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Overview
Value communication is a key component of execution

Value communication structures are overly general
■ Simple communication patterns dominate, but...

■ Must support all  possible communication patterns for all  values

A new model for value communication
■ Choose suitable communication method on a per-value basis

■ Based on degree of use prediction

Three components to new model
■ Determining the nature of the communication of each value

■ Developing new, speculative methods for efficient communication

■ Methods for mis-speculation recovery
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Overview
Communication optimizations

■ Useless instruction elimination

■ Register file management

■ Dynamic operation chaining

Reduce utilization  of current communication structures
■ Enable greater ILP at fixed cycle time

■ Enable higher frequency with smaller structures
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Outline
Overview

Motivation
■ Inter-instruction communication

■ Degree of use

■ Value communication in “real” programs

Degree of Use Prediction

Useless Instruction Elimination

Register File Optimizations

Dynamic Operation Chaining

Summary
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Inter-Instruction Communication
Register communication model

■ Majority of value communication occurs through registers

■ Instructions connected indirectly by register name

■ Efficient representation, but...

■ Implicit assumption of multiple consumers

Significant effort is spent supporting this model
■ Large, multi-ported register files

■ Complicated bypass networks

■ Broadcast tag match for instruction wakeup

How to describe the actual needs of a value?
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Degree of Use
Definition: number of times a

given dynamic value is used
■ A direct indicator of the communication

requirements of a value

■ Function of both number of static
consumers and dynamic control flow

Focus on register values
■ All  communicating instructions use at

least one register

■ Values not tracked through memory

• Loads produce a new value

• Stores produce no value

■ Memory degree of use possible

E

B C
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r1 r1

r2
r2

r3

r4 r4 r4

load
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Characterizing Degree of Use
Degree of use statistics

■ Average: 1.66

■ Mode (most frequent): 1

■ Maximum: ~330 M (bzip2)

FP benchmarks
■ Higher average: 1.83

■ Fewer 0, more 1, 2

Independent of compiler
■ gcc results similar

■ Franklin and Sohi observed
similar results on MIPS ISA
and SPEC92 benchmarks
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Characterizing Degree of Use

67% of values from instructions
generating one degree of use

93% of values have same degree
of use as the last value from the
same instruction

Instruction identity is significant factor in determining degree of use
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Outline
Overview

Motivation

Degree of Use Prediction
■ Predictor organization

■ Forward control flow signatures

■ Evaluation

Useless Instruction Elimination

Register File Optimizations

Dynamic Operation Chaining

Summary
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Degree of Use Prediction

BTB/
BPred Rename Queue Exec.

Write-
back RetireI-cache

Register
Sched. Read

Degree of use predictor provides timely, per-value knowledge
■ Indexed with instruction PC

Degree of use
predictor

PCs predictions
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Degree of Use Prediction

BTB/
BPred Rename Queue Exec.

Write-
back RetireI-cache

Degree of use
predictor

predictionsPCs ???

Register
Sched. Read

Degree of use predictor provides timely, per-value knowledge
■ Indexed with instruction PC ■ Use other pipeline information
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Degree of Use Prediction

BTB/
BPred Rename Queue Exec.

Write-
back RetireI-cache

Degree
tracking

table

predictions

signal mispredictions

rename instruction stream

Degree of use predictor provides timely, per-value knowledge
■ Indexed with instruction PC ■ Use other pipeline information

Observe instruction stream for training/misprediction detection
■ Rename instruction stream - faster resolution, false paths

■ Retire instruction stream - slower resolution, always correct path

Register
Sched. Read

train predictor

retirement instruction stream

Degree of use
predictor

PCs ???
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Forward Control Flow Signatures
How to differentiate multiple possible degrees of use?

Future  control flow uniquely determines degree of use
■ All uses occur after value is generated

■ Observed uses depend solely on which path is taken

Predicted future control flow is available
■ Degree predictor resides in middle of pipeline

■ Future control predictions are available in earlier pipeline stages

Not quite perfect
■ Predictions may not be accurate

■ Pipeline depth limits number of
predictions available

Signature encodes future control flow
from conditional  or indirect  branches

0..1 branch dirs

1 hashed addr
indir. target
prediction

leading 1 next
branch
direction

encodes
length

Signature

cond. branch
predictions
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Predictor Microarchitecture

01100101

Associate predictions with instruction identity
■ Index with low-order PC bits, tag entries with higher-order bits

Support multiple predictions  per static instruction
■ Use a set-associative predictor organization

■ Use control flow signature as part of tag

k:

j:

Predictor Table
tag sig pred

z 01100001 1

x 11101101 1

tag sig pred

z 0

y 01000001 1

z k

0 1 1 0 0 1 0 1Signature

hit

PC
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Predictor Performance
High accuracy

■ < 3% misprediction rate

■ Worst case < 4%

■ Includes overpredictions
and underpredictions

High coverage
■ 92% of values receive a

correct  prediction

■ Coverage depends on code
working set

■ Strongly dependent on
predictor size, organization

Low overhead
■ 8.5 KB, relaxed timing
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Predictor Performance by Degree
Prediction frequency reflects

degree of use distribution

Accuracy depends on degree
■ Degree of use 1 predictions

• Most accurate

• Most mispredictions  also

■ Accuracy diminishes with
increasing predicted degree

Under- vs. overpredictions
■ Predicted degree <2:

probably underprediction

■ >2: probably overprediction
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Outline
Overview

Motivation

Degree of Use Prediction

Useless Instruction Elimination
■ Sources of useless instructions

■ Mechanism of elimination

■ Evaluation

Register File Optimizations

Dynamic Operation Chaining

Summary
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Useless Instructions
Useless instructions  generate values with degree of use zero

Search(): sv_upgrade ():
   ... ...
   addl    a2, 0x1, a2 bis     zero, 0x1, v0
   cmovge  t3, t3, t5    ...
   sra     t5, 0x2, t5    ret     zero, (ra), 1
   xor     t5, 0x1, t5

bne      t5, X sv_grow():
   ldbu    t7, 0(t6)    ...
   cmovlt  s0, a3, a0    bsr     ra, sv_upgrade

stl a2, -19686(gp) ldq v0 , 0(s0)
   bis     t7, 0x8, t7    ...
   stb     t7, 0(t6)
X: bis      zero, s2, a2 av_fake():
   ...    ...

   bsr     ra, sv_upgrade
addl     s0, 0x1, v0

   ...
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Costs  of useless instructions
■ Physical register handling ■ Cache bandwidth

■ Instruction window slots ■ Register file bandwidth

■ ALU occupancy

Useless Instruction Sources and Costs
Sources of useless instructions

■ Partially dead instructions created by compiler optimizations

■ Dead instructions requiring interprocedural analysis to detect

ret

def

use

use use

def

def
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Eliminating Useless Instructions

V instruction ROB

4:

instruction PUT

7:

Predicted Useless Table Reorder Buffer

8:

21:

6:

Add predicted useless table  (PUT), pointers in ROB

• Tracks predictions, stores partially-renamed instructions for recovery

Modify retirement logic

• Retire useless instruction only when verifying instruction  and all
intervening instructions are ready to retire

Allow scheduling from PUT  for recovery

PCj:
PCi:

PCx:

PCk:
...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

ldq r5, 8(sp) —

1 addl r1, r5, r6 7 addl r1, r5, r6 4
—

bis r0,r3,r6 4

stq r2, 0(r8)

=

&
rdy

release

scheduler



Optimizing Inter-Instruction Value Communication through Degree of Use Prediction
J. Adam Butts • University of Wisconsin–Madison • September 2002

Slide
21/62

0

5

10

%
 V

al
ue

 p
ro

du
ci

ng
 in

st
ru

ct
io

ns

Executions
Register reads
Register writes
Register allocations
L1 D-cache reads

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average

Results: Resource Utilization

Global ~5% reduction  in utilization of many critical resources
■ Several benchmarks see >10% reductions

Relative reductions depend on instruction mix
■ ALU operations vs. loads ■ 0-, 1-, and 2-input instructions
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Results: Performance
Performance impact depends

on resource contention
■ 0.6% speedup on resource-

rich baseline  model

■ 3.4% speedup on resource-
constrained  model

■ SMT processors?

70% of potential  speedup
■ NOT mis-speculations

■ Instructions not eliminated

• Unidentified (predictor)

• Unverifiable (ROB size)

■ Retirement holdup
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Outline
Overview

Motivation

Degree of Use Prediction

Useless Instruction Elimination

Register File Optimizations
■ Two-level register file management

■ Minimizing register lifetime

■ Value recovery

Dynamic Operation Chaining

Summary
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Avoiding Register File Writes
Use alternate communication mechanism— the bypass network

■ Already exists

■ Designed for communication with a few consumers

■ Avoid communicating through the register file what has already
been communicated through the bypass network

■ Degree of use indicates what communication is required

Bypass network does not  retain values
■ If register file is not written, need a means to recover values

Two applications  to avoid writing a fast, full-sized register file
■ Bypass counting  to manage a two-level register file

■ Late allocation and early release of physical registers
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Background: Two-Level Register Files
Reduce average access latency

■ Like cache hierarchy

■ Small, fast, high-level file

■ Large, slow low-level file

Many variations
■ Visibility to ISA

■ Software vs. hardware
management

■ Supply values from both levels
or only high-level register file

■ Inclusion policy

Fast
Registers R[0-7]

R[8-31]Slow
Registers

Execution Core

Fast registers: speculative register file

Slow registers: value recovery
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Application 1: Bypass Counting
Based on non-bypass  scheme proposed by Cruz et al.

■ All values are written into lower-level file

■ Also write value to register cache if result was not bypassed

■ Values with multiple consumers may be bypassed to some

• Def-first use distance largely independent of degree of use

• Subsequent consumers experience higher latency

Bypass counting
■ Leverage degree of use knowledge

■ Write to cache if number of bypasses < predicted degree of use
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Empty time:  for dependency tracking
■ Physical register allocated at decode time (dependency tracking)

■ Value written after execution executes

Dead time:  for recovery purposes
■ Value dead after last use

■ Register freed when verifying instruction retires

Background: Register vs. Value Lifetimes
Physical register lifetimes  significantly exceed value lifetimes

■ Leads to poor utilization of physical registers

■ More physical registers required ⇒ big and slow register file

physical
result last

verifying

ready use
instruction

retires
register

allocated

value lifetime

physical register lifetime

2 828
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Application 2: Late Alloc. & Early Release
Virtual-physical registers  (González et al.) eliminate empty time

■ Separates dependence tracking  from value storage

■ Virtual-physical register assigned at decode time

■ Real physical register assigned when result is ready

■ Maintain a mapping between the two

Combine virtual-physical registers with bypass counting
■ Dependency-tracking is preserved

■ Allocate physical register after execute EXCEPT

■ Do not allocate register if bypass count >= predicted degree of use

Can also attack dead time
■ Free physical register when total reads >= predicted degree of use
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Value Recovery
Speculative nature of scheme requires value recovery  due to...

■ A degree of use underprediction

■ A control mis-speculation requiring re-execution

Three recovery strategies
■ Store values somewhere else

• All values are stored

• Recovery structure can be optimized (distributed, write-only storage)

• Two-level register file

■ Recreate values through re-execution

• Must ensure availability of inputs and instructions

• Useless instruction elimination

■ Checkpoint recovery

• Periodic snapshot of state + limited re-execution on recovery
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Outline
Overview

Motivation

Degree of Use Prediction

Useless Instruction Elimination

Register File Optimizations

Dynamic Operation Chaining
■ Instruction chains

■ Back end chain execution model

■ Dependence chain optimizations

Summary
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Avoiding Value Movement
Scheduling window  too general

■ Producer does not know location of consumer(s)

■ Expensive tag broadcast, yet most instructions wake one consumer

Bring consumer instruction to the value
■ Direct producer of single-use value to special execution unit

■ Direct consumer to same location

■ Avoids value communication and scheduling

Potential benefits
■ Consumers of single-use values do not occupy window

• No scheduling → no tag broadcast

• Smaller window or  more lookahead

■ More execution bandwidth  with same communication structures

• Fewer read ports, write ports, bypass connections for special ALUs
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Instruction Chains
Definitions

■ Instruction chain : sequence of
data-dependent dynamic instructions
connected by degree of use 1 values

■ Chain terminating instruction :
Instruction with input from chain, but:

• output predicted degree of use > 1

• output only into another chain

• no output

Identify chains dynamically with a
degree of use predictor and
execute them efficiently

F

C D

A

r1 r3

r6
r6 r9

r4 r4 r4

load

loadadd

add
E

bne

B
load
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Efficient Chain Execution
Execute chains on chaining ALUs

Register
Window

Rename

Dynamic Chaining
Extension

Normal Execution Back End

File
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Efficient Chain Execution
Execute chains on chaining ALUs

• Result bypasses only to same ALU for next instruction in chain

Register
Window

Rename

Dynamic Chaining
Extension

Normal Execution Back End

File
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Efficient Chain Execution

Register
Window

Rename/

Dynamic Chaining

Steer

Extension

Normal Execution Back End

File

Execute chains on chaining ALUs
• Result bypasses only to same ALU for next instruction in chain

• Steer instructions into queues based on input operands
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Efficient Chain Execution

Register
Window

Rename/

Value

Dynamic Chaining

Steer

Cache

Extension

Normal Execution Back End

File

Execute chains on chaining ALUs
• Result bypasses only to same ALU for next instruction in chain

• Steer instructions into queues based on input operands

• Value queues, high-use value cache reduce read bandwidth
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Efficient Chain Execution
Execute chains on chaining ALUs

• Result bypasses only to same ALU for next instruction in chain

• Steer instructions into queues based on input operands

• Value queues, high-use value cache reduce read bandwidth

• Chaining ALUs share register file read, write ports

Register
Window

Rename/

Value

Dynamic Chaining

Steer

Cache

Extension

Normal Execution Back End

File
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Dependence Chain Optimizations
Execute pairs of dependent operations  in the same cycle

■ Eligible operations depend on latency, cycle time constraints

• Dependent logical operations

• 3-input additions

■ Facilitated by proximity in chaining queues

• Modify chaining queue to detect this situation

• Issue dependent operations simultaneously

■ Requires modified ALU

• Necessary modifications have been described previously

• May want to limit number of register inputs

Eliminate entire chain  when terminated by useless instruction
■ Additional benefit from eliminating transitively useless instructions
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Outline
Overview

Motivation

Degree of Use Prediction

Useless Instruction Elimination

Register File Optimizations

Dynamic Operation Chaining

Summary
■ Related Work

■ Status and Schedule

■ Contributions
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Related Work
Degree of use

■ Register traffic analysis - Franklin and Sohi

■ Analytical-statistical model - Eeckhout and Bosschere

Useless instruction elimination
■ Partial dead-code elimination - Knoop et al.

■ Exploiting dead value information - Martin, Roth, and Fischer

■ Ineffectual instruction sequences - Rotenberg

Two-level register files
■ Hierarchical registers for scientific computing - Swensen and Patt

■ Software managed hierarchical RF for VLIW - Zalamea et al.

■ Caching processor general registers - Yung and Wilhelm, Cruz et al.

■ Value aging buffer - Hu and Martonosi

■ Copy to backup when no live uses - Balasubramonian et al.
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Related Work
Register lifetime optimizations

■ Virtual-physical registers - González et al.

■ Exploiting short-lived variables - Lozano and Gao

■ A scalable RF architecture... - Wallace and Bagherzadeh

Dependence-based clustering
■ Complexity-effective SS processors - Palacharla, Jouppi, and Smith

■ Instruction-level distributed processing - Kim and Smith

Collapsing dependent instructions
■ Interlock collapsing ALUs - Malik, Eickemeyer, and Vassiliadis

■ Perf. potential of collapsing - Sazeides, Vassiliadis, and Smith

■ High perf. 3-1 interlock collapsing ALUs - Philips and Vassiliadis

■ Instruction pre-processing in trace procs - Jacobson and Smith
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Status and Schedule
Complete (modulo small tasks)

■ Motivation, characterization of degree of use (MICRO-02)

■ Degree of use prediction (MICRO-02)

■ Useless instruction elimination (MICRO-02)

TODO
■ Dynamic operation chaining (Fall 2002 )

■ Register file optimizations (Spring 2003 )

■ Write dissertation (Summer-Fall 2003 )

Planned graduation in fall of 2003
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Summary of Contributions
Alternative model for inter-instruction communication

■ Per-value determination of communication patterns

■ Value communication optimizations

■ Recovery for speculative optimizations

Degree of use prediction
■ Provides intuitive, direct knowledge of communication requirements

■ Predictable with high coverage, accuracy

Value communication optimizations
■ Useless instruction elimination

■ Register file optimizations

■ Dynamic operation chaining
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Backup slides
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Predictor Parameter Sensitivity

Use of control flow signature increases accuracy

Little benefit beyond six signature bits
■ 98% of instructions have fewer than four branch directions available

■ Most of the benefit achieved with 4 signature bits
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Predictor Parameter Sensitivity

Coverage is a strong function
of capacity and organization

■ Behavior similar to other
types of caches

Increasing tag bits reduces
destructive aliasing

■ 6 bits OK for these programs

■ Signature helps
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Degree of Use Predictor Details
Predictor table

■ 1K-sets x 4-way set associative, random replacement

■ 6-bit signature + 6-bit tag + 3-bit degree + 2-bit confidence per entry

■ Total storage requirement: 8.5 KB

Relaxed timing constraints
■ Predictor table access overlaps I-cache access
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Observing an Instruction Stream
Degree tracking table

■ Operate on rename or retirement stream

■ Saturating counter per architectural register

■ Increment on use of associated register

■ Clear when corresponding register is written

Predictor training
■ Add PC of writer, signature  when writer was renamed

■ Send PC, signature, uses to predictor when entry cleared

Detection of mispredictions
■ Add predicted degree of use  field for comparison

■ Underprediction when uses exceed predicted degree of use

■ Overprediction when overwrite occurs before predicted uses met

PCk:
PCj: ldq r5 , 8(sp)

addl r1, r5 , r6

PC sig uses pred

k x 0 1r6:

r5: j y 1 2

Degree Tracking Table
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Compiler Effect on Useless Instructions

Useless instructions increase with compiler optimization level
■ Compiler independent

■ Both fraction and absolute number increase

■ Due primarily to hoisting caused by instruction scheduling
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Eliminating Useless Instructions

PC uses pred PUT

r6:

r5:

V instruction ROB

4:

instruction PUT

7:

Predicted Useless TableDegree Tracking Table Reorder Buffer

8:

21:

6:

Add PUT (predicted useless table) to track prediction status
■ Entries contain valid bit, decoded instruction, and ROB entry pointer

Augment  DTT, ROB with pointers into PUT

PCj:
PCi:

PCx:

PCk:
...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

i 0 2+ —

ldq  r5, 8(sp) —

— — — —

0 — —
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Eliminating Useless Instructions

When a degree of use zero prediction is made:
■ A free PUT entry is allocated for the instruction

PCj:

PC uses pred PUT

r6:

r5: i 0 2+ —

PCi:

V instruction ROB

4:

PCx:

instruction PUT

7:

PCk:

Predicted Useless TableDegree Tracking Table Reorder Buffer

8:

21:

...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

ldq  r5, 8(sp) —6:

1 addl r1, r5, r6 71 addl r1, r5, r6 7

— — — —
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Eliminating Useless Instructions

PCj:

PC uses pred PUT

j 0 0 4r6:

r5: i 1 2+ —

PCi:

V instruction ROB

1 addl r1, r5, r6 74:

PCx:

instruction PUT

7:

PCk:

Predicted Useless TableDegree Tracking Table Reorder Buffer

8:

21:

...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

ldq  r5, 8(sp) —6:

When a degree of use zero prediction is made:
■ A free PUT entry is allocated for the instruction

■ The DTT is updated with a pointer to the PUT entry



Optimizing Inter-Instruction Value Communication through Degree of Use Prediction
J. Adam Butts • University of Wisconsin–Madison • September 2002

Slide
53/62

Eliminating Useless Instructions

PCj:

PC uses pred PUT

j 0 0 4r6:

r5: i 1 2+ —

PCi:

V instruction ROB

1 addl r1, r5, r6 74:

PCx:

instruction PUT

— 47:

PCk:

Predicted Useless TableDegree Tracking Table Reorder Buffer

8:

21:

...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

ldq  r5, 8(sp) —6:

When a degree of use zero prediction is made:
■ A free PUT entry is allocated for the instruction

■ The DTT is updated with a pointer to the PUT entry

■ A dummy entry is placed in the ROB with a pointer to the PUT entry
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Intervening instructions are handled normally except:
■ A use of a predicted useless register causes the corresponding

PUT entry to be placed into the instruction window for scheduling

■ Context switches cause entire PUT to be flushed into the window

Eliminating Useless Instructions

PCj:

PC uses pred PUT

j 0 0 4r6:

r5: i 1 2+ —

PCi:

V instruction ROB

1 addl r1, r5, r6 74:

PCx:

instruction PUT

— 47:

PCk:

Predicted Useless TableDegree Tracking Table Reorder Buffer

8:

21:

...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

6:

—stq r2, 0(r8)
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Eliminating Useless Instructions

PCj:

PC uses pred PUT

j 0 0 4r6:

r5: i 1 2+ —

PCi:

V instruction ROB

1 addl r1, r5, r6 74:

PCx:

instruction PUT

— 4
—

bis r0,r3,r6 4

7:

PCk:

stq r2, 0(r8)

Predicted Useless TableDegree Tracking Table Reorder Buffer

8:

21:

...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

6:

When an overwrite of the degree zero register is observed:
■ The PUT pointer is copied into the ROB entry of the overwriting insn
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Eliminating Useless Instructions

When an overwrite of the degree zero register is observed:
■ The PUT pointer is copied into the ROB entry of the overwriting insn

■ The DTT is updated normally

PCj:

PC uses pred PUT

x 0 1 —r6:

r5: i 1 2+ —

PCi:

V instruction ROB

1 addl r1, r5, r6 74:

PCx:

instruction PUT

— 4
—

bis r0,r3,r6 4

7:

PCk:

stq r2, 0(r8)

Predicted Useless TableDegree Tracking Table Reorder Buffer

8:

21:

...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

6:
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Eliminating Useless Instructions

=

&
rdy

release

PCj:

PC uses pred PUT

x 0 1 —r6:

r5: i 1 2+ —

PCi:

V instruction ROB

1 addl r1, r5, r6 74:

PCx:

instruction PUT

— 4
—

bis r0,r3,r6 4

7:

PCk:

stq r2, 0(r8)

Predicted Useless TableDegree Tracking Table Reorder Buffer

8:

21:

...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

6:

Retiring a predicted useless instruction:
■ The overwriting instruction must be ready to retire

■ All intervening instructions must be ready to retire
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Eliminating Useless Instructions

PCj:

PC uses pred PUT

x 0 1 —r6:

r5: i 1 2+ —

PCi:

V instruction ROB

0 — —4:

PCx:

instruction PUT

—

bis r0,r3,r6 4

7:

PCk:

stq r2, 0(r8)

Predicted Useless TableDegree Tracking Table Reorder Buffer

8:

21:

...

ldq  r5, 8(sp)

addl r1, r5, r6

stq  r2, 0(r8)

bis  r0, r3, r6

6:

Retiring a predicted useless instruction:
■ The overwriting instruction must be ready to retire

■ All intervening instructions must be ready to retire

■ The ROB and PUT entries are reclaimed
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Handling Loads under UIE
Mispredicted useless loads may be delayed

■ Handle as any OoO processor

Loads may have side effects
■ Memory-mapped I/O, page faults, illegal addresses

■ Must execute these loads

■ Solutions

• ISA change to mark such loads

• Probe TLB to verify cacheable page
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UIE Processor Configurations
Both

■ Big YAGS branch predictor, RAS, cascaded indirect predictor

■ 64 KB 2-way set associative L1 caches, unified 2MB 4-way L2

■ 4-wide fetch, issue, retire

Baseline (1/2 IBM Power 4)
■ 1 simple integer, 1 complex integer, 1 branch

■ 1 load, 1 store

■ 1 simple FP, 1 complex FP

Constrained (Transmeta Crusoe)
■ 1 complex integer, 1 branch

■ 1 load/store

■ 1 complex FP
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Higher ROB threshold
■ More instructions eliminated

■ Performance peaks earlier
due to diminishing returns
plus larger retirement holdup

Larger PUT size
■ More instructions eliminated

■ More hardware overhead

■ Scaling required with number
of instructions in flight
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UIE Parameter Sensitivity
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Dynamic Chaining vs. ILDP
No changes required to ISA

No compiler support required
■ Chains are identified dynamically by degree of use prediction

Leverages strengths of standard back end
■ Values that need wide distribution

■ Deep lookahead in instruction stream for ILP
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