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OPTIMAL CONTROL WHEN THE VARIANCE OF THE

MANTPULATED VARIABLE IS CONSTRAINED

by

G. E. P. Box and G. M. Jenkins

Discrete feedback control schemes discussed by Box and Jenkins [1],
(23, (31, [41] were_designed to produce minimum mean square error in the
output, It was técitly supposed that there was no restriction in the degree
of manipulation that could be applied to L the input or manipulated variable
to achieve this. It sometimes happensyggat we are not able to employ these
optimal schemes because the amount of variation which can be allowed in the

adjustments

input/xt is restricted by practical limitations. We here consider, therefore,
how the previous control schemes would need to be modified if a constraint was
placed on V(xt) the variance in the input. Such modified schemes are of
considerable practical impertance because unrestricted schemes can call for
excensively large values of V(xt).

'or example, consider again the important case in which the disturbance

n, at the output can be repcesented by a model

Va, = (1-8B) a | (1)

[ul

of order (0,1,1)/while.the sutput and input are related by simple exponential

dynamlcs so that

(1-68) - e x
a5 Y- B X1

(%)

where it will be recalled taat 1-5 may be interpreted as the proportion or



A conntratined Geneme

Concider now the situation where the models For disturbance and
dynamics are again given by equations (1) and (2) but some restriction of the
lnput variance is necessary. The unrestricted optimal schemes have .. SraenTy
that the errors in the output Et, Et 1° Et s3ese are the uncorrelatcd randon
variables 4¢s 4 1» 8 5y... and the variance of the output 0; has the minimum
possible value 0;. "With the restricted schemes the variance Oé will

necessarily be greater than O; and the errors Et’ Et-l’ Et;Q"" at the output

will be correlated.

We shall pose our problem in the following form: Given that Ué be

allowed to increase to some value cé = (l+c)0; , Wwhere ¢ is a positive constant,
to find that control scheme which produces the minimum value For V(xt)' Making

use or Lagranpge's mathod of undetermined multipliers we may thus seek an unrestricted

minimum of the function .

F o= Vi) +u { V(e - (ve) o? ) ke

Derivation of optimal action

it the optimal action expressed in terms of the a 's be

_ 1
X'C = - EL(B) at

where Lir) = ¥+ L. + £ B% 4 e
] 1 2

Then reresring o the block diagwam which compares at point D the total noise at the out-

put with the accumulated adjustments we see that the error €y at the output is



Also in practice control would need to be exerted in terms of the obsetrved

output errors & rather than in terms of the at's so that the control

equation actually used would be of the form

L{B)

.
Xt T Tg IFBE Gt (6’
tyuating ¢7) and (g)
L(B)A-9) - (1
J N - NS B (1-B) ¢ (B) B
i.e. (1-8) L (B) = { A - (1-B) ¢ (B)} (1-4B) _ ( 7)
Cage whepe . 13 neglipible

As a preliminary, consider the special case where the system Is
sufficiently Fast-acting so that § can bhe taken to be zero. This 15 the
situation where virtually all the response to a step input occurs in one time

interval and we have seen that the optimal unrestricted scheme calls for

proportional action

A , _
xt = - E- et with et = at
Vix_ ) 2
t
and .-..-...f-.. = _._r
O'a -4

For the constrained scheme equation (7 ) becomes

L(B) A - (1-B) ¢ (B)

(8)

A=yt (B =308 ¢ (wz'wa)Bz t ornnees
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(B%* - (2+v) B+1l) = 0

i.e. of B+B Y = 24+v.

fvidentiy it p  is a root then so is p_l. Thus the solution is of the

form wj =z Alp] + Agpf':I . Now if p has modulus less than 1 then p"l

has modulus greater than 1, and since € = { 2+ By(B)} a, mst nave finite

variance, A? must be zero. By substituting the solution Y, = Alpj in ( 9)
' - oo

we tind that Al = A,

Pinally, then ¢, = Apj. It may be noted that since wi mist be
o 3 .

real then no must the root p whence it follows that v must be positive and

50 then must p. It now follows that

WB) = I—’_‘—g—ﬁ | (11
- - AOB - l‘eDB = —A ( 12)
1 + BY(B) 1+ To8 - 1pB  ° (6 1-2)

) _ 1-0pB
and € ¢ © 1°PB at
V(e ) A2p2
30 that LA 1+ pz (13)
o; 1-p
Also using (11)
- MM 1l-p)
(1-B)Ap . {(1-p (n)

L‘B) = A= ToB 1-pB



2
Q=c/2 . Then O = —B—; and p? = Tga ~and the output variance
L-p

becomes dj(i+i20).

In summary then, supposing we are prepared to tolerate an increase
ry »

in variance in the cutput to some value d;(l+A20) then

1} we compute p = / 1%6

2) - optimal control will be achieved by taking action

x. = (1=-A)p x

1
t | - 'é—l(l"p) Et

t-1l

3) the variance of the input will be reduced to

. A* 1-p
Vix ) = g 11p

That is, it will reduce to a value that is R% of that for the

1-p

unconstrained scheme where R = 100 T

Table 1 shows p and R for values of Q between 0.1 and 1.0

G 06.10 0.20 0.30 0,40 0,50 0.60 ©0.70 0.80 0.490 1.00
p 0,307 0,408 O0.480 0,535 0.577 0.612 0.641 0.667 0.688 0.707

R 53.7 42,0 35.1 30.3 26.8 24.0 21.9 20,0 18,5 17.2

Table 1. Values o parameters for a simple constrained

control scheme.



-1l-

Case where & 1o not neglipible

Consider now the more general situation where ¢ is pot =ero.

and the system dynamics must be taken account of. Equation ( 7y is
(1~&) WBY = { x -(1-B) 9(B)Y } (1-¢B)

= A=y = 68X - (148X, * Y, } B
- (8%, - (118, + vy )} B?

- [ Sy = (QeSdU, + ¢, } B L.

We have now to find that @(B), and hence that L(B), which minimizes f in

equation (3), Equivalently we may minimize

(1-8)%2 Vix,y V(e
fy) = + * V{—— - (1l +¢)
Oa Ca

where v is the undetermined multiplier,
Now

£(y) = (x—wl)" +{ ooy - (Qeddy + 0, }2
Ly - o), + 9, P

L6y, = (L8d, +y, 12+ ...

+ v{wi+w;+w§+....}

and on ecquatiny to zero the derivatives of () with respect to wl, wz,.wa‘
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are obtained by substitution to give

. lpl(l—pz) . e Ap?(l_gi)
1 Py - Py 2 Py = Py
éo that
_ 2 _ 2 )
"By = A (1 pz)pl (1 pl)p2 ,
B - - - )
RN (1 plB) 1 Py ) |
: , (°1+°2“°1"2) - PP,B
2
1-(pl+p2)B+ppoB |
) k, -k B
y(B) = X ' . (20)
l-(k°+kl)B+le
where ko = pl + 02 - plp2 kl = plp2 .

and
1-k, B - (1-A)(k_B - lez)
1 + BYRB) = - (21)
‘ l-(koykl)B + le

. Now substituting (»3) in equation (10)

A(l- 6B) (1—k°) _ S
L(B) = 5 ' (79
(1- 6)(1 - (ko+k1)B + le )

LB A{l- 68) (1—k0}

and i+6 Y(B) (1-8) {1-kxpB- (1-A)(k_B-k B*)}
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Also Prom (202) x, s a sceend order autoregressive process sp that

V(x,) N (1-k ) {(1+ &)1k )-2 6 {k th, )_}
(1+k°+2k1) (l—kl)

, (»6)
0—2 gz(l“fﬁz)

: stion of k
Computation of ° and kl

It remains to compute values for k  and kl} The characteristic

‘

equation (19) may be written

p* M B¥+ N RBE-M B+1 = 0O

] 2 2 2
where M = j¢: §) and N = (1+4) E (1+8%) + v _
L

It may also be written in the form

(B2 - TB + P) (B? - pPlre + Py = o
where T = pl + 02 aﬁd P = plpg.
Equating coefficients
TP T = oM . i, T = I%%
N
i.e. PPt s By = N

(1+P)?



An Lra mp e

We have previously (2] used for illustration an example in
which viscosity was controlled to a target value of 92 by varying the

gas rate. {or the pilot control scheme A = 1.0, (6 = 0,

& = 0.4% so that the optimal control action would then be
1 1 1
= e L e - . = - 2 - F
X, 1% (st 0.5 Et-l) é{ E, Ct-l)
with €07 .

: g
. X
o7 = L. 502 i.e. gE— = /g - = 2.2u
X 2 a ] 3
4 a '
UX 0{.
Tigure 1 shows the raduction of Ry possible for various values of b-’--

el ok

with the accompanying optimal control parameters. We see in particular that
for a 10% increase in the standard deviation of the output the standard
deviation of the input can be halved.

rigure 2 further illustrates this point. When we previously
discussed this example a set of twenty-four successive observations were
shown, These values of inputs(gas rate) and outputs (viscosity) are

- peproduced in the left hand diagrams appropriate to the optimal unrestricted

% As we have explained in [2] the correct parameters were slightly different.
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Use 1 the table

Taile 2 is provided to facilitate the setection of optimail comsirdined

control schemes.

The vertical margin shows the value of § the dynamic constant. The

horizontal margin shows the value of 0 where

i

V(et)
= 1+ xQ
o3
2 - PR
‘ ) i (k_tk )*(1-k,) 2k, (k =k7)
so that (equation (Js)) 0 = ,

2 ) 2
(l—kl) { (l+kl) - (knikl) }

Three entries are shown in the body of the table
(1) the % reduction R in variance of the input as compared with
the unconstrained scheme
fhus {using (26))

2 -
(l—ko) { (14§ )(l+kl) - 20(k0+kl)}
(l+ko+2kl) (l-kl)

100
(1+62)

Rwe

(?) and (3) the values of ko and kl for the optimal scheme.

For illustration suppose A = 0.6, § = 0.5, g = 1. The optimal

unconstrained control equation is then

X, = = 1.2 (1-0.5B) Et

and V(xt) T 1.80 0;. Suppose that this amount of variation in the  input



variable produces difficulties in process operation and it is desired to

cut V(x ) to about 0,50 o?, that is, to about 28% of the value for the
a ) .

unconstrained scheme. Inspection of the table in the column labelied & = 3.5
shows that a reduction to 26.5% can be achieved by using a control scheme

with constants k0 = .43, k. = 0.15%; that is, by employing the control

1

eguation

"'0.06 X -

t-2

= 0,32 ;
xt_ 2 Aol

- 0.57 x 1.2 (1-0.5B) € -

This solution corresponds to a value O = 0.20. The variance at the output
wi:l, therefore, be increased by a factor of 1 + 220 = 1+0.6% 0.2 = 1.072

that s by about 7%.



