). In order to arrive at the usual expressions
for the ARE. we shall assume that the conditions of Lemma 3 of [6] are also

satisfied. Under these additional conditions, the application of Theorem 4.l to

N N (s.)
(1) _ -1 . (2) _ _ -1 . i
Ty = (N - 1) igl (i - 1) S; and Ty = (N - 1) iEl (1 - 1) BV )

yields
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(1)
T - |
(4.12) lhnlz(”T%E [Hgi“T - %] | k) =N rar =m0 f £2(x) dx, ;g)
N -0

2 7 (2)
. N -
lell(—*;m— I KN) -N(B all - a)

-]

£(x) a1,
= glo H(F(x))]

When the initial process level is unknown Chernoff-Zack's test statistic
N ' - '
has the foem ZN z z (i -1) (Xi - ¥). Application of this test to normal
i=l
population; requires the knowledge of the standard deviation g. With ¢ unknown,

®
a Studentized form 2, = (N - 2)1/2 ZN/ (DN Se)’ with Dﬁ = N(N2 - 1) / 12 and
N \
Sz = ] < - ?)2 - Zﬁ/DS, may be used. Under normality, the null distribution
i=]

of ZN is student's t with (N - 2) d.f. The asymptotic distribution of Zy and

]
Z, under the sequence {KN} is given in the following theorem

Theorem 4,2. If for some 8§ > 0, F has (2 + §)-th absolute moment then

. 2 _
; . N . #* 8Y3 A(1 - 2
(4.13) 'e.1m(I(FN—U—| Ky) = ElmI(ZN | Ky) =N( (0 ) » 1)

Proof. Aposly Liapounov's central limit theorem to the sequence of random

_ s N+ . C N+1
= (i - > )(Xi - W), i=z1,2, ...,,m; YNi >

/2, . N
), i = mtl,..., N where v = [ xd F(x), and note that

}

= (i -

variables Y, .
Ni

(X, ~v - 2 N
1 -
SzlfN - 2}—Ra—oz under KN'
e .
It follows that for uniform weights the ARE of the test TN of (3.3) relative

to Chernof f-Zack's test is given by

(4.14) bp. g C o d;Q (fé ¢(u) w(u) du)?.
For the particular tests TN(l) and TN(Q) this reduces to
= © 2
2 2 2 2 f7(x) dx
e = 120 (I fo{x) dx) ', e = aqa {f - ' .
1), g = 2, 2 o 9LeTH(F(x)))

and these are precisely the ARE of the two sample Wilcoxon and the normal score
tests relative to the t-test.

The s~lection of a test TN of the form (3.3) or equivalently of an S; involves
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the choice of a function ¢ defined through a density g as well as a weight function
' : * *

{q;}. If two such tests, Ty-and Ty defined through ¢ and ¥ , are based on

identical cr asymptotically equivalent weight functions(i.e. a and c of (A,) and

.(Aa) are ecual), Theorem 4.1} shows that their ARE is given by

& e W du
(4.15) . ‘I'* = [ X * ]
’ dw IO ¢(u) ¢ (u) du

which is irdependent of the particular weights used. Since this expression holds

for a degeneraﬁe‘yeight function, the ARE is equal to that of the standard two

sample rank order tests for shift. Thus the investigation of the AﬁE of our tests
poses no new probleﬁ if the weight functions are the same or asymptotically
equivalent.

| It is also of interest to study the sensitivity of the ARE in relation to the
choice of the weight function. Suppose T and T' are.two tests defined through the
same Y-function but involve two different weight functions {q;} and {q;} which
satisfy the conditions (Al), (A2) and (Aa)-with the limits (a, ¢?) and (a', cTQJ
.reSpectivelw. From Theorem 4,1, we obtain er. T' = (ac'/a'c)2 which is
independent of ¢. Suppoée that T' has the degenerate weight q;+l=l, q;=0, ifm+l,
which one uses when the possible point of shift m is known. Under the assumpfion
m/N + A as N + i, we.then ﬁave a' z cf2 = A1 - A). If vwe neglect the fact that
m is known.and use the test T with uniform weights, we will have a = A(l - x)/2,

2

¢ = 1/12. The ARE is e = 3A(l - A) g 3/4, This indicates that the loss of

]
T: T .
efficiency incurred in using a uniform weight instead of the correct degenerate
weight is at' least 25% and could be much higher if the point of shift is near the
beginning cr the end of the observation period. Some small sample poﬁer
comparisons for different choices of weight function are given in the next section.

For th: sake of completeness, we state the asymptotic distribution of the

N .
test statisric TN = 121 QNi sgn (xﬂi) E w(ZNi) of Section 2 under the sequence of
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alternativ:s {KN} with the additional assumption that F is symmetric. In this
case } is -lefined by (2.9).

Theorem 4.3, Let F and G be symmetric and members of gwhere’ais defined by

——— i iy

(2.10). " I: the sequence of weights {qu} satisfies

W, ' N

tim ;. Q2. /N=b® <wand &im J] Qu./N= £ <m
L Ni —_— . Ni
i-1 : . i=m+l

then

(v.06)  rimZery| k) =Me {5 o(w) ¥(w) du, b? @2).
v
The proof is similar to that of Theorem 4.1,

5. Small rample power. Determination of the exact power of our rank order tests

being extr-mely difficult even for moderately large sample sizes, we present here

some power computations for very small sample sizes. The power of the test

1)

N
_ . . _
= 0, S, for testing H_vs. H, is calculated in the special case of

. 1
1=1 )
translations in the distribution Fl(x) = $(x) where ¢ is the standard normal cdf.

Let us beg'n by examining the relationship between the power and the amount of
translatiol A when the weights {qi} are uniform.

For test size o and sample size N, the critical region contains the rank orders
N .
5= (5,, S, ...,SN) having the a*N! largest values of z i Si" Randomization
' i=l
is necessary when a-N! is not an integer or when ties occur in the value of the

test stati:tic at the boundary of the critical region., Fixing the point of shift

m+l, we pr«ceed by coding the critical rank vectors into the vectors Z =

(), 2,

otherwise. The probabilities of the Z vectors under various nommal translation

+-+y%y) according to the rule Z, = 0 if i ¢ {5, §,, ...,Sm} and 2, = 1

alternatives are tabulated by Milton [9] to nine decimal places; Power is
computed bv using Table A of [9] and the fact that m! (N - m)! different rank

orders yie:d the same Z. Table 2 gives the power under different amocunts of
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translation A and points of shift mtl. Only the values of m which are g N/2

are tabulated. The powers for other values of m follow by symmetry.

N
Table 2. Power of the test Z i Si for normal translation alternatives.
i=l
a = .05
A
N m
0.2 0.8 1.5 3.0
u 1 .060 .095 .135 - .181
4 2 .06l _ .116 : .182 »268
5 1 060 .09k .132 174
5 2 .067 .136 .232 - +365
6 1 059 {092' 127 .166 |
b 2 -.068 141 . 2u4 .384
6 3 072 170 .327 - .572
Since T(l) is designed for the situatioh where the process level is

unknown, a comparison of the power with Page's test [11] would not be relevant.
N
A comparison of I i S with the Studentlzed form ZN of Chernoff and Zack's test

i=1
would be interesting, but this has been deferred because of the difficulty in

*
obtaining the distribution of ZN in a convenient form under the above altermatives.

For the situation where the initial process level is known, some
N : .
power comparisons between the test T(l) z X i sgn (Xi) and Page's test were made
i=1
by Chernoff-Zacks [2] for normal alternatives. T(l) was found to have slightly

more power unless the point of shift is near either end in which case Page's test
performs tatter. It would be interesting to compare these tests with the tests

and 1 of Table 1. However the powers of the latter tests are difficult

T2y (3)

to compute due to the absence of tables of rank order probabilities for the

absolute values of observations from a normal population. Perhaps power would



have to be studied by Monte Carle techniques.
‘To il.ustrate the effect of the selection of weights {qi} on the power, we

N
again cons.der the test T(l) = E Qi Si of Section 3, With sample size N = 5,

i=1
four systems of weights are chosen for comparison., These range from the

degenerate (0, 0, 1, 0, 0) which corresponds to the known point of shift m+l = 3
to the unitorm (0, 1/u, 1/4, 1/4, 1/4) which corresponds to the complete
ignorance «f the point of shift. Powers of each test for normal translation
alternatives are calculated as above and are presented in Table 3., As one would
expect, the power is maximum for the choice of the correct degemerate weighting
and it falls off with the approach towards the uniform weighting. In the same
manner, the éntries of Table 2 may be compared to the powers of the corresponding

Wilcoxon tests which are available in Milton [10].

N
Table 3. Effect of the weight function on power of z Q. S..

i=1 1 1
N=5 m=2, a=,10
A
Weight function
0.2 0.8 1.5 3.0
(o, o, 1, 0, 0) 137 .296 LS540 .921
?2 6 2 1, -
— — T, . . . 498 .
©, 77 17 11 ll) 135 283 813
2 Y4 2 1
(0, 5 3 & % .135 .278 LuBY L7717
1 1 1 1
0, o i 7 7 .131 .251 .407 .602

The study of the small sample power of the tests derived in this paper is

being continued and the results will be communicated later.
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