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EXPLCRIMINTAL STRATEGY

by

G. L. P. Box

University of Wisconsin

At Fipst sight the planning of experiments seems to be a
highly darbitrary and uncertair science. For example, suppose that we
collected ten groups of experimenters competent in a particular field
of science or technology, locked them in ten separate rooms, presented
each group with the same problem and asked them to submit their proposal
for a suitable experimental plan. While on the one hand it is clear
that the naturg of the final conclusions drewn after the trials had been
run would depend far more hedvily on the particular plan submitted than
on the data actually collected, on the other hand it is certain that no

two groups of experimenters would present the same plan.

1. INDETERMINANCY OF EXPERIMENTATION

Some of the indeterminancies are indicated by the following
guestlions:

i. Which variables.or factors should be studied?

2. | Which levels of a given factor should be considered?
If the factor concerned is qualitative like ‘Qariety
of seed".this may involve choice from a very large
nopulation of possibilities; if the factor is quanti-
tative this involves a choice from an infinite number
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of "scales" in which the variables are to be considered.

3. When the variablées are quantitative we have the question
closely related to (2) of which metrics and wh%ch trans-
formations of the variables should be used in the definition
of the "Factor levels." [l'or example, suppose the amounts X,
and Xy of two nitrogunoﬁs tertilizers A dand B were under study;
ghould Xy and X themselves be regarded as the factors or would

it be better to considar, for example, the total amount

2, = Xy * Xy

<4

of nitrogenous fertilizer as one factor and the
ratio z, = xA/xB as the ather.

An orthogonal design constructed on the £irst basis
(Figure 1 (a)) corresponds to a highly non-orthogonal arrange-

ment onh the second basis (Figure 1 (b)). Everyone knows that you

'should not use designs which look like that in Figure 1 (b)!

L, Finally, and again related to {2) and (3), we have the question
how complex a model {and hence how elaborate an experimental

arrangement ) 1s necessary in a particular situation.

2. TTERATIVE NATURE OF THE EXPERIMENTAL LEARNING PROCESS

The situation appears rather more hopeful as scon as one remembers
that an isolated group of trials of the kind so far discussed is in fact

inevitably part of an iterative segquence. Thus, if we think in terms of the
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of "scales" In which the variabies dre to be considered.

3. When the variables are quantitative we have the question
closely related to (2) of which metrics and which trans-
formations of the variables should be used in the definition
of the "actor levels." VTor éxample, suppose the amounts X4
and x,, of two nitrogenous rertilizers A and B were under study;

B

shiould X, and Xy themselves be regarded as the factors or would
i }
it be better tc consider, for example, the total amount

z, = %, + x, of nitrogenous fertilizer as one factor and the

X A B
ratio z, = xA/xB as the other.
An orthogonal design constructed on the first basis
(Figure 1 (a)) corresponds to a highly non-orthogonal arrange-

ment on the second basis {Figure 1 (b)). Everyone knows that you

should not use designs which look like that in Figure 1 (b)!

i, Finally, and again related to (2) and (3), we have the question
how complex a model {and hence how elaborate an experimental

arrangement) ls necessary in a particular situation.

2. ITERATIVE NATURE OF THE EXPERIMENTAL LEARNING PROCESS

The situation appears rather more hopeful as soon as one remembers
that an isolated group of trials of the kind so far discussed is in fact

inevitably part of an iterative sequence. Thus, if we think in terms of the
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highly arbitrary and uncertain science. For example, suppose that we
collected ten groups of experimenters competent in a particular field

of science or technclogy, locked them in ten separate rooms, presented
each group with the same problem and asked them to submit their proposal
for a suitable experimental pian. While ori the one hand it is clear
that the nature of the final conclusions drawn afteﬁ the trials had been
run would depend far more heavily on the particular plan submitted than
on the data actually collected, on the othér hand it is certain that no

two groups of experimenters would present the same plan.

1. INDETERMINANCY OF EXPERIMENTATION

Some of the indeterminancies are indicated by'the following
questions:

L. Which:variable& or factors should be studied?

2. Which levels of a given factor‘should be‘considéred?
If the factor-éoncérned is Qualitative‘like 'Mayiety_
of seed" this may involve ghoiée-from a véry large
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overall gathering of knowledge rather than in terms of. the individual groups
of trials, wé see that we cannot hope to obtain a basis for the planning of
experimenta which ensures that every investigator will, in éxactly the same
circumstances, do exactly the same thing. What we can do is to attempt to
organize resedrch so that whatever the starting point, the whoie srocess
willi, over a periba of time, tend tu lead tb the Pight conclusions., It is’
'with convergence rather than with uniqueness that we ought to be concerned.
As I have suggésted elsewhere {1] [2] the iteration consists of

the successive and repeated use of the sequence
CONJECTURE - DESIGN - EXPERIMENT - ANALYSIS

as illustrated in Figure 2(a) and is a process in which the creative mind

of the experimenter is the essential element Figure 2(b).

The truly iterative nature'of some investigations may sometimes be
'obscufeq by the length‘bf time taken by each iterative cycle. In this
case it will be possible to see the wider picture of iteration only by
stepping béck énd seeing what o¢cufs over ﬁqnths or years., Iteration may
skip from one investigator to énother, from one country to anofher and.its
phases may be long. Even in this situation, howevef, it is important to-
bear in miﬁd that it is the overall acquisition of knowledge which we want

to make an efficient process.
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the successive and repeated use of the sequence
CONJECTURE - DESIGN - EXPERIMENT - ANALYSIS

as illustrated in Figure 2(a) and is a process in which the creative mind

of the experimenter is the essential element Figure 2(b).

The truly iterative nature of some investigations may sometimes be
obscured by the length of time taken Dy each iterative cycle. In fﬁis
case it will be possible to see the wider picture of iteration only by
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3. SOML CLASSES OF PROBLEMS

Within this iterative context let us consider some particular
problems of investigation. Many investigatioms are undertaken with the

purpose of elucidating some aspect of a relation

= {6 i) o=
y\l LUt u

where Y, i3 the obssrved response [n the uth experimental run when k

variables £ are held at levels £u’ 8 is a set of p parameters and e is

-

the error. The state of Ignorance with which we start and the state of
comparative knowledge which we wish to brought to, will determine our
approach. It is realized, of course, that no real probiem ever quite fits
any prearranged category. With this proviso it is perhaps heipful to
distinguish the fo;lowing types of problems and for reference purposes 1

have given each a tentative name

SUPPOSED :
U NKNOWN OBJECTIVE NAME
¥ Determine the subset £ of -important S .
i - o creening
L variables from & given larger set = .
M E : variables
8 J of potentially important variables
fi Determine the empirical "effects" - \
8| of the knmown input variables §. | Empirical model
- S - i building
JTL ~ Determine a lotal interpolation Response surface
6 approximation F(£[8) to £{gi@) methods
1 - . ' s
£i _ Determine £ .~ : Mechanistic model
0?‘ : " - building
: omodal

9 PDetermine O _ ' Mennanistiv
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purpose of elucldating some aspect of & relation

wnere ¥ is the observed response in the uth experimental run when k

variables §{ are held at levels Eu’ 8 is a set of p parameters and e iz

-

the error. The state of lgnorance with which we start and the state of
comparative knowledge which we wish to brought to, will determine our
approach. It is realized, of course, that no real problem ever gquite fits
any prearranged category. With this proviso it is perhaps helpful to
distinquish the fo;lowing types of problemﬁ and for reference purposes I

have given each a tentative name

SUPPOSED
U NKNOWN OBRJECTIVE NAME
1] Determine the subset L of important .
! _ . Screening
£ & variables from a given larger set = .
< ! : variablies
6 ) of potentially important variables
f; Determine the empirical "effects" \
GJ : of the known input variables £. 5 Emp;rlcal model
~ T building
f é ~ Determine a local interpolation Response surface
/ approximation F({|8) to £(£]6) methods
~ ) - - o
5 :
£ Determine £ . Mechanistic model
u( : building
~J
o Determine 8 . Mechanistic model



Lxperiment —===-=-0
A
besign
Conjeciure
(Hiypothesls
Model) ——0 O

Figure 2(a). Iterative Experimentat.ion

)

( (Data) nXPERI’VIL\h)

ANALYSIS -~ — DISIGN

=2 C 0

R =R R

Figure 2(b). The iterative experimental
process in.relation to the experimenter



- 7 -

In the time available I will briefly sketch some of the procedures that have
been employed to deal with these problems taking rather more time over

problem (4.

4, SCRELNTNG VARTABLDG WITH SUOUUNCES OF FRACTIONAL TACTCRIALS

One source of varisilc ucﬁeén;ng probiems is the ﬁtroﬁble shooting"
investigation, An example of such a problem and of iterative experimentation
leading to its solution is given in £3]. A filtration process which should
have given fiitration times (y) In the nelghborhood of 40 minutes in fact gave
times close to 70 minutes thus creating a production bottleneck. A set < of
seven variables which hopefully included those responsible for the trouble
were (1) type of water, (2) type of raw materiél, (3) {emperature of filtratior,
(4) hold up time, (5) use of recycle, (6) rate of caustic addition , and
| {7) type of filter cloth.. It seemed likely that at most two of these variabiés
had any real effect over the reievant ranges, The problem was to discover, in
thé presence of lafge inherent variability, thch ones , if'any, of these
candidate variables were responsible, |

A 1/16 replicate of a 27 (resolution III) design was first run. ‘The
design ﬂas the propérty that it supplies a 22 factorial feplicated twice in
every EQEE.OF variables. On the assumption that only main effects and two
factor interactioﬂs need be considered the data from this_eight-rﬁn design
could be explained in tefms of effects (1,3,6); (1,3,ix3); (1,6,1x8) or
(3,6,3%6), Here, for example, 1 refers to the main effects of factor 1, and
1x3 refers to its intepraction effect with 3. One should ﬁof be distressed by

ambiguity which still exists at this stage but elated at the thought that the



number of possibilities has béen drastically reduced by a verj few
éxperimental runs. Proceeding to the next iterative cycle a second block
of eight runs was made, This second block was specifically seiected to
resoive the ambiguities revealéd by the first set. It lead to the conclusion
that what was being seeh were the effects of type of water (1), rate of
caustic dddition {(6) and their .teraction {(1%6) and this lead to a speedy
soiution to the problem,

Iterative experimentation with fréctional factorials as huilaing

blocks has proved a poteht tool in the solution of many similar problems.
5. EMPIRICAL MODEL BUILDING

It is perhaps worth saying that the randomized bleck, latin square,
éné_faqtorial designs have since their inception been used as building blocks
in the itenétivé leérning sequenée; The possibility of rapid conﬁergence of
the lterative sequence depends on tﬁe efficigﬁcy with which the duai pfocesses
of data generétion (deéign) and data analyéis are §érfonned and'ho# they
ijluminate and stimuléte (and do not stifle) the ideés of the inﬁestigator.
. This notion was clqar iﬁ FPisher's general'aftitude towardé the use'of these
desighslin scientific investigafion.

Wheﬁ the variables are quantitative and the expefimental error is
not too large it may be profitablé‘xo attempt to estimate the respdnée-fuﬁétioﬁ
within some area of immediate interest. In,magy problems the form of the true
responée'fﬁnétion f(a[e) islunknowﬁiand cannot economicéi;y be obtained but may
?erhaps bé iocally-apprqximated‘by a'pqunomiéi ér some otﬁer grgduéting'funcfion

F{£,8) and designs have been de#eloped_ﬁith-this end in mind. The essentially -



number of possibilities has béen drastically reduced by a very few
experimental runs. Procseding to the next iterative cycle a second block
of eight runs was made, This second block was specifically seiected to
resolve the ambigulties revealéd by the first set. It lead to the.conclusidn
that what was being seen were the effects of type of water (1), rate of
caustic addition (6) and thelr iteraction (1x6) and this lead to a speedy
sowution to the problem.

Iterative experimentation with fractional factorials as huilding

biocks has proved a poteht tool in the solution of many similar problems.
5. LCMPIRICAL MODEL BUILDING

It is perhaps worth saying that the randomized block, latin square,
~and factorial designs have since their inception been used as building blocks
in the-iterétive leérning sequence. The possibility of rapid convergence of
the iterative sequernice dapends dn fhe efficieﬁcy with which the dual processes
of data generation (deéign) and data analyéis are performed and'how theyg-
iiluminate and stimulate (and do not stifle) the ideas of the inVestigatdr.
This notlon was clear iﬁ.Fisher'é general attitude towardé the use of these
designs-inrscientific investigation.

When thé vgriables are_Quantitative and the experimental error is
not too large it may be profitable.xo attempt to estimate the respdnée‘fuhétion
within some area of immediate intergsi.' In,maﬁy problems the form of the true
response fﬁnction f(&]e) is.unknowﬂ:and cannot ecbnomicéi;y be obtained but may
perhaps be locally approximated by a'pqunomiél 6r some other graduating'funcfion

F{%,B) and designs have been developed with this end in mind. ‘The essentially



In the time available I will briefly sketch some of the procedures that nave
been employed to deal with these problems taking rather more time over

problem {4},

U, SCREENING VARTABLLS WITH SUOUUNCES OF PRACTIONAL FACTORIALS

One source of variable sorceniag problems is vhe "trouble shooting™
investigatlion., An example of such a problem and of iterative experimentation
leading tc its solution is given in [3}. A filtration process which should
have given filtration times (y} In the neighborhood of 40 minutes in fact gave
times close to 70 minutes thus creating a production bottleneck. A set Z‘of
seven variables which hopefully included those responsible for the trouble
were (1) type of Qater, (2) type of raw material, (3) temperature of fiitration,
(4) hold up time, (5) use of recycle, (6) rate of caustic addition , and
(7) type of filter cloth. It seemedslikely'that at most two of these varidbies
had any real effect over the relevant ranges, The problem was to discover, in
the presence of large inherent variability, ﬁhich ones , if any, of these
candidate variables were responsible,

A l/16 replicate.of a 27 (resolution ITT) design was first run. The
design has the property that it supplies a 22 factorial feplicated twice in
every pair of vaviables. On the assumption that only main effects and two
factor interactions ﬁeed be considered the déta from this eight-rﬁn design
could be explained in terms of effects {(1,3,6); (1,3,113); {1,6,1x6) or
(3,6;3%), Here, for example, 1l refers to the main effects of factér- 1, and
1x3 refers to its interaction effect with 3. .One should not be distressed by

ambiguity which still exists at this stage but elated at the thought that the
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iterative nature of 50 called “espouse surface methodoiogy” isrwell Known
and illlustirdates the milticomponent characfer of the more general learming
Process.,
Thus, in & typical Ilnvestipgation to improve a cﬁemical process 4]
the lavestipetor would De Soncerasd o jearn as he went aloag (1) the amount
of Tapiication needed 1o achiev; suyricient accuracy, {(ii) the_locatioa of
the ewperimental reglon of interest, (Iil) an appropriate scdling aﬁd
transformation for the variables, (iv) the degree of complexity of approximating

function and hence of design needed.

6, MECHANISTIC MODEL BUILDING

In recent years considerable attéﬁtion has been given to the
ﬁossibility of using the true function foﬁmf(g,ﬁl to represent the response
rather than approximating it by N#,2). To do this one ééeks to discover the
mechanism for the phenomsn§ﬂ and to express this mechanism in appropriate
mathematicﬁl form. In practice we can hope to achieve‘useful working
mechanistic models which take account of the pfincipal elements of the
mechanism. The models oftén are most naturally expressed in terms of
diffeféntial equations of other non-explicit f&rms but developments in
computing and in the better uhderstaﬁding of non-linear design and estimation
have made it pbssible to cope with the resulting problems. A mechanistic
model nasrthe advaﬁtage that |

i) it contributes to éur-scieﬁfific'nndereténding ofhthe

phenomenon under study
ii) it should profideJa better basis for extfapglation at
least to conditions worthy of furtherrexﬁerimental

investigation



-10-

iii) it tends to be parsimonious in the use of parameters
and hence to provide better estimates of the response.

Results from fitting mechanistic models have sometimes been disappointing
because not anough atten*ion has been given to discovering what is the
appropniate model. It is easy to coliect data which never "place the
assumed model in jeopardy” and so it is common (for example, in chemical
enpgincering) to find different research groups each advocating a different
model For the saﬁe phemonencn and proffering data which "§roves" their
clalim,

For some time statisticiané_and chemical engineers have been working
in couperation on this problem at Wisconsin. So far two mdin techniqueslhave
ruesulted

i) a diagnostic input perturbation technique [5] [68] [7]

ii) & sequential discrimination technique [8] (9] [10]1-

6,1 Diagnostic input perturbation.

Often the model is most haturally expressed in terms of time or
space dependent differential equations subject to certain boundary conditions.

On integration these yield

E(y) = £(£,8,1) ' (1)
where t iz the time or space variable, In a chemical study y would typically
refer to the yield of certain ﬁroducts'at time t, and fhe 9's Wouid be

parameters such as rate constants. [n some cases the yields of several

(say 1) products of reaction wouid be studied simultaneously. So that there
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iii) it tends to be parsimonious in the use of parameters
and hence to provide better estimates of the response,

Results from fitting mechanistic models have sometimes been disappeinting
because not enough attention has been given to discavering what is the
appropriate model. It is eesy to collect data which never "place the
assumed model in jeopardy! and so it is common (for example, in chemical
engineering) to find different rescarch groups each advocating a different
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parameters such as rate constants. In some cases the yields of several

{say L) products of reaction would be studied simultaneously. So that there
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would then be ¢ Ffunctions of the form of equation (1) supplying information
about the same O's, Multivariate estimation of the 8's in this situafion
has been discussed in [10].

When investigatingVSUCh 4 system it is usually most convenient to
sel the variables € st some Flixed levels and observe y at m specified values

of t. The values of { are theh reset at a second set of levels and so on

through n experimentai runs. Tt would often be convenient to arrange these
n puns so that the variables { foliowed some factorial or fractional factorial
arrangement.

Now suppoée (using ncn-linear estimation methods Q111 [17] {131 0Gig )

- ~

we obtained estimates 61,52, ...,On of the p parameters for each of the n

- ~

expérimental runs. In the simplest application of the technique our assumed
model would imply that these quantities should éstimate the same set of
parameters 0, and in particular that they should be independent of the levels
of the experimental variables f. The usual factorial analysis may now be
applied not to the y's but to the 8ts. The existence of significant effects
points to inadequacy of the model. Much more importantly the analysis sﬁpplies
a diagnostic tool indlcating at precisély what point the inadequacy occurs.

Thus, for example, if 62 was a particular rate constant and 53
an initial concentration of a certain reactant then correlation of ®, and &,
would imply that the inadequacy of the model was to be looked for at the point
‘where 6, and 53 were associated. This technique and particularly its contri-

bution to iterative learning is weil illustrated in a study of the kinetic

mechanism of the catalytic oxidation of methane [ 6 J. With this technique
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. we do not necessarily have any pacticular alternative model in mind. We are
attempting rather to strain the model in such a way that the nature of any
y which is shown up may jog the imagination of the experimenter to

inadequac

the pight kind of new conjecture.

h.v o Seguential diseriminat oon.

A dilferent cdse arises il Wwe have m rival énd plausible models
which limited experimentation has so far been ineffecti?e in distinguishing
between. We ask the queéstion 'Where should the next run be performed so as
to allow us to best discriﬁinate between the alternatives?" Ia a recent paper

(g1 [io] the following approach has been followed. let p. (i = 1,2,...,m)

Le the probablliity density of the N'th observation given the first N-1 observations

" on the assumption that the i'th model is true.

Let ﬁi N denote the probability that the i'th model is true when
“F : .

N-1 observations have been performed. (We should normally assume that

no= é—(i‘= 1,2,...,m)). Then using Bayes' theorem
8]
Rkl Py
1. = .
iN ): m 1 _
i=i T N=i Py

Let Ej denote the expected value oh the assumption that model 1 is correct.

Then given that N-1 experimental runs have been performed we choose the N'th
run so as to maximize the measure of divérgence

- Py
o it 1
= . —— —J—
v 11:; Ligp W oner M Nel_(Ei-E" P *Es z"_pi'
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" we do not necessarily have any particular alternative model in mind. We are
attempting rather to strain the model in such a way that the nature of any
inadequacy which is shown up may jog the imagination of the experimenter to

thé pight kind of new comjecture.

O.y Leguential dlserviminatoon.

A Gifferent case arises if we have m rival and plausible models
whicn limited experimentation has so far been ineffective in gistinguishing
petween. We ask the question "Where should the next run be performed so as
1o ailow us.to best discriminate between the alternmatives?" In a recent paper

juy [10] the following approach has been followed. lLet p. {i = 1,2,...,m)

i
be the probability density of the N'th observation given the first N-1 observations
on the assumption that the i'th model is true.

Let ﬁi N-1 denote the probability that the i'th model is true when

N-1 observations have been performed. (We should normally assume that

(£ = 1,2,...,m)). Then using Bayes' theorem

Let I;i denote the expected value on the assumption that model i is correct.

Then given that N-1 gxperimental”runs have been performed we choose thejN'th

run S0 as to maximize the measure of divergence
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would then be % functions of the form of equation (1) supplying information

about thée same 8's. Multivariate éstimation of the 6's in this situation

has been discussed in [107.

When investigating such a system it is uéually most convenient to
set the vdrlables £ ot some Pixed levels and cbierve y at m specified values
of t. The values of [ are then reset at a second set of levels and so on
through n experimental runs. [t would often be convenient to arrange these
n runs so that the variables { followed some factorial or fractional factorial

arrangement.

Now suppose (using non-linear estimation methods (11] {17271 {131 LiuD)

~ -

we obtained estimates 61,62, ...,Gn of the p parameters for each of the n

-

experimental runs. In the simplest application of the technique ocur assumed
model would imply that theSg quantities should estimate the same set of
parametefs ¢, and in partiéular that they should be independent of the levels
of the experimental variables £. The usual faectorial analysis may now be
applied not to the y's but to the 6's. The existence of significant effects
points to inadequacy of the model. Much more importantly the analysis sﬁpplies
a diagnostic tool indicating at‘precisély-what point the inadequacy occurs.

Thus, for example, I1f 62 was a particular rate constant and £3
an initial concentration of a certain reactant then correlation of 82 and 53

would imply that the inadequacy of the model was to be looked for at the point
where 62 and Ea were associated, This technique and particularly its contri-
bution to iterative learning is well illustrated in a study of the kinetic

mechanism of the catalytic oxidation of methame [6 ]. With this technique



arki the Hi Nl (i = 1,2,...,m) are recalculated after each mun until

adequate discrimination is obtained. The maximization of D corresponds
to choosing the ¥'th run so that the expected change in entropy between the

N-1'th and the N'th runs is maximized.

Diceriminagt ion among ~ats rodel.

LSuppose that we lco? at ihae sinple reaction
A -+ B.
Then depending on whether the reaction is of first, second, third, or fourth
ordef the relationships between y, the amount of unreacted A, and El’ time
in minutes, and Eg, the temperature, are

612785
-85,

Model 1. E (y) =

1

. // 820755 \\
Model 2. % yy = 1 // \ 1+8,¢e ‘)

Z

: / ~8.,78, \ 172
Model 3. E (y) = 1 142056 | ]

3 s
| YA ~0,,/5, \ 173
Model 4., E(y) = 1 1+ 36 & e

N 41°1

where the Oij are the constants of the system. In each case the initial
concentration of A 1s taken to Le unity. In a simulated study, model 2 (second
order reaction) was chosen to be the correct model with
-5000/¢
= 2
E(y) = 1 1 + 400% e
”) o

with v's normally distributed and standard deviation .05. It was supposed that
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the operability region was defined by O i-ﬂl < 150 minutes and

-’

450 < £, < 60O K. A preliminary 2" -fdctorial design was chosen within

. : o vl e - e e ©
this regilon at levels &l = 2% and 125 minutes and &2 = 47% and 5757 K.

The points where maximun discrimi nation was obtained &t each stage
are shown in Figure 3. The posterior probabilities are shown in Figure @
where the initial priors were taken to be locally uniform

= = = = 725}, F { = ' i
(ﬂlo Too = T30 = Tyo * 2 y., After only N = 8 observations, model 2 was

correctly - favored over the rest even though after the preliminary N = u

abservations there was a slight preference for model 3.
7. MECHANISTIC MODEL FITTING

.Non-iinear model fitting it seems to me has too often received
emphasly at the'expense of model building pecause the first is a well-defined
problem and the second is not. However, in those cases where Wwe can suppose
the model to be "known" most emphasis is needed on design and particulérly
sequentiai design. The purely numerical problems arising in the choice of
an optimal design [i5)] are much more manageable in the fairly common circum-
stance where runs can be made one at a time {163 { /3 One can then relect

™S '
experimental /which at each stage maximize (or at least make large) some

relevant measure of expected information such as the expected change in

volume of the confidence region.
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the operability region was defined by € i_El < 150 minutes and
450 < L? < 600 ° K. A preliminary 2% -Factorial design was chosen within

: . . . . . e O
this reglon at levels &l £ 2% and 125 minutes and 52 = 475 and 575 K.

The points whepe maximui discrimination was cobtained at each stage
are shown in Figure 3. The posterior probabilities are shown in Figure 4
whepe the initial priors were taken to be locally uniform

{n =g, =M z W = ,25), After onliy N = 8 observations, model 2 was

correctly favored over the rest even though after the preliminary N = «

observations there was a slight preference for model 3.
7. MECHANISTIC MODEL FITTING

Nan-iineap‘model fitting it seems to me has 100 often received
emphasis at the expense of model building because the first igs a well-defined
problem and the second is not. However, in those cases where Qe can suppose
the model to be "known" most emphasis is needed on design and pgrticulériy
sequential design. The purely numerical problems arising in the choice of
an optimal design [15] are much mofe manegeable in the fairly.common clrcum-
stance where runs ¢an be made one at a time fia} { 77. One can then relect

runs :
experimental /which at each stage maximize (or at least make large) some

pelevant measure of expected information such as the expected change in

volume of the confidence regiomn.



and the 0, N (i = 1,2,...,m) are recalculated after each run until

adequate discrimination is obtained. The maximization of D corresponds
to choosing the N'th run so that the exbected change in entropy between the

N-1'th and the N'th runs is maximized.

Dioeriminetion amory rdate modals

Suppose that we lock at the simple reaction
A+ B
Then depenﬁing on whether the reaction is of -first, second, third, or fourth
order the relationships between y, the amount of unreacted A, and El, time

in minutes, and €2, the temperature, are

-612/52

E 8,188
Model 1. E (y) =

1

. o (/ —622/£2 \\
2 \
/ “6,,/6, \ 1/2

Model 3, L {y) = 1 1+ 206 .t e -t

; \ 31%1 )

Model 4. E (y)
.

#H

-0 /£ ‘\ 1/3
_ 42’52
y/ 1+ 3941Ele :

where the Oi. are the constants of the system} In each case the initial
concentration of A is taken to be unity. In a simulated study, model 2 (second
order reaction) was chosen tc be the correct model with
' --5000/52
Edy) = 1 1 + 400§, e
o : 01

with y's normally distributed and standard deviation .05. It was supposed that
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