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Note to Referee 1

Thank you for the review and helpful comments. This letter is in response to the
questions and concerns raised in your review report. The labels correspond to those in the
report.

1. We agree that the interpretation of complicated interactions between continuous vari-
ables can be challenging. In the paper, we intended to say that adding categorical
variables to a model that already has continuous variables can increase the complexity
of the model. It is certainly not our intention to claim that “working with categorical
covariates is more difficult than continuous ones”. We believe the misunderstanding
was caused by the sentence “The two-factor interaction model which incorporates
categorical variables is much more complicated than in the continuous case” [in old
Section 2.3, the first sentence of the fourth paragraph]. To avoid confusion, we modi-
fied it into “Adding two factor interactions with categorical variables to a model that
already includes parametric and smooth terms adds a number of additional terms to
the general model” [in new Section 2.3].

In this paper we mainly consider bivariate interactions among the variables. There
exist a few methods of exploring two-way interactions effectively, such as contour plots
and cross section plots. Some examples can be found in Hastie & Tibshirani (1990)
and Lin et al.(2000). For higher order interactions, it is more difficult to display the
estimated surfaces. We added the following sentence “T'wo factor interactions arise
in many practical problems. See Hastie and Tibshirani (1990), Section 9.5.5 or Lin
et al. (2000) page 1570-1700, Figures 9 and 10, for interpretable plots of two factor
interactions with continuous variates” [in new Section 2.2.2, the first sentence)].

We replaced the two-way interaction example [in old Section 6.2] with a new example
[in new section 6.2]. The true logit function in the new example has an interaction
term cos(27(X; — X»)). This interaction is non-monotonic with respect to either X
or X5, and thus more complicated than the product term X; x X5 in the old example.
We used the cross section plots [in new Figure 6] to illustrate how our approach has
effectively captured the estimated surface.

2. In the proposed sequential Monte Carlo bootstrap method, the ordering of covariates
is determined by the importance of individual covariates, which can be measured
by a certain norm of the function estimates such as the L; norm. When the tuning
parameters are chosen properly and the RKHS is rich enough, the LBP model provides
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accurate estimates for all the components. Under that circumstance, the ordering
based on the importance measure of the estimated components should reflect the
ordering of the importance of the covariates if true functions were known. We note
that different importance measures could give different orderings of the variables.
However, both L; and L, importance criteria gave excellent results in selecting the
correct terms in our simulations, and the unimportant terms would have zero or tiny
measures of importance in either L; or Ly sense.

We replaced the sentence “An alternative measure based on the functional L, norm
worked equally well in our simulation studies” [in old Section 4.1, the last sentence]
with “The functional L, norm gave almost identical results in numerous simulation
studies, (not reproduced here).” After the first two sentences in Section 4.2, we added
“We will use a sequential procedure for selecting important terms”.

3. The following corrections are made corresponding to the suggestions.

1). “RKHS” was spelled out as “reproducing kernel Hilbert space” on page 4.

2). The word “subject to” was changed to “where” [In old equations (2.13) and
(2.14), which have become new equations (2.9) and (2.10)].

3). The KL distance is always positive without taking absolute value. The equa-
tion number of old equation (3.2) was omitted for shortening the paper, and
correspondingly we adjusted the other equation numbers.

4). Cross validation is a common way for selecting tuning parameters. One argument
that shows that CV is roughly an unbiased estimate of the CKL in density
estimation can be found in Silverman (1986) page 53. The following is the
argument adapted to the exponential family regression situation. For any tuning
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parameter A, let fy be the corresponding estimate, and f; ~ be the estimate with
the i-th data point omitted. Denote the density function of the input vector z
by d(z). Then we have

CKL()) = / [ 1(2) f() + b ()} d(2):

Let us consider the following CV score:
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Since (z;,9;), i = 1,...,n, are i.i.d pairs, and since f)[fi] only depends on obser-



vations other than (z;,v;), we have
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The approximation comes from that on average the estimate based on n obser-
vations should be close to the estimate based on (n — 1) observations when 7 is
decently large.

Thus CV () is commonly expected to be at least roughly unbiased for C K L()).
In practice, Xiang & Wahba (1996) and Gu (2002) have found the slightly mod-
ified cross validation score CV = 13 [—y; fI7(z;) + b(f(z;))] works a little
better. This version of CV is used in this paper. It was first introduced in Xiang
& Wahba (1996) and has been shown to perform well in many studies since then.
See, for example, Gu (2002) for an overview. We do not think it is necessary to
give the above heuristic argument in the paper.

. Adding the detailed derivation of ACV()) on page 11 to the paper would

lengthen it at a point where we are trying hard to shorten it. However we
can provide a copy of the relevant parts in the PhD thesis of the first author to
the derivation, with the assurance that it is permanently available. If the outline
of proof is absolutely required, we can add it.

. On page 11, the first paragraph in Section 3.2, we added “based on the following

theorem, which has been exploited by numerous authors, see e.g. Girard (1998).”

. In the second paragraph of Section 4.2, we added more details about bootstrap

sampling as “Conditional on the original covariates {xi,.. xn} we generate
{yl("), e Un (")} (responses 0 or 1) using the logit function f = b0+f(1 +-- +f
In total we sample T independent sets of data (X1,y1,(t)),- (xn,yz(tn)),t =



1,...,T, from the null model f, fit the main effects model for each set, and
com 2 *(n+1) . 9
pute L, ,t=1,...,T.
8). In step 1 [on old page 14, which has become new page 13], ¢ is defined as “any
number slightly larger than L;)”, rather than being equal to L(y).

9). There are many numerical methods for solving linear and quadratic program-
ming problems. The challenge in this paper is to minimize a non-differentiable
objective function with a general likelihood. According to the referee’s com-
ment, we changed the second half of the first sentence in Section 5 into “some
numerical methods for optimization fail to solve this kind of problem.”

10). Please see our response to question 1 and the new example in Section 6.2.
11). Please see our response to question 1 and the new example in Section 6.2.

12). In response to the request to shorten the manuscript, we removed Figures 8 and
10 in the old version and made the corresponding changes.
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