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0. Summary. It is proved in [1] (Theorem 7. 5' p. 232) that if {Xn},

n=1, 2,... is a Markov process and f and g are two real-valued,
, r € (s

measurable functions on (gr,g ( )) and { gs,\g( )), respectively, then,
under suitable consitions on the process and the functions f and g,

n n
each one of the sums X f and Z g , properly normalized,

m=1 m m=1 “m
i 1 =f oo =
is asymptotically normal, where fm (Xm, Xm+r—l)’ gm
g(Xm’ LR ’Xm-]-s'—l)-

In the present paper it is first proved that, under essentially the
n n n
iti i = = = f
same conditions, the quotients ( el gm/ =1 fm) and (Z__ £ /
n

Zm-l gm) properly normalized, are also asymptotically normal. This
generalizes Theorem 7. 5' mentioned above.

Next, the functions f and g are also considered to be dependent on
n-- the number of the random variables Xj,j=1, ...,n-- and asymptotic
normalities similar to the ones mentioned above are established under
a number of conditions.

The results obtained here are useful in statistical applications and

are applied in the problem of non-parametric estimation in Markov processes.



1. Preliminaries and asymptotic normality of a certain quotient.

Let {Xn}, n=1,2,... be a stationary Markov process defined
on the probability space (2,4, P) and taking values in the Borel
real line (R,8). Tt will be assumed throughout that the process
satisfies hypothesis (Do) ([1], p. 221). Thatis,

Hypothesis (DO-).

(a) Condition (D) (Doeblin's condition} is satisfied; (b) there is
only a single ergodic set and this set contains no cyclically moving
subsets.

Let f and g be real-valued, measurable functions defined on
{ gr,z (r)) and ( gs,.‘c‘i(s) )--the r and s-dimensional Euclidean spaces
with the corresponding Borel o-fields~-respectively. Then in [1] the

following theorem, which we record here as Theorem A for later reference,

is proved.

Theorem A. Let (DO) be satisfied and f and g be as above. Assume

that
2 245
E f(Xl,.-o,Xr) -1-61<w! E g(X’."’XS) + 2 <°0

for some 61, 62 > 0, and set

f =f(x ,-c-;X
m

m m+r-1)’ Im = g(Xm""’X

m+s-1)'

Then, as n—™ %,

-1
2

Do

n 2, n 2
- = = - =
m=l (fm Efm)] g2, imE[n m=1(gm Egm)] o

1

N N

UmE[n %
2 2
exist; if Crl , 62 > 0, then, asn™>* ,



fomts_ 6 x| P 1= NG, o)
m=l"m m b 71
1 n

OC[n 2 zm:1 {gm-Egm) ' Pw]_. N(0, 622) ,

for any initial distribution (of Xl) e

It is now assumed that Ef # 0. Set

(1.1) d = - (Eg / Ef},

and

(L. 2) @ =P e X )
where

,...:X = X’-..X PRI )

qD(Xrn ? m+t-1) g { m ’ m+s-1) +df (Xm Xm+r-l)
with t = max (r,s) .

With this notation we prove the following lemmas

Lemma l.1. Let hypothesis (DO) be satisfied, and d and qpm be

defined by (1.1) and (1. 2), respectively. Then, as n™ %,

RE 2 2
Zm:l (qpm—Egpm) ] :rro

[P

limE [n"
exists and is given by crj = 622 + d2 cri2 + 2de  , where
) ]

EL (9-Ba) (E 17Bf iy 1.

B[ (ED (0,47 F9

s =E [ (f-E) (g=Eg) 1+ =

p—

ZOO
* m=1

Proof. We have

i

n 2 - n _1 n
Zm:'l ((Pm-E q91’1’1) ] =E { [n : Z;1'1'!=]. (gl’n_Egm) +d [n : Z1’r1=].

B

E{n

2 -1 _n 2 2 -i_n 2
- = = - 2 -
(fm Efm)]} Eln m=1 (gm Egm)] +dE[n Em:l(fm Efm)]

+2an”'E {[ 2 (@ -Eg )1 3, ) (¢ -BE )1



Then, asn— <,

F

Y/CO(Y) ,ifco>0

F vy o /i .
Yn/Zn i FY(cOy) , if cO < 0,

at all continuity points of PYo

P
Remark. From the assumption that Zn——* co + 0, as n—~° , it follows

that, for n sufficiently large, P [ z # 0] =1 and hence Y / z_is well
defined.
The main result of this section is the following theorem.
Theorem 1,1. Let hypothesis (DO) be satisfied, and also Ef # 0. Then,
as n—x,
-~ -
N(O,Gg (Ef)”%), if Ef > 0
e g /3 > )
= = -
L{n (S 9,7 Zpa &) - (O / ED)] \ P
1-N(0, (v _Ef)"), if £ <0,
2
in the sense of Theorem B, provided Go >0; crz is given in Lemma 1.1,
and the functions f and g , m=l, 2,... are as in Theorem A.

Proof. In the first place, ( 1% > f ) is well defined because

for sufficiently large n,

P Zn f O]HP[n_lEn f #0]=1, since
[ m=1 m;E N m=1 m -
-1 _n A+ Se
n =z f —— Ef, asn—~>°, andEf #0 .
m=l "m
Next,
2 /zn Eg / Ef 17:n f _1["%

n _%, n
p - £_-Ef .
l9, "Eg Jtdn S E il



Thus, by Theorem B, it suffices to prove asymptotic normality for the

second factor on the right side above. But

]
|

__L
2

~1 n -1 n
- 3 - =n 2% -
n (g Egm) + dn mzl(fm Efm) n =1 ((pm Egom),

ml

and, by means of Minkowski inequality,
1 1 1 1

A
B 1ot BN jorat M s BN g 4 g BN gt <,

if A=2+0 with & =min (61, 62)
Therefore ¢ satisfies the conditions of Theorem A, and hence, as
n-*

g[[n o =Eg ) 1B 1~ N, o2 ),
provided nr > 0, where Gz is given in Lemma 1.1.
This completes the proof of the theorem.

The result just obtained, and those to be derived in the next section

are useful in statistical applications [ 3].

2. More about asymptotic normality. In this section the functions f

and g of the previous section will be taken to depend also on n, the
number of the random variables Xj, j=i,...,n, and we will use the no-
tation Ln and L; for f and g, respectively. Thus, the functions we are

now dealing with are Ln(Yj) and L;(Zj), where we set

Z o= (X,eeesX, Dy izl 2.,
o1 2y = Ko Ky )

Before we go any further we note here that the processes {Yj}, {Zj},

i=1, 2,... are Markov processes which also satisfy hypothesis (DO)

(I11, p. 231).



2.l. We first work with Ln and collect here some of the assumptions

which will be used elsewhere.

(Al) The Markov process {Xn}, n=1, 2,... satisfies hypothesis (DO),
(A2) {hn}, n=1, 2,... is a sequence of positive constants such that
hn-* ¢ . asnTe.,

We set
fn(YJ,) = Ln(Yj) —ELn(Yj)
and impose upon Ln and fn the following conditions:
(A3) Forn=1, 2,..., {Ln} is a sequence of uniformly bounded real-
valued measurable functions on (Er’e (r) } such that
M EIL(Y) | * s 0 n7Y
(1) B Jf (Y)E (¥)] are O (hf1 n"2) uniformly in j, 1 <j £n.
W) E | £ (Y)E (Y)E (V)] are O (h:: n"% uniformly in i and j,
l<i<j=En,n=2, 3,...
{iv) hr—11 ntrz[Ln(Yl)]—* Gf (for some cri2 < ®),asn > © ,
From (A3} (iv) it follows that E [fn(Yl) | 2 is O (hnn—l) and hence so is
also E lfn(Yl) [3 by the boundedness assumption of Ln . The same
boundedness assumption and (A3){ii) imply that E lfi1 (Yi) fn (Yj) | are
@) (hf1 nﬂz) uniformly in i and j with i, j =1,...,n, 1 #].
Under the regularity assumptions (A3), and an additional one which

we will make, the asymptotic normality of

_% n
> (Y
(2.1.1) h_ ] n( j)



will be established. In discussing the asymptotic normality of (2.1.1)
we follow a method parallel to the one used in proving Theorem 7.5,
p. 228 in [1].
n
First, Z].=1 fn(Y],) is split up as follows:

Define

ym(n) = ijn(Yj), where the summation extends from (m-1}{a+f}+! to

(m-1){a+p} + @ m=l,..., p,

y'm(n) = Ej fn(Y],), where the summation extends from (m-1)(a+p)+ o+l

to m(o:+[3), m=1,..., |1

y ] = ?3], fn(Yj), where the summation extends from p{e+g)+1 to n.
The numbers @, B and p are positive integers which tend to infinity, as
n —~ % , and are such that p{a + B) is the largest multiple of & + B
whichis =n.

Clearly,

y_(n) + hf zht g

-1 n £ -1 .
) Y)Y=h 27
hn j=1 n( j) n m=l

Tt is first proved that

(2.1.2) h—% ZWH y' (n) > 0, in probability, as n =™ (p= *).
n m=l " m

By the Tchebichev inequality, it suffices to prove that

(2.1. 3) h;l E | Zr;'“j y'm {n) [2-’ 0, asn—® (p ™ ®).

Under assumption (Al), Lemma 7.1, p. 222 in [1] applies and gives

E [y () 1% < o [L_(¢)]+c BE erl (v)) for m=lL,..., u
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and
' 2 2
Efypﬂ(n) 72 [n-pla+p)]o” [L_(¥)]+ ¢ [n-platp)].
2
E Ln (Yl) ,
where

1 1_
c, = 47/12 pl2 (l—pl %) ! , the constants " and Py corresponding to the

—
[

process {YJ.}, i=1, 2,...

The Minkowski inequality gives
1 1 1

h-% g7 skl o m 1°= b°% L EZ |y (n) 2 nTETEE) 4 ) |2
n I #pa Y 1= b7 p Iy ! n Iyp+1“ -

Using then the previous two inequalities we get

£y 122 a2 b o [Lv)T+ef BT LR v))
M 7 =Pp Dy n' 1 1 n 1

-1
h2
n

and

1 1
S L5 .2
{G[Ln(Yl)] + ¢ E® Ln (Yl)} .

22 2 Zy72
1 < -
h PEPIy 0 slemplekp)]T R

2 - -
Now Bu n  =Ppa 1, as is easily seen, and hence
2 =t ~1 2 =1 -1 -1
- = <
Bu hn = (nhn) (Bp. n )= (nhn) Bua )
By choosing «, § and pto tend to infinity, as n—~ «, so that
-1
2.1.4) Bpa — 0,
we then get
-1 1 2
(2.1.5) hnap, EZ | y'l (n) | =0, asn~> @ (p= «),
by means of {A3)(i) and {(A3)(iv) .
Next,

- -1 -1 -1 13
[n-p (a+p)] hnl = (nhn) [n-p{a+p)]n = (nhn Y u s
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as is easily seen, and hence
-4 2
2. 1. 6 t — — —
( ) hn E ]Yp_{_l(n)f 0: as n oc(|~1- 00),
again because of {A3)(i) and (A3)(iv).
Relations {2.1. 5} and (2. 1. 6) taken together imply (2.1. 3) and hence
(2.1.2).

Next, we prove the asymptotic normality of

[\l

yala

{(2.1.7) hn m=l Ym

(n).
setting
® (t E{ Zn f{Y
m) = ex it &,
LB ol it £ (O]

and repeating the arguments used in [1], p. 229, we get

i oM - oM. g+l
E{exp[it2 v (0]} a(trn)+ép,lﬁul<271upl .
Again, a, pand p are chosen so that they tend to infinity, as n— =,
and such that

(2.1.8) we” = 0

Then the characteristic function of (2.1.7) is, essentially,

b

(2.1.9) ¥ @h ? 50,
o n
since - ?,M—’ 0, as p~ © , by (2.1.8).
Now (2.1.9) is the characteristic function of E;_l z o where

z m=1,..., p are independent random variables with their common

|

distribution that of h; v, (n).

Thus, the asserted normality of (2.1.7) will follow if we prove that
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1+d
(2.1.10) (CH/ B:z)—" 0, as n > {(p~> ©), by Theorem 4.4, p. 141

in [1], where

2
B =2t B(z%), ¢ =T Bz 1> @Iz <=,

o m=1 m m m=1
Now,
2 -1 o 2
E = = f
(2, ) =n E[Z 1 ()]
and

22 ? - a0t
E[ : £ (YJ-)] ac” [L ()] +2 Zi<j E[f (Y)E (YJ.}] .
Thus,

-1, -1 2 -1 -1
B = (apn Jnb_ o [L (¥))]+2(apn ) (abn ) Z 4 E[fn(Yi)fn(Y].)] .
But

< - a1

TG EILODEON]= e 3y B0 £ 000 0=

-12 -1 -2 2 _o-l
=
(@b n )" (e h n) Z_) [E[E L0 )]
Therefore, by means of (A3)(ii), (A3){iv), and the fact that o.rpn—1 -+ 1,

asn—> ® {(p7%), asis easily seen, we obtain

2
BI.L—; U-l, asn—® (p'—zvcxj )’

provided that there is a choice of « satisfying (2.1.4) and also

(2.1.11) ahnn_l -~ 0, asn— @,

for some choice of h]r1 satisfying (A2).

It remains for us to prove that Cp”’ 0, asn—>® {(p=™ @ ). We

have

3
3 v o 3 3
==k = = = Y
C Elz_|"=wh SBIZ_ 1 ()| =uh {aB L (Y] +

] 90

2
3% [ E I (Y)f (V) 1+ 6% i E lfn(Yi)fn(Yj)fn(Yk) [

]
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Now,
3 _3

Z 3 -1 z 3
p,hn a B ]fn(Yl) |7 = {opn ) nhn E lfn(Yl)l - (0, asn>®,
by (A2) and the remark following (A3).

In a similar fashion,
3

2 2 ‘ -1 -1 -
h ®Z EIL (Y)E (V) I={epn ) (ehn )by

2

|

2 -2 2
> — _—
n (ahn) 1,3 E [fn (Yi)fn(Yj” 0, asn—>x,

by (A2), the remark following (A3), and (2.1.11).

Finally,
-3
2

1
h = 2
L) i<i<k

B -1 -1.2 3 -3
E[f (Y)E (V)E (¥)) | ={apn ) (@b n )" h *n” (ah) .

Z E — —
L <i<k | fn(Yi)fn(Yj)fn(Yk) ] 0, asn—" *,

on account of (A2), (A3) (iii), and (2.1.11).
Therefore
C =~ 0,asn™ ® (p~>=2)
K
and this establishes (2.1.10).
Hence the following theorem has been proved,
Theorem 2.1.1 Let assumptions (Al} - (A3) be satisfied. We assume that

a choice of o satisfying (2.1.4) can be made such that (2.1.11) is also

satisfied.

Then

- n
Ot{hn Hal (L, 0 - ELH(Y]-)]} ~ N(0, Uf), asn~—>° ,

=
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provided o 2

2
1 1

-1
>0, where o =1lim hnncr2 [Ln(YI)]’ asn —®,

2.:2. Replacing Ln by L:: and fn by gn, where
9,(2) =1, ()~ EL_(Z),

and imposing upon Ls:1 and gn the same conditions as those we used

in connection with Ln and fn, we have a theorem analogous to Theorem

2.1.1; that is,

(a3)* Forn=1, 2,..., {Lj:} is a sequence

of uniformly bounded real-valued measurable functions on (E S,@ (s) )

such that (A3} (i) - (A3) (iv) are true if Ln and fn are replaced by Lj:

and gn, respectively. { (A3) (iv) may be true with a difference constant
2

crz<°°). Then

*
Theorem 2.2.1. Let assumptions (Al}, (A2) and {(A3) be satisfied. We

assume that a choice of o which satisfies (2.1.4) also satisfies
(2.1.11). Then,
£ oEE (L) -l @) B N, o), asn e
n 3=1'"n "7 n'j o2l ’
provided

2

cr2>0, where GZ:limh;lncrz [L:j1 (z)], asn> @ ,

X
Remarks: In the various derivations in proving Theorem 2. 2.1 we will

1 1 1

11 E ]
use the constant c, rather than c,, where ¢_ = 475 p; (1- p; Yy O,

1 2
the constants yz and Py corresponding to the process {Zj}, i=1, 2,..
There is always a choice of @, p and p with the property that o, p and

u are positive integers tending to infinity with n, such that pn {a +B) is



=15~

the largest multiple of o + p which is £ n, and for which both conditions
{(2.1.4) and (2.1.8) {and the corresponding property: pps_" 0, asn—>®

(p = ©) ) are satisfied. This is explained in [1], p. 230, Thatis, it
3

[ra

suffices to take p to be the largest integer which is =n* and o =8
It follows then that p is approximately B, and all required conditions
are satisfied.

We now proceed in proving asymptotic normality for a certain
quotient. For this purpose it is assumed that ELn(Yl) #0,n=1, 2,...

and

- n
hn Ej-l Ln(Yj)—"ﬂ {# 0 constant), in probability, asn == .
Then
AV EL" (z,) / EL_(¥
L (Y - [EL
hZ [z, L@)/ 3, L) ]-[EL @)/ EL (]
is well defined and we intend to prove its asymptotic normality, under

some additional assumptions. It is easily seen that

1 n e
n: {[Z L @)/ 3 2 L (1= [EL. (z) / EL_(¥)])
_ -1 n 22 - * Z
= [hn E]_ (Y)] {h [L (ZJ.) EL_( J.)]

-1 n
+ Vnhn 2], -1 [Ln(Y],) - ELn(Yj)]}

-1 Zn -1 __é_' n W
=[hn J_:an(a._rj)] h_ J [go(W)-Eqp( )]
s L, 0T % 5w (W)

B n j=1 n i’’’
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where
v =[5 @)1 (e
W) =L Z)+v L ()
‘I’H(Wj) = qJn(Wj) -E QDH(WJ.)
Wj = (Xj’ .o ’Xj-l-t-l) {t = max (r,s) )
By Theorem B it suffices then to prove asymptotic normality for

n

hEZ o [gW)-Eg W)l .

I ]
This last expression will clearly be asymptotically normal, provided
@ and ‘Ifn satisfy a condition analogous to (A3). Below, a theorem
referring to the asymptotic normality of the expression in question is
formulated, and a set of sufficient conditions for this theorem to be true
is given. The conditions to be used in this subsection are
(A2 (1) ELn(Yl) 20, n=1, 2,¢ss
@) n oz
n j=1

(A3)** Forn=1, 2,..., {qon} is a sequence of uniformly bounded

Ln(Yj)—*ﬂ {# 0 constant), in probability, as n ™ % .

real-valued measurable functions on (E t,@(t)) such that the rela-
tions we get if Ln and frl are replaced by qan and ‘I’n, respectively,
in (A3) are true. (The relation corresponding to (A3) (iv) may be valid
with a different constant cri <®} .

(A4)%%= (1) Both (A3) (ii) and (A3) (iii) remain true if any one or two f's
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are replaced by the corresponding ¢g's.

Wy [ EL:: @)1 [ELn(Yl)]_l = -v_~ -v(finite), as n~

-1 -
(iii) hn nkE [fn(Yl)gn(Z'.l)]—> o (finite), asn—>

Theorem 2. 3.1, Let assumptions {Al), (A2), (A2)*#%, and (A3)*%* be
satisfied. We assume that a choice of o« which satisfies (2.1.4)
also satisfies (2.1.11).
Then, as n> ©, the law of
2 -
N(0o, o _Z 2), if2>0
o
% ZI'I L:{c / Zn £ P > / E
L - —
1—N(O,(Uo£)2), if2 <0,
in the sense of Theorem B, provided tfcz) > 0, where cri =limh n .
n

2
T [gon (Zl) ], as n—= « . Furthermore (A4)**, {A3), and (A3)*

make up a set of sufficient conditions for (A3)%% to be true, and
therefore under (Al), {A3), (A3)%, (AZ)%*%, (A4)%*%, and a choice of «

satisfying both (2.1, 4) and (2.1.1l) the theorem is true. In this case

62=02+v262+2vcr.
o 2 1

Proof. Clearly, for the first part of the theorem there is nothing to be

proved. As for the second part, we have to show that (A3), (A3)%, and
(A4)%% imply (A3)%%. The uniform boundedness of {gpn}, n=1l 2,.0.
follows from the uniform boundedness of {Ln}’ {L;}, n=1, 2,... and

2 -1
(A4)%* (ii). Next, E ]gon(Wl)] is O(hnn } by Minkowski inequality,
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(A3) (i), {A3)* (i}, and (Ad)**x (ii). We also have
¥ ¥ . 2
E[Y (W) ¥ W)I=E[s (Z)g, @) ]+v B[ (V)f ()]

+ v E [gn (Zl) fn (Y].)] t v E [fn (Yl) 9, (Zj)]
from which if follows that E[¥ (W) ¥ (wj)] are O (hi n"%
uniformly in j, 1 < j £ n, by means of (A3) (ii}, (A3)* (ii), the first
part of (A4)# (1), and (A4)** (ii). In a similar fashion replacing the
‘Ifn's by what they are equal to in E [‘I’n (Wi) ‘I‘n (Wj)] and using
(A3) (iii), (A3)* (iii), the second part of (Ad)¥* (i), and (A4)** (ii), we
see that E [‘I’n (Wl) ‘I’n (Wi) ‘I’n (Wj)] are O (hz n-3) uniformly
iniandij, 1 <i<j=n.

Finally,
-1 2 -1 2 % 2. -1 2
hl’l ne [(pn(Wl)] - hn no [Ln (Zl)] * vn hn no [Ln (Y].)]
-1
+2v hn nE [fn (Yl) 9, (zl)]

2
and this converges to trg + v 612 +2vo, asn ™ ©, by (A3) (iv),
(A3)k (iv), {Ad)*% (ii), and (Ad)*k (iii). This completes the proof of

the theorem.
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