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}; Introduction and Summary. The problem os statistical inferences in

Markov processes has received considerable attention during the last fifteen

years. Much of the work consists in carrying over to the Markov case the maximum
likelihood and chi-square methods from processes with independent identically
distributed random variables. (See, for example, [1] and other references cited
there. ) Alternative approaches have also been adopted [10], some of which (6]
refer to statistical inferences in more general processes.

It is not long ago that presumably the first paper [ 9] appeared on
nonparametric estimation of the density in the case of independent identically
distributed random variables. Soon a number of others [14], [8], [13], [3], [5]
followed which by using either similar or different methods obtained further
results.

The purpose of the present paper is to consider the non-parametric
estimation of densities in the case of Markov processes. The methods being
used and results being obtained here are similar to those in [8]. What we do
specifically here is this: We first construct asymptotically unbiased estimates
for the initial and (two-dimensional) joint densities . This is done in section 2.
In section 3 these estimates are shown to be consistent in quadratic mean,
and furthermore a consistent, in the probability sense, estimate for the transition
density is obtained. Finally, it is proved in section 4 that, under suitable
conditions, all three estimators mentioned, properly normalized, are asymp-

totically normal.



joint densities. The results of this paper, like those of [8] and [3], rely
heavily on a slight variationd atheorem of Bochner [2] that we formulate and

prove here. By C(f) we will denote the set of continuity points of the function f£.

Theorem 2.1. Let (gm’ ﬁ(m)) be the m-dimensional Euclidean space with the

corresponding Borel o-field and (R, &) the Borel real line, and let X:

(ém,ﬁ (m)) - (R, B ymeasurable and such that

2.1) k@) sMi <o), ze£ i [ IKz)ldz < oo
(2.2) 2™l k(z)l >0, as [zl - oo,
where H . H is the usual norm in ﬁm, and integrals without limits here and

thereafter are assumed to be taken over the whole space.

Furthermore, let g : (ém,ﬁ(m)) - (R,é’) measurable and such that

(2.3) [lalz) | dz < o .
Define
- -1
(2.4) g )=h""n) [ K(zhT(n))glx-z)dz ,
where {h(n)}, n=l,2,... is a sequence of positive constants such that
(2.5) h{(n) - 0, as n — .

Then for x £C(g)}
(2.6) lim g (x) = g(x) [ K(z)dz, as n ~ oo

If g is continuous on gm, then the convergence (2.6) is uniform on

compact subsets of fm.
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assumed that p is strictly positive on R. Then (q/p)= t is a transition density
of the process.

For i=1,2 we consider two functions K, such that Ki:(fi,ﬁ(i)) - (R, )
measurable and satisfying conditions (2.1), (2.2), and (2. 7). On the basis
then of the first n+1 random variables Xj, j=1,...,n+l of the Markov process

we define the following random variables (suppressing the random element w £ 2)

(2.8) b (R)=(nhy(n) ) I Ky =Xy (n) ), x££
(2.9)  q (v)=(mh3(n) ) B K =Yy (n) ), ve by

where Yj = (Xj’Xj+1)’ j=1,...,n, and h,(n), h,(n) satisfy (2. 5). For convenient
reference we will denote by (Cj} the assumption that Ky by satisfy (2.1), {(2.2),
(2.7), and (2.5), i =1,2. We intend to show that p and g are asymptotically

unbiased estimates of p and q, respectively. More precisely

Theorem 2.2. Asymptotic unbiasedness.  Under (G} and (C 5)s respectively,

the random variables defined by (2. 8) and (2. 9) are asymptotically unbiased

estimates of p and q, respectively, in the sense that



Ep (%) > p(x), as n =~ o, x £EC{p),
and
Eq (y) = aly), asn = o, y¢&Cla).
Furthermore these estimates are uniformly asymptotically unbiased

on compact subsets of ., i=1,2 if p and g are continuous on 5 and g
i ? 1 23

respectively.

Proof. The proof is an immediate application of Theorem 2.1. In fact, writing

hl and h2 instead of hl( n) and hz( n), we get

Bp (x) = hi" [K((x-z)h]") p(z) dz

il

-1 -1
h;" [ K(zh)p(x-z) dz,

and, as n —~ <, this converges to p(x), provided x £C(p); this convergence

is uniform on compact subsets of gl if p is continuous. Similarly,
Ba_(v)= b2 [ K,( (y-2) by () dz
n 2 2 2

2

=12 [ryznh)

qaly -z) dz,

and, as n > o, this converges to aly), provided vy & C(q): this convergence

is uniform on compact subsets of 22 if g is continuous.

3. Qonsistent and uniform consistent estimation. The results of this

section as well as those of the next one are derived under the additional

assumption that the process satisfies hypothesis Do([4], p. 221). Namely,

Hypothesis (D ) a) Condition (D) (Doeblin's condition) is satisfied,
and
(b) there is only a single ergodic set and this set contains no cyclically moving

subsets.



We first prove consistency in quadratic mean. We have
2
1"

Hp_(x)-p()]° = oo (0] + [Ep,(x)-p(X)

as n — oo, provided x £C(p)

while the second term converges to zero,
s of gl if p is continuous,

this convergence is uniform, on compact subset

by Theorem 2.2. Next,

1, -

2o, (0] = 0~ h7% o [ Geoxphy ]+ 2™ By oy Oov

(K, Gexhy ), Ky(GeX ]

where the summation extends over all i's and j's such that

n. But

[EA

1S 1<
- o2 [R( (x-X)hy )] = By J ¥2( (x-zhy Ip(z) dz -hylhy

hy

fxy( (-2 Hetz) a2l

as n — ®, by Theorem 2.1,

and for x £C{p) this tends to p(x) szl (z)ydz,
This convergence is

since f Kzi (z) dz 1is finite, as is easily seen from (2.1).

if p is continuous. AS for the covariance

uniform on compact subsets of 51

we have:
p. 222 in[4] applies and gives

L
‘ 2

thder hypothesis (DO), Lemma 7.1,
2 -1
o° B | K ({x-Xphy )

-1 -1 z
|Cov [Ky( (x-Xphy ", Kj((x=Xy4y)hy =2y

v>0, 0< p <L

for some Yy, p such that
Therefore
-1 -1 -1 -1
[ahy) ™! 2, o Cov [RyUx=Xyhy™ ), Kyl Ge-Xp) By )] | £ (ohy)
n-1 Ljz' -1,12 -1 3 5L
2 v2e® B | Ky (X1 T = (ahy) 0 e*=p?)

E] =] (n_j
1L -l -l -1
Zp2(1-p2) b7 E 1K =Xy ) |

5 -1, 12
2v2E | K (X ) [T =2y



and this last expression converges, as n~— @, to

Lt 1
2 v2 pe(l-p?) 1 p(x) f Kl2 (z) dz for x £C(p), and the convergence is
uniform on compact subsets of 51 if p is continuous. Thus, if we assume

that h1 = hl(n) can be chosen so that

{3.1) nhi(n}) > o, as n - oo, it follows that

ﬁ'z[pn(x)] -0, as n—om, x £C(p), and this convergence is uniform on

compact subsets of fl if p is continuous. Denoting, for convenience, by

(Cl) the assumption that both (Cl) and (3.1) are satisfied, we get then:

Under (C,) and (D) E[pn(x)—p(x)]2 ~ 0, as n— oo, provided x £ C(p),

and this convergence is uniform on compact subsets of fl if p is continuous.
In a similar fashion we get that:

Under (02) and (DO) E[qn(y)~q(y)]2 -+ 0, as n > o, provided y £C(q), and

this convergence is uniform on compadt subsets of 2) 2 if g is continuous. Here

by (Cz) we denote the assumption that both (Cz) and (3.2) are satisfied, where

(3.2) nhz(n) -~ @, as n - oo,

Putting together these results we have the following theorem:

Theorem 3.l. Consistency in gquadratic mean (q. m. ). Under (DO) and (Cl),

(CZ), respectively, the random variables defined by (2.8) and (2. 9) are
consistent in g.m. estimates of pand q, respectively, for x £ C(p),
v & C(q); and they are uniformly consistent in q.m. estimates on compact
subsets of gi, i=z1,2 if p and g are continuous.

Of course, consistency in g.m. (and Tchebichev inequality) implies
consistency in the probability sense for x £C(p), Y £C{a), and this consistency

is uniform on compact subsets of éi, i=1,2 if pandq are continuous.



By taking intoc account now that the random variables (2.8) are to be
used in order to estimate the positive quantity p, one may assume that K1
is strictly positive. Under this condition a consistent estimate of the transistion

density can be constructed. More precisely

Corollary 3.1. Let y = (x,x')£C(q) and x £ Clp).
We set

¢ (x'|x) = [a, (v)/p ()] and tx'|x) = [aly) /o) ] -

Then, as n — @,
tn(x' |x) - t(x' |x) in probability, and this convergence is uniform

on compact subsets of fz if p and g are continuous.

j‘l_\; Asymptotic normality. In this section asymptotic normality of the
estimators p,, 9, and ty will be obtained, under some further restrictions
on the process. Actually, these results are merely an application of the results
obtained in [12], and have also served as a motivation for the type of assumption
being made there.

In {A2) of [12] we take h =nh,(n). Then (A2) is satisfied on account
of (3.1) herein. Next forr=l in (A3) of [12] and with Ln(z) being replaced
by Kl (x—z)h{l), (A3)(1) and (A3)(iv) are automatically satisfied on the basis
of Theorem 2.1 here with crf (x)=p({x) f Klz(z)dz, x £ C(p). As for {A3) (ii) and
(A3} (ii1) they clearly follow from the assumption being made below.

The joint densities of X, Xi and Xl’ Xi’ Xj
(4.1) are bounded by Mz( < ) for all i,j such that
] <i=n, 1<i<j £n, n=2,3,.

In [12] the positive integers &, B, and p were introduced with the property

that they tended to infinity together with n and also satisfied the properties:



ﬁua’—l -~ (0 and ozhnn_l—>0, as n — .
With the above choice of hn these relations become
(4.2) B p a'l - 0 and afhl(n) - 0, as n~— .

Theorem 2.1.1 in[12] then becomes

Theorem 4.1. Let assumptions (D), (Cy), (4.1), and (4.2) be satisfied.
Then for x £C(p)

Xf{(nhl)% [p, (%)~ Ep,(*)] } = N(o, 012 (x)), as n— m,

where
e (x)= pix) | X{ (2) dz.

We next choose hn = nhzz(n) and then (A2) in[12] is again satisfied
by (3.2) herein. For s=2 in (83)" of [12] and with L*(z) being replaced
by K, (y-2z) hz-l), (A3)* (i) and (A3)* (iv) are automatically satisfied on account
of Theorem 2.1 of this paper with frz'?‘(y)=q(y) szz (z)dz, vy €C(q). As for
(a3)* (i1) and (A3)" (i1i) they follow in an obvious way from (4.3) below.

The joint densities of Yl’ Yi and Yi’ Yi’ Yj are bounded by M3( < )
for all i, j such that

(4.3) 1<isn, 1<i<j=n, n=23,...

We finally require «,f , and p io tend to infinity, as n — oo, and be such that
(4. 4) sual > 0 and ah(n) ~ 0, as n > .

Then Theorem 2.2.1 in[12] becomes

Theorem 4.2. Let assumptions (D), (C5), (4. 3), and (4.4) be

satisfied. Then for v £ C(q) and such that g(v)> 0 we have
2.3 2
AL {(nh5)? [a (v) - Eq (v)]} = N(0, o5 (v)), as n = & where

2y = aty) [ K5 (2) da.
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Finally we will examine the estimator of the transition density from
the point of view of asymptotic normality.

In the first place we take hl(n) = hzz(n)=h(n), n=l,2,... for simplicity.
Thus h_in [12] is now hp =nhj(n) = ahé(n). Next (82)"(1) in [12] again 1s
clearly true, and so is (AZ)**(ii)with fbeing p(x), x &C(p) because of
Theorem 3.1 herein. Furthermore (B4)"%(1) follows from (4.1) and (4. 3),
(A4)Y¥*(ii) is true with v(x,y)= - [q(y)/p(x)] by Theorem 2.2 herein, provided
% £C(p), YEC(q), and (A4)™¥(iii) is also valid with o =0 on account of (4.1).
Therefore Theorem 2. 3.1 in[12] becomes as follows
Theorem 4. 3. Let assumptions (DO), (Cl), (CZ)’ (4.1), (4.2), and (4. 3)

be satisfied. Then for y=(x,x')£C(q) such that x £ C(p) we have that the law of
1 1
1 . _1 -1
(nh)? {t_(x' |x) - [EK,( (y-Y)h 2V/EK|( (x=Xh ]}

converges to N(O, cri(x,y) fz(x) ), as n = @,
where o2 (x,y)= o5(y)+ v2(x,y) o] (x) and
2 2 2 2
0% (x) = pix) [ K[(z)dz, o3(v)= aly) [ x5(z) dz,

vix,y) = -laly)/px)] , Hx)=p(x), provided

q(y) > 0.
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