DEPARTMENT OF STATISTICS
UNIVERSITY OF WISCONSIN
MADISON, WISCONSIN

Technical Report No. 109

April, 1967

ASYMPTOTIC NORMALITY OF CERTAIN FUNCTIONS DEFINED ON A MARKOV PROCESS.

by

George G. Roussas

Asymptotic Normality of Certain Functions Defined on a Markov Process

by

George G. Roussas

University of Wisconsin, Madison, Wisconsin

O. Summary. It is proved in [1] (Theorem 7.5' p. 232) that if $\{X_n\}$, $n=1, 2, \ldots$ is a Markov process and f and g are two real-valued, measurable functions on $(\xi_r, \mathcal{E}^{(r)})$ and $(\xi_s, \mathcal{E}^{(s)})$, respectively, then, under suitable consitions on the process and the functions f and g, each one of the sums $\sum_{m=1}^{n} f_m$ and $\sum_{m=1}^{n} g_m$, properly normalized, is asymptotically normal, where $f_m = f(X_m, \ldots, X_{m+r-1})$, $g_m = g(X_m, \ldots, X_{m+r-1})$.

In the present paper it is first proved that, under essentially the same conditions, the quotients ($\Sigma_{m=1}^n g_m / \Sigma_{m=1}^n f_m$) and ($\Sigma_{m=1}^n f_m / \Sigma_{m=1}^n g_m$) properly normalized, are also asymptotically normal. This generalizes Theorem 7.5' mentioned above.

Next, the functions f and g are also considered to be dependent on n-- the number of the random variables X_j , $j=1,\ldots,n--$ and asymptotic normalities similar to the ones mentioned above are established under a number of conditions.

The results obtained here are useful in statistical applications and are applied in the problem of non-parametric estimation in Markov processes.

1. Preliminaries and asymptotic normality of a certain quotient.

Let $\{X_n\}$, $n=1,2,\ldots$ be a stationary Markov process defined on the probability space (Ω,\mathcal{Q},P) and taking values in the Borel real line (R,\mathcal{Q}) . It will be assumed throughout that the process satisfies hypothesis (D_0) ([1], p. 221). That is,

Hypothesis (D).

(a) Condition (D) (Doeblin's condition) is satisfied; (b) there is only a single ergodic set and this set contains no cyclically moving subsets.

Let f and g be real-valued, measurable functions defined on $(\xi_r, \mathcal{E}^{(r)})$ and $(\xi_s, \mathcal{E}^{(s)})$ -the r and s-dimensional Euclidean spaces with the corresponding Borel σ -fields--respectively. Then in [1] the following theorem, which we record here as Theorem A for later reference, is proved.

Theorem A. Let (D_0) be satisfied and f and g be as above. Assume that

$$E \mid f(X_1, \dots, X_r) \mid {2+\delta \choose 1} < \infty, E \mid g(X_1, \dots, X_s) \mid {2+\delta \choose 2} < \infty$$

for some δ_1 , $\delta_2 > 0$, and set

$$f_m = f(X_m, ..., X_{m+r-1}), g_m = g(X_m, ..., X_{m+s-1}).$$

Then, as $n \to \infty$,

$$\lim E \left[n^{-\frac{1}{2}} \sum_{m=1}^{n} (f_m - Ef_m) \right]^2 = \sigma_1^2, \lim E \left[n^{-\frac{1}{2}} \sum_{m=1}^{n} (g_m - Eg_m) \right]^2 = \sigma_2^2$$
exist; if σ_1^2 , $\sigma_2^2 > 0$, then, as $n \to \infty$,

$$\mathcal{L} \left[n^{-\frac{1}{2}} \sum_{m=1}^{n} \left(f_{m} - E f_{m} \right) \middle| P_{\pi} \right] \rightarrow N(0, \sigma_{1}^{2})$$

$$\mathcal{L} \left[n^{-\frac{1}{2}} \sum_{m=1}^{n} \left(g_{m} - E g_{m} \right) \middle| P_{\pi} \right] \rightarrow N(0, \sigma_{2}^{2}),$$

for any initial distribution (of X_1) π .

It is now assumed that Ef $\neq 0$. Set

(1.1)
$$d = -(Eg / Ef)$$
,

and

(1.2)
$$\varphi_{m} = \varphi(X_{m}, \dots, X_{m+t-1})$$
,

where

$$\varphi\left(X_{m},\ldots,X_{m+t-1}\right) = g\left(X_{m},\ldots,X_{m+s-1}\right) + df\left(X_{m},\ldots,X_{m+r-1}\right)$$
with $t = \max\left(r,s\right)$.

With this notation we prove the following lemma:

Lemma 1.1. Let hypothesis (D_O) be satisfied, and d and $\varphi_{\rm m}$ be defined by (1.1) and (1.2), respectively. Then, as n $^{\to\infty}$,

Proof. We have

$$\begin{split} & \mathbb{E}\left[\left[n^{-\frac{1}{2}}\sum_{m=1}^{n}\left(\varphi_{m}^{-E}\varphi_{m}\right)\right]^{2} = \mathbb{E}\left\{\left[n^{-\frac{1}{2}}\sum_{m=1}^{n}\left(g_{m}^{-E}g_{m}\right) + d\left[n^{-\frac{1}{2}}\sum_{m=1}^{n}\left(g_{m}^{-E}$$

Then, as $n \rightarrow \infty$,

$$F_{Y_n/Z_n}(y) \rightarrow \begin{cases} F_{Y/C_o}(y) & \text{, if } c_o > 0 \\ i - F_{Y(C_o}(y)) & \text{, if } c_o < 0 \end{cases},$$

at all continuity points of F_{v^*}

Remark. From the assumption that $Z_n \xrightarrow{P} c_0 \neq 0$, as $n \to \infty$, it follows that, for n sufficiently large, $P[Z_n \neq 0] = 1$ and hence Y_n / Z_n is well defined.

The main result of this section is the following theorem.

Theorem 1.1. Let hypothesis (D_0) be satisfied, and also Ef $\neq 0$. Then, as $n \to \infty$,

$$\int_{\mathbb{R}^{\frac{1}{2}}} \{ n^{\frac{1}{2}} [(\Sigma_{m=1}^{n} g_{m} / \Sigma_{m=1}^{n} f_{m}) - (Eg / Ef)] \Big| P_{\pi} \} \begin{cases} N(0, \sigma_{o}^{2} (Ef)^{-2}), & \text{if } Ef > 0 \\ \\ 1-N(0, (\sigma_{o}^{Ef})^{2}), & \text{if } Ef < 0 \end{cases},$$

in the sense of Theorem B, provided $\sigma_0^2 > 0$; σ_0^2 is given in Lemma 1.1, and the functions f_m and g_m , m=1, 2,... are as in Theorem A.

<u>Proof.</u> In the first place, $(\Sigma_{m=1}^n g_m / \Sigma_{m=1}^n f_m)$ is well defined because for sufficiently large n,

$$P\left[\sum_{m=1}^{n} f_{m} \neq 0\right] = P\left[n^{-1} \sum_{m=1}^{n} f_{m} \neq 0\right] = 1, \text{ since}$$

$$n^{-1} \sum_{m=1}^{n} f_{m} \xrightarrow{\text{a.s.}} \text{ Ef, as } n \to \infty, \text{ and Ef } \neq 0.$$

Next,

$$n^{\frac{1}{2}} \left[\left(\sum_{m=1}^{n} g_{m} / \sum_{m=1}^{n} f_{m} \right) - \left(Eg / Ef \right) \right] = \left(n^{-1} \sum_{m=1}^{n} f_{m} \right)^{-1} \left[n^{-\frac{1}{2}} . \right]$$

$$\sum_{m=1}^{n} (g_{m} - Eg_{m}) + dn^{-\frac{1}{2}} \sum_{m=1}^{n} (f_{m} - Ef_{m}) \right] .$$

Thus, by Theorem B, it suffices to prove asymptotic normality for the second factor on the right side above. But

$$n^{-\frac{1}{2}} \sum_{m=1}^{n} (g_m^{-E}g_m) + dn^{-\frac{1}{2}} \sum_{m=1}^{n} (f_m^{-E}f_m) = n^{-\frac{1}{2}} \sum_{m=1}^{n} (\phi_m^{-E}\phi_m),$$

and, by means of Minkowski inequality,

$$\frac{1}{E^{\lambda}} |\varphi|^{\lambda} = E^{\lambda} |g+df|^{\lambda} \le E^{\lambda} |g|^{\lambda} + |d| E^{\lambda} |f|^{\lambda} < \infty,$$

if $\lambda = 2 + \delta$ with $\delta = \min (\delta_1, \delta_2)$.

Therefore $\,\,\phi\,\,$ satisfies the conditions of Theorem A, and hence, as $\,\,$ n $^{\to}$ $\,\,$ $\,$

$$\int_{\mathbb{R}^{n}} \left[n^{-\frac{1}{2}} \sum_{m=1}^{n} (\varphi_{m}^{-E} \varphi_{m}) \mid P_{\pi} \right] \rightarrow N(0, \sigma_{0}^{2}),$$

provided $\sigma_0^2 > 0$, where σ_0^2 is given in Lemma 1.1.

This completes the proof of the theorem.

The result just obtained, and those to be derived in the next section are useful in statistical applications [3].

2. More about asymptotic normality. In this section the functions f and g of the previous section will be taken to depend also on n, the number of the random variables X_j , $j=1,\ldots,n$, and we will use the notation L_n and L_n^* for f and g, respectively. Thus, the functions we are now dealing with are $L_n(Y_j)$ and $L_n^*(Z_j)$, where we set

$$Y_j = (X_j, ..., X_{j+r-1}), Z_j = (X_j, ..., X_{j+s-1}), j = 1, 2, ...$$

Before we go any further we note here that the processes $\{Y_j\}$, $\{Z_j\}$, $j=1,2,\ldots$ are Markov processes which also satisfy hypothesis (D_0) ([1], p. 231).

- 2.1. We first work with L and collect here some of the assumptions which will be used elsewhere.
- (Al) The Markov process $\{X_n\}$, $n = 1, 2, \dots$ satisfies hypothesis (D_0) .
- (A2) $\{h_n\},\ n=1,\ 2,\dots$ is a sequence of positive constants such that $h_n\to\infty\ ,\ \text{as } n\to\infty\ .$

We set

$$f_n(Y_i) = L_n(Y_i) - EL_n(Y_i)$$

and impose upon L_n and f_n the following conditions:

- (A3) For n = 1, 2,..., $\{L_n\}$ is a sequence of uniformly bounded real-valued measurable functions on $(\mathcal{E}_r,\mathcal{E}^{(r)})$ such that
- (i) $E | L_n(Y_1) |^2$ is $O(h_n n^{-1})$
- (ii) E $|f_n(Y_1)f_n(Y_j)|$ are $O(h_n^2 n^{-2})$ uniformly in j, $1 < j \le n$.
- (iii) E | $f_n(Y_1)f_n(Y_i)f_n(Y_j)$ | are O $(h_n^3 n^{-3})$ uniformly in i and j, $1 < i < j \le n \text{ , } n = 2, 3, \dots$
- (iv) $h_n^{-1} n \sigma^2 [L_n(Y_1)] \rightarrow \sigma_1^2$ (for some $\sigma_1^2 < \infty$), as $n \rightarrow \infty$. From (A3) (iv) it follows that E $|f_n(Y_1)|^2$ is O (h_n^{-1}) and hence so is also E $|f_n(Y_1)|^3$ by the boundedness assumption of L_n . The same boundedness assumption and (A3)(ii) imply that E $|f_n^2(Y_1)|^3$ | are O $(h_n^2 n^{-2})$ uniformly in i and j with i, $j=1,\ldots,n$, $i\neq j$.

Under the regularity assumptions (A3), and an additional one which we will make, the asymptotic normality of

(2.1.1)
$$h_n^{-\frac{1}{2}} \sum_{j=1}^n f_n(Y_j)$$

will be established. In discussing the asymptotic normality of (2.1.1) we follow a method parallel to the one used in proving Theorem 7.5, p. 228 in [1].

First, $\sum_{j=1}^{n} f_n(Y_j)$ is split up as follows:

Define

$$y_m(n) = \sum_{j=1}^{\infty} f(Y_j)$$
, where the summation extends from $(m-1)(\alpha+\beta)+1$ to $(m-1)(\alpha+\beta) + \alpha$, $m=1,\ldots,\mu$,

$$y'_{m}(n) = \sum_{j=1}^{n} f_{n}(Y_{j})$$
, where the summation extends from $(m-1)(\alpha+\beta)+\alpha+1$ to $m(\alpha+\beta)$, $m=1,\ldots,\mu$,

 $y'_{\mu+1}=\sum_j f_n(Y_j)$, where the summation extends from μ $(\alpha+\beta)+1$ to n. The numbers α , β and μ are positive integers which tend to infinity, as $n\to\infty$, and are such that μ $(\alpha+\beta)$ is the largest multiple of $\alpha+\beta$

Clearly,

which is $\leq n$.

$$h_n^{-\frac{1}{2}} \sum_{j=1}^n f_n(Y_j) = h_n^{-\frac{1}{2}} \sum_{m=1}^{\mu} Y_m(n) + h_n^{-\frac{1}{2}} \sum_{m=1}^{\mu+1} Y_m'(n)$$
.

It is first proved that

(2.1.2) $h_n^{-\frac{1}{2}} \sum_{m=1}^{\mu+1} y_m'(n) \rightarrow 0$, in probability, as $n \rightarrow \infty$ ($\mu \rightarrow \infty$).

By the Tchebichev inequality, it suffices to prove that

(2.1.3)
$$h_n^{-1} \to \sum_{m=1}^{\mu+1} y_m'$$
 (n) $y_m^2 \to 0$, as $n \to \infty$ ($\mu \to \infty$).

Under assumption (Al), Lemma 7.1, p. 222 in [1] applies and gives

E |
$$y_m^i$$
 (n) | $^2 \le βσ^2 [L_n(Y_1)] + c_1 β Ε L_n^2 (Y_1)$ for m=1,..., μ

and

$$E \mid y'_{\mu+1}(n) \mid^{2} \leq [n-\mu(\alpha+\beta)]\sigma^{2} [L_{n}(Y_{1})] + c_{1} [n-\mu(\alpha+\beta)].$$

$$E L_{n}^{2}(Y_{1}),$$

where

 $c_1 = 4\gamma_1^{\frac{1}{2}}\rho_1^{\frac{1}{2}}(1-\rho_1^{\frac{1}{2}})^{-1}$, the constants γ_1 and ρ_1 corresponding to the process $\{Y_i\}$, $j=1,2,\ldots$

The Minkowski inequality gives

$$h_{n}^{-\frac{1}{2}} \; E^{\frac{1}{2}} \; | \; \sum_{m=1}^{\mu + 1} \; y_{m}' \; (n) \; |^{2} \leq \; h_{n}^{-\frac{1}{2}} \; \mu \; E^{\frac{1}{2}} \; | \; y_{1}' \; (n) \; |^{2} + h_{n}^{-\frac{1}{2}} \; E^{\frac{1}{2}} | \; y_{\mu + 1}' (n) \; |^{2} \; .$$

Using then the previous two inequalities we get

$$h_{n}^{-\frac{1}{2}} \mu E^{\frac{1}{2}} | Y_{1}^{i}(n) |^{2} \leq (\beta \mu^{2} h_{n}^{-1})^{\frac{1}{2}} \{ \sigma [L_{n}(Y_{1})] + c_{1}^{\frac{1}{2}} E^{\frac{1}{2}} L_{n}^{2}(Y_{1}) \}$$

and

$$h_{n}^{-\frac{1}{2}} E^{\frac{1}{2}} | y_{\mu+1}' (n) |^{2} \leq [n-\mu (\alpha+\beta)]^{\frac{1}{2}} h_{n}^{-\frac{1}{2}} \{ \sigma[L_{n}(Y_{1})] + c_{1}^{\frac{1}{2}} E^{\frac{1}{2}} L_{n}^{2} (Y_{1}) \}.$$

Now $\beta \mu^2 n^{-1} \leq \beta \mu \alpha^{-1}$, as is easily seen, and hence

$$-\beta \mu^{2} h_{n}^{-1} = (nh_{n}^{-1}) (\beta \mu^{2} n^{-1}) \leq (nh_{n}^{-1}) (\beta \mu \alpha^{-1})$$

By choosing α , β and μ to tend to infinity, as $n \to \infty$, so that

(2.1.4)
$$\beta \mu \alpha^{-1} \rightarrow 0$$
,

we then get

(2.1.5)
$$h_n^{-\frac{1}{2}} \mu E^{\frac{1}{2}} | y_1' (n) |^2 \rightarrow 0$$
, as $n \rightarrow \infty (\mu^{+\infty})$,

by means of (A3)(i) and (A3)(iv) .

Next,

$$[n-\mu (\alpha+\beta)] h_n^{-1} = (nh_n^{-1}) [n-\mu (\alpha+\beta)] n^{-1} \le (nh_n^{-1}) \mu^{-1}$$
,

as is easily seen, and hence

(2.1.6)
$$h_n^{-\frac{1}{2}} E^{\frac{1}{2}} | y_{\mu+1}^i(n) |^2 \to 0$$
, as $n \to \infty (\mu \to \infty)$,

again because of (A3)(i) and (A3)(iv).

Relations (2.1.5) and (2.1.6) taken together imply (2.1.3) and hence (2.1.2).

Next, we prove the asymptotic normality of

(2.1.7)
$$h_n^{-\frac{1}{2}} \Sigma_{m=1}^{\mu} y_m$$
 (n).

setting

$$\Phi_{m}(t;n) = E \{ \exp [it \sum_{j=1}^{n} f_{n}(Y_{j})] \}$$

and repeating the arguments used in [1], p. 229, we get

$$\label{eq:exp_problem} \mbox{E } \{ \mbox{ exp [it $\Sigma_{m=1}^{\mu}$ γ_{m} (n)]} \} \ = \ \Phi_{\alpha}^{\,\mu} (t;n) + \zeta_{\,\mu}, \ |\ \zeta_{\,\mu}\ | < 2 \ \gamma_{1} \ \mu \ \rho_{1}^{\,\,\beta+1} \ .$$

Again, α , β and μ are chosen so that they tend to infinity, as $n \to \infty$,

and such that

(2.1.8)
$$\mu \rho_1^{\beta} \to 0$$
.

Then the characteristic function of (2.1.7) is, essentially,

(2.1.9)
$$\Phi_{\alpha}^{\mu} (th_{n}^{-\frac{1}{2}}; n)$$
,

since
$$\zeta_{\mu} \rightarrow 0$$
, as $\mu \rightarrow \infty$, by (2.1.8).

Now (2.1.9) is the characteristic function of $\sum_{m=1}^{\mu} z_m$, where

 $z_m,\ m=1,\dots,\ \mu$ are independent random variables with their common distribution that of $h_n^{-\frac{1}{2}}\,y_1$ (n).

Thus, the asserted normality of (2.1.7) will follow if we prove that

(2.1.10) $(C_{\mu}/B_{\mu}^{1+\frac{1}{2}}) \rightarrow 0$, as $n \rightarrow \infty$ $(\mu \rightarrow \infty)$, by Theorem 4.4, p. 141 in [1], where

$$B_{\mu} = \sum_{m=1}^{\mu} E(z_{m}^{2}), C_{\mu} = \sum_{m=1}^{\mu} E[z_{m}]^{3}, (E[z_{1}]^{3} < \infty).$$

Now,

$$E(z_m^2) = h_n^{-1} E[\Sigma_{j=1}^{\alpha} f_n(Y_j)]^2$$

and

$$\mathbb{E}\left[\sum_{j=1}^{\alpha} f_{n}(Y_{j})\right]^{2} = \alpha \sigma^{2}\left[\mathbb{L}_{n}(Y_{l})\right] + 2\sum_{i < j} \mathbb{E}\left[f_{n}(Y_{i}) f_{n}(Y_{j})\right].$$

Thus,

$$B_{\mu} = (\alpha \mu n^{-1}) n h_{n}^{-1} \sigma^{2} [L_{n}(Y_{1})] + 2(\alpha \mu n^{-1}) (\alpha h_{n} n^{-1}) \sum_{i < j} E[f_{n}(Y_{i}) f_{n}(Y_{j})].$$

But

Therefore, by means of (A3)(ii), (A3)(iv), and the fact that $\alpha \mu n^{-1} \rightarrow 1$,

as $n \rightarrow \infty$ $(\mu \rightarrow \infty$), as is easily seen, we obtain

$$B_{\mu} \rightarrow \sigma_{1}^{2}$$
, as $n \rightarrow \infty$ ($\mu \rightarrow \infty$),

provided that there is a choice of α satisfying (2.1.4) and also

$$(2.1.11) \alpha h_n n^{-1} \rightarrow 0, \text{ as } n \rightarrow \infty,$$

for some choice of h_n satisfying (A2).

It remains for us to prove that $C_{\mu} \to 0$, as $n \to \infty$ ($\mu \to \infty$). We

have
$$C_{\mu} = \sum_{m=1}^{\mu} E |z_{m}|^{3} = \mu h_{n}^{-\frac{3}{2}} E |\sum_{j=1}^{\alpha} f_{n}(Y_{j})|^{3} \leq \mu h_{n}^{-\frac{3}{2}} \{ \alpha E |f_{n}(Y_{1})|^{3} + 3 \sum_{i,j} E |f_{n}^{2}(Y_{i})f_{n}(Y_{j})| + 6 \sum_{i < j < k} E |f_{n}(Y_{i})f_{n}(Y_{j})f_{n}(Y_{k})| \}.$$

Now,

$$\mu h_{n}^{-\frac{3}{2}} \alpha E |f_{n}(Y_{1})|^{3} = (\alpha \mu n^{-1}) nh_{n}^{-\frac{3}{2}} E |f_{n}(Y_{1})|^{3} \rightarrow 0, \text{ as } n \rightarrow \infty,$$

by (A2) and the remark following (A3).

In a similar fashion,

$$\frac{-\frac{3}{2}}{h_{n}} \sum_{i,j} E |f_{n}^{2}(Y_{i})f_{n}(Y_{j})| = (\alpha \mu n^{-1}) (\alpha h_{n} n^{-1}) h_{n}^{-\frac{1}{2}} .$$

$$n^{2} (\alpha h_{n})^{-2} \sum_{i,j} E |f_{n}^{2}(Y_{i})f_{n}(Y_{j})| \to 0, \text{ as } n \to \infty,$$

by (A2), the remark following (A3), and (2.1.11).

Finally,

$$\mu h_{n}^{-\frac{3}{2}} \sum_{i < j < k} E |f_{n}(Y_{i})f_{n}(Y_{j})f_{n}(Y_{k})| = (\alpha \mu n^{-1}) (\alpha h_{n} n^{-1})^{2} h_{n}^{-\frac{1}{2}} n^{3} (\alpha h_{n})^{-3}.$$

$$\sum_{i < j < k} E |f_{n}(Y_{i})f_{n}(Y_{j})f_{n}(Y_{k})| \to 0, \text{ as } n \to \infty,$$

on account of (A2), (A3) (iii), and (2.1.11).

Therefore

$$C_{\mu} \rightarrow 0$$
, as $n \rightarrow \infty (\mu \rightarrow \infty)$

and this establishes (2.1.10).

Hence the following theorem has been proved.

Theorem 2.1.1 Let assumptions (Al) - (A3) be satisfied. We assume that a choice of α satisfying (2.1.4) can be made such that (2.1.11) is also satisfied.

Then

$$\int\limits_{1}^{\infty} \{h_n^{-\frac{1}{2}} \sum_{j=1}^{n} [L_n(Y_j) - EL_n(Y_j)]\} \rightarrow N(0, \sigma_1^2), \text{ as } n \rightarrow \infty \text{ ,}$$

provided $\sigma_l^2 > 0$, where $\sigma_l^2 = \lim_n h_n^{-1} n \sigma^2 \left[L_n(Y_l) \right]$, as $n \to \infty$.

2.2. Replacing L_n by L_n^* and f_n by g_n , where $g_n(Z_j) = L_n^* (Z_j) - EL_n^* (Z_j),$

and imposing upon L_n^* and g_n the same conditions as those we used in connection with L_n and f_n , we have a theorem analogous to Theorem 2.1.1; that is,

(A3)* For n = 1, 2,..., $\{L_n^*\}$ is a sequence of uniformly bounded real-valued measurable functions on $(\mathcal{E}_s,\mathcal{B}^{(s)})$ such that (A3) (i) - (A3) (iv) are true if L_n and f_n are replaced by L_n^* and g_n , respectively. ((A3) (iv) may be true with a difference constant $\sigma_2^2 < \infty$). Then

Theorem 2.2.1. Let assumptions (Al), (A2) and (A3)* be satisfied. We assume that a choice of α which satisfies (2.1.4) also satisfies (2.1.11). Then,

 $\int\limits_{\mathbb{R}^n} \{h_n^{-\frac{1}{2}} \sum_{j=1}^n \left[L_n^* (Z_j) - EL_n^* (Z_j) \right] \} \rightarrow N(0, \sigma_2^2), \text{ as } n \rightarrow \infty \text{ ,}$ provided

$$\sigma_2^2 > 0$$
, where $\sigma_2^2 = \lim_n h_n^{-1} n \sigma^2 \left[L_n^* (Z_1) \right]$, as $n \to \infty$.

Remarks: In the various derivations in proving Theorem 2.2.1 we will use the constant c_2 rather than c_1 , where $c_2 = 4\gamma_2^{\frac{1}{2}} \rho_2^{\frac{1}{2}} (1-\rho_2^{\frac{1}{2}})^{-1}$, the constants γ_2 and ρ_2 corresponding to the process $\{Z_j\}$, $j=1,2,\ldots$. There is always a choice of α , β and μ with the property that α , β and μ are positive integers tending to infinity with n, such that μ ($\alpha + \beta$) is

the largest multiple of $\alpha+\beta$ which is $\leq n$, and for which both conditions (2.1.4) and (2.1.8) (and the corresponding property: $\mu\rho_2^{\beta} \to 0$, as $n \to \infty$ ($\mu \to \infty$)) are satisfied. This is explained in [1], p. 230. That is, it suffices to take β to be the largest integer which is $\leq n^{\frac{1}{4}}$ and $\alpha=\beta^3$. It follows then that μ is approximately β , and all required conditions are satisfied.

We now proceed in proving asymptotic normality for a certain quotient. For this purpose it is assumed that $\mathrm{EL}_n(Y_1) \neq 0$, $n=1,2,\ldots$ and

$$h_n^{-1} \ \sum_{j=1}^n \ L_n(Y_j) \to \ell \ (\neq 0 \text{ constant}), \text{ in probability, as } n \to \infty$$
 .

Then

$$h_{n}^{\frac{1}{2}} \left\{ \left[\begin{array}{cc} \sum_{j=1}^{n} L_{n}^{*}(Z_{j}) / \sum_{j=1}^{n} L_{n}(Y_{j}) \end{array} \right] - \left[EL_{n}^{*}(Z_{l}) / EL_{n}(Y_{l}) \right] \right\}$$

is well defined and we intend to prove its asymptotic normality, under some additional assumptions. It is easily seen that

where

$$v_{n} = -\left[EL_{n}^{*}(Z_{1})\right]\left[EL_{n}(Y_{1})\right]^{-1}$$

$$\varphi_{n}(W_{j}) = L_{n}^{*}(Z_{j}) + v_{n}L_{n}(Y_{j})$$

$$\Psi_{n}(W_{j}) = \varphi_{n}(W_{j}) - E\varphi_{n}(W_{j})$$

$$W_{j} = (X_{j}, \dots, X_{j+t-1}) \quad (t = \max(r, s)).$$

By Theorem B it suffices then to prove asymptotic normality for

$$\mathbf{h}_{\mathbf{n}}^{-\frac{1}{2}} \overset{\mathbf{n}}{\overset{\Sigma}{\underset{j=1}{\Sigma}}} \left[\varphi_{\mathbf{n}}(\mathbf{W}_{\mathbf{j}}) - \mathbf{E} \; \varphi_{\mathbf{n}}(\mathbf{W}_{\mathbf{j}}) \right]$$
 .

This last expression will clearly be asymptotically normal, provided φ_n and Ψ_n satisfy a condition analogous to (A3). Below, a theorem referring to the asymptotic normality of the expression in question is formulated, and a set of sufficient conditions for this theorem to be true is given. The conditions to be used in this subsection are

(A2)** (i) $EL_n(Y_1) \neq 0$, n = 1, 2, ...

(ii) $h_n^{-1} \sum_{j=1}^n L_n(Y_j) \rightarrow \ell$ (\$\neq\$0 constant), in probability, as $n \rightarrow \infty$.
(A3)** For $n=1, 2, \ldots, \{\varphi_n\}$ is a sequence of uniformly bounded real-valued measurable functions on (\$\mathbb{E}_t, \mathbb{B}^{(t)}\$) such that the relations we get if L_n and f_n are replaced by φ_n and Ψ_n , respectively, in (A3) are true. (The relation corresponding to (A3) (iv) may be valid with a different constant $\sigma_0^2 < \infty$).

(A4)** (i) Both (A3) (ii) and (A3) (iii) remain true if any one or two f's

are replaced by the corresponding g's.

(ii)
$$\left[\operatorname{EL}_{n}^{*}(Z_{1})\right]\left[\operatorname{EL}_{n}(Y_{1})\right]^{-1} = -v_{n} \rightarrow -v(\text{finite}), \text{ as } n \rightarrow \infty$$
.

(iii)
$$h_n^{-1}$$
 n E $[f_n(Y_1)g_n(Z_1)] \rightarrow \sigma$ (finite), as $n \rightarrow \infty$.

Theorem 2.3.1. Let assumptions (Al), (A2), (A2)**, and (A3)** be satisfied. We assume that a choice of α which satisfies (2.1.4) also satisfies (2.1.11).

Then, as $n \to \infty$, the law of

$$h_{n}^{\frac{1}{2}} \left\{ \left[\sum_{j=1}^{n} L_{n}^{*}(Z_{j}) / \sum_{j=1}^{n} L_{n}(Y_{j}) \right] - \left[EL_{n}^{*}(Z_{1}) / EL_{n}(Y_{1}) \right] \right\} \rightarrow \begin{cases} N(0, \sigma_{O}^{2} \ell^{-2}), & \text{if } \ell > 0 \\ \\ 1 - N(0, (\sigma_{O}^{\ell} \ell)^{2}), & \text{if } \ell < 0 \end{cases},$$

in the sense of Theorem B, provided $\sigma_0^2 > 0$, where $\sigma_0^2 = \lim_{n \to \infty} h_n^{-1}$.

$$\sigma^2$$
 [φ_n (Z₁)], as $n \to \infty$. Furthermore (A4)**, (A3), and (A3)*

make up a set of sufficient conditions for (A3)** to be true, and therefore under (A1), (A3), (A3)*, (A2)**, (A4)**, and a choice of α satisfying both (2.1.4) and (2.1.11) the theorem is true. In this case $\sigma_0^2 = \sigma_2^2 + v^2 \sigma_1^2 + 2v\sigma$.

<u>Proof.</u> Clearly, for the first part of the theorem there is nothing to be proved. As for the second part, we have to show that (A3), (A3)*, and (A4)** imply (A3)**. The uniform boundedness of $\{\varphi_n\}$, $n=1, 2, \ldots$ follows from the uniform boundedness of $\{L_n\}$, $\{L_n^*\}$, $n=1, 2, \ldots$ and (A4)** (ii). Next, $E |\varphi_n(W_1)|^2$ is $O(h_n^{-1})$ by Minkowski inequality,

(A3) (i), (A3)* (i), and (A4)** (ii). We also have

$$E \left[\Psi_{n} (W_{1}) \Psi_{n} (W_{j}) \right] = E \left[g_{n} (Z_{1}) g_{n} (Z_{j}) \right] + v_{n}^{2} E \left[f_{n} (Y_{1}) f_{n} (Y_{j}) \right]$$

$$+ v_{n} E \left[g_{n} (Z_{1}) f_{n} (Y_{j}) \right] + v_{n} E \left[f_{n} (Y_{1}) g_{n} (Z_{j}) \right]$$

from which if follows that $E\left[\Psi_n\left(W_l\right)\Psi_n\left(W_j\right)\right]$ are $O\left(h_n^2n^{-2}\right)$ uniformly in j, $1 < j \le n$, by means of (A3) (ii), (A3)* (ii), the first part of (A4)** (i), and (A4)** (ii). In a similar fashion replacing the Ψ_n 's by what they are equal to in $E\left[\Psi_n\left(W_i\right)\Psi_n\left(W_j\right)\right]$ and using (A3) (iii), (A3)* (iii), the second part of (A4)** (i), and (A4)** (ii), we see that $E\left[\Psi_n\left(W_l\right)\Psi_n\left(W_i\right)\Psi_n\left(W_j\right)\right]$ are $O\left(h_n^3n^{-3}\right)$ uniformly in i and j, $1 < i < j \le n$.

Finally,

$$h_{n}^{-1} n \sigma^{2} [\varphi_{n}(W_{1})] = h_{n}^{-1} n \sigma^{2} [L_{n}^{*} (Z_{1})] + v_{n}^{2} h_{n}^{-1} n \sigma^{2} [L_{n} (Y_{1})]$$

$$+ 2v_{n} h_{n}^{-1} n E [f_{n} (Y_{1}) g_{n} (Z_{1})]$$

and this converges to $\sigma_2^2 + v^2 \sigma_1^2 + 2v\sigma$, as $n \to \infty$, by (A3) (iv), (A3)* (iv), (A4)** (ii), and (A4)** (iii). This completes the proof of the theorem.

REFERENCES

- [1] Doob, J. (1953). Stochastic Processes. Wiley, New York.
- [2] Loève, M. (1963). <u>Probability Theory</u>. (3rd ed.) Van Nostrand. Princeton.
- [3] Roussas, G. G. (1967). Nonparametric Estimation In Markov

 Processes. Technical Report No. 110.

 University of Wisconsin, Madison, Wisconsin.
- [4] Slutsky, E. (1925). Über Stochastische Asymptoten und Grenzwerte. Metron 5, 3-90.

Security Classification

DOCUMENT CONTROL DATA - R & D

			· · · · · · · · · · · · · · · · · · ·	
1.	National Science Foundation and Office of Naval Research		2a.	Unclassified
			2b.	
3.	Asymptotic Normality of Certain Functions Defined on a Markov Process			
4.				
5.	George G. Roussas			
6.	April, 1967	7a. 21 pp.	7b.	4 references
8a.	NSF-GP- 6242 Nonr 1202(17)		9a.	Report No. 109
8b.	NR 042 222		9b.	
10.	Distribution of this document is unlimited			
11.			12.	Office of Naval Research Washington, D.C.
				

13. Abstract. In the present paper it is first proved that, under essentially the same conditions, the quotients

$$(\Sigma_{m=l}^{n}g_{m}/\Sigma_{m=l}^{n}f_{m}) \text{ and } (\Sigma_{m=l}^{n}f_{m}/\Sigma_{m=l}^{n}g_{m})$$

properly normalized, are also asymptotically normal. This generalizes Theorem 7.5' mentioned above. Next, the functions f and g are also considered to be indepedent on n—the number of the random variables X_i , $j=1,\ldots,n$ —and asymptotic normalities similar to the ones mentioned above are established under a number of conditions. The results obtained here are useful in statistical applications and are applied in the problem of non-parametric estimation in Markov processes.