
Use-Based Register Cac hing

J. Adam Butts and Guri Sohi

{butts,sohi}@cs.wisc.edu

Univer sity of Wisconsin–Madison
Architecture Affiliates Meeting

October 9, 2003

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
2/22

Register v alues needed f or small
fraction of lif etime

■ Few registers contain live values

■ Use a cac he

0
�

50
�

100
�

150� 200
�

250� 300
�

Registers�

0

10

20

30

40

50

60

70

80

90

100

%
 E

xe
cu

ti
on

 t
im

e

�

Live
Allocated

�

56 245

Motiv ation
Need large register file

■ Deep, wide pipelines

■ Many instructions in flight

■ Many read and write ports

Need fast register file
■ High clock frequency

■ >1 cycle latency hurts IPC

■ Complex bypass network

physical
register

allocated
value
ready

last
use

overwriting
instruction

retires
18 1 17

physical
register
lifetime

deadempty live

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
3/22

Overview
What register v alues should be present in the cac he?

Values that ha ve live consumer s will be read in the future
■ Keep these values close, others available

■ Degree of use indicates total number of consumers

■ Count uses as they occur to determine future usefulness of value

■ Use future usefulness to make (re)placement decisions

How should v alues be placed within the cac he?

Assign cac he sets to minimiz e conflicts
■ No meaning in physical register tags

■ Map register tags to cache indices intelligently

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
4/22

Outline
Motiv ation and Over view

Register Cac hing
■ Prior work

■ Shortcomings

Use-based Register Cac he Management

Decoupled Inde xing

Evaluation

Conc lusion

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
5/22

Register Cac hing
Reduce a verage access latenc y

■ Like cache hierarchy

■ Small, fast, high-level file

■ Large, slow low-level file

Many variations
■ Visibility to ISA

■ Software vs. hardware
management

■ Supply values from both levels
or only high-level register file

■ Inclusion policy

Fast
Register s R[0-7]

R[8-31]Slow
Register s

Execution Core

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
6/22

squash reissue

Register Cac he Pipeline
Like Yung and Wilhelm or Cruz et al.

■ Hardware managed ■ Values assumed to be in cache

■ Cache fill on miss ■ All values written to register file

execute

I2

I3

write
Rcache

write
regfi le

read
Rcache

issue execute
write

Rcache
write

regfi le
read

Rcache

issue execute
write

Rcache
write

regfi le
read

Rcache

issue execute
write

Rcache
write

regfi le
read

Rcache

issue execute
read

regfi le
write

Rcache
write

regfi le
read

Rcache

issue execute
write

Rcache
write

regfi le

issueI1

I4a

I4b

I5b

read
regfi le

Cycle 1 2 3 4 5 6 7 8 9 10 11

read
Rcache

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
7/22

Problems with Register Cac hing
Full y-associative cac hes

■ Required to obtain reasonable performance (conflict misses)

■ Need many ports ⇒ slo w

Poor content mana gement
■ LRU replacement

■ Leads to frequent misses

Implementation comple xity
■ Expensive recovery mechanisms

■ Many additional datapaths

Optimistic e valuations
■ Cheap misses

■ Unrealistic baselines

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
8/22

Outline
Motiv ation and Over view

Register Cac hing

Use-based Register Cac he Management
■ Insertion policy

■ Replacement policies

Decoupled Inde xing

Evaluation

Conc lusion

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
9/22

Use-Based Cac he Inser tion
Obser vation: a subset of v alues bypass to all their consumer s

■ Avoid placing in the register cache values already communicated
through the bypass network

Bypass counting
■ Write to cache only if number of bypasses < predicted degree of use

■ Store remaining uses with each value in cache

■ Monitor subsequent uses (for use-based replacement)

Compare with non-b ypass proposed b y Cruz et al. [ISCA 27]
■ Write to cache if value is not bypassed

■ Assumes single-use values

• Def-first use distance largely independent of degree of use

• Subsequent consumers experience higher latency

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
10/22

Use-Based Victim Selection
Obser vation: LR U is poor

■ Does not accurately capture the behavior of register values

Use-based replacement
■ Use remaining uses stored in cache to select victim

Handling unkno wn number s of remaining uses
■ Unkno wn default when initial prediction unavailable

• During training of degree of use predictor

• Unknown default of 1 works well; 2 for larger cache sizes

■ Fill default after register cache miss

• Fill default of 0 performs best

• Still need to fill!

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
11/22

Outline
Motiv ation and Over view

Register Cac hing

Use-based Register Cac he Management

Decoupled Inde xing
■ Register cache set assignment

■ Round-robin indexing

■ Performance

Evaluation

Conc lusion

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
12/22

Problem: Conflict misses
■ Standard cache index equals register tag modulo number of sets

■ No spatial locality in physical register tag references

Solution: Assign set inde x intellig entl y
■ Augment rename map to hold register cache index

■ Allocate set index with physical register using some algorithm

■ Provide set index to consumers along with physical register tag

Algorithm considerations
■ Avoid assigning long-lived v alues to same cache set

■ Information available

• Predicted number of uses

• Set assignment history

• Current front end status, performance

Decoupled Inde xing

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
13/22

1� 2� 4� 8� 16

Associativity	

1.3

1.4

1.5

1.6

1.7

1.8

1.9

P
er

fo
rm

an
ce

 (
IP

C
)

Round-robin
Preg-derived

16-entries

32-entries

64-entries

Round-Robin Inde xing
Simple sc heme to a void conflicts

■ Single state variable: last
assigned set

■ Assumes execution order
resembles rename order

Advantage dependent on cac he
organization

■ Helps more with less associativity

■ More sets helps to a point

Room f or impr ovement
■ Data still indicates 25% of misses

due to conflicts

■ Use-based set assignment?

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
14/22

Outline
Motiv ation and Over view

Register Cac hing

Use-based Register Cac he Management

Decoupled Inde xing

Evaluation
■ Methodology

■ Cache parameters

■ Performance

Conc lusion

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
15/22

Methodology
Simulator

■ Execution driven, SimpleScalar syscalls (trap to OS)

■ 512 instructions in-flight, 128-instruction window, 8-wide issue

■ 15-cycle minimum fetch redirect, 12 KB YAGS, 9KB DOU predictor

■ 32 KB 2-way L1 (4), 1MB 4-way L2 (12), 180 cycles to memory

SPECInt 2000, training inputs, 1 billion instructions

Register cac he miss model
■ Replay all operations within one cycle issue (Alpha 21264-style)

■ Block issue port for duration of miss resolution

■ Re-issue delay to ensure complete writeback

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
16/22

16 24 32 40 48 56 64

Number of entries

1.3

1.4

1.5

1.6

1.7

1.8

1.9

P
er

fo
rm

an
ce

 (
IP

C
)

Fully associative
8-way

�
4-way

�
2-way
Direct mapped
No Rcache

 1

 2

 3

 4

Register Cac he Tuning

Associativity is impor tant
■ 4-way minimum

■ Capacity can compensate

■ Conflicts

Larger cac hes than prior w ork
■ 48-64 entries vs. 16

■ Due to wider, deeper pipeline

■ Use 48-entr y, 6-way

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
17/22

0

1

2

3

4

5

6

7

8

R
eg

is
te

r
ca

ch
e

m
is

s
ra

te
 (

%
)

Capacity

Conflict

Not written

LRU� Non-�
bypass�

Use-�
filtering

Use-�
based�

5.0�

7.2�

3.3

2.1

Register Cac he Miss Breakdo wn
LRU is bad

■ No write-filtering (75% never read)

■ Many capacity & conflict misses

Non-b ypass is w orse (!)
■ Reduces capacity and conflict misses

■ But, larger increase in misses from write
filtering

Use-based sc heme is superior
■ Insertion policy reduces capacity and

conflict misses

■ Small increase in misses from write
filtering

■ Replacement policy reduces misses from
premature evictions of useful values

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
18/22

Performance vs. Cac he Size

16 24 32 40 48 56 64

Register cache size (entries)�

1.3

1.4

1.5

1.6

1.7

1.8

1.9

P
er

fo
rm

an
ce

 (
IP

C
)

�

No Rcache
Use-based
LRU
Non-bypass

 1

 2

 3

 4

Small cac he sizes favor filtering
■ Net gain from filtering

unneeded values

■ Non-bypass surpasses LRU for
caches with 16-24 entries

Very large cache sizes favor LRU
■ Not due to replacement policy!

■ No misses from incorrect
filtering

■ Large cache -> low capacity/
conflict miss rate

■ Too large to be much benefit as
a cache

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
19/22

Sensitivity to Register File Latenc y

1� 2� 3� 4� 5�
Backing register file latency (cycles)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

P
er

fo
rm

an
ce

 (
IP

C
)

�

No Rcache
Use-based
LRU
Non-bypass

 1

 2

 3

 4

Use-based register cac he
exhibits least sensitivity

Backing file latenc y can be
lower than monolithic

■ Few shared read ports

■ 24-port ⇒ 8-port

Use-based register cac he
trac ks full y-bypassed
register file

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
20/22

Configuration�

1.3

1.4

1.5

1.6

1.7

1.8

1.9

P
er

fo
rm

an
ce

 (
IP

C
)

LRU Round-�
robin�

indexing�
Write-

filtering
Replace

least uses
Perfect
degree�

prediction

 1

 2

 3

 4

+1.7%

+5.4%

+8.0%! +9.0%!

Incremental P erformance Breakdo wn

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
21/22

Outline
Motiv ation and Over view

Register Cac hing

Use-based Register Cac he Management

Decoupled Inde xing

Evaluation

Conc lusion
■ Future Work

■ Questions

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
22/22

Future W ork
Augmented heuristics to reduce misses fr om write-filtering?

■ Account for mis-speculation

■ Use additional information (static, operand type, etc.)

Additional inde xing sc hemes to reduce conflict misses
■ Apply degree of use information

■ Synchronization of front-end and register cache

Non-deterministic sc heduling latenc y
■ Degree of use prediction + use counting

■ False positive problem

Combine with pre vious w ork to reduce cac he por ts
■ Cache write bandwidth <1 value per c ycle

■ Additional complexity

