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Register v alues needed f or small
fraction of lif etime

■ Few registers contain live values

■ Use a cac he
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Motiv ation
Need large register file

■ Deep, wide pipelines

■ Many instructions in flight

■ Many read and write ports

Need fast  register file
■ High clock frequency

■ >1 cycle latency hurts IPC

■ Complex bypass network
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Overview
What register v alues should be present in the cac he?

Values that ha ve live consumer s will be read in the future
■ Keep these values close, others available

■ Degree of use  indicates total  number of consumers

■ Count uses as they occur to determine future usefulness  of value

■ Use future usefulness  to make (re)placement decisions

How should v alues be placed within the cac he?

Assign cac he sets to minimiz e conflicts
■ No meaning in physical register tags

■ Map register tags to cache indices intelligently
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Outline
Motiv ation and Over view

Register Cac hing
■ Prior work

■ Shortcomings

Use-based Register Cac he Management

Decoupled Inde xing

Evaluation

Conc lusion
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Register Cac hing
Reduce a verage access latenc y

■ Like cache hierarchy

■ Small, fast, high-level file

■ Large, slow low-level file

Many variations
■ Visibility to ISA

■ Software vs. hardware
management

■ Supply values from both levels
or only high-level register file

■ Inclusion policy

Fast
Register s R[0-7]

R[8-31]Slow
Register s

Execution Core
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squash reissue

Register Cac he Pipeline
Like Yung and Wilhelm or Cruz et al.

■ Hardware managed ■ Values assumed to be in cache

■ Cache fill on miss ■ All values written to register file
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Problems with Register Cac hing
Full y-associative cac hes

■ Required to obtain reasonable performance (conflict misses )

■ Need many ports ⇒ slo w

Poor content mana gement
■ LRU replacement

■ Leads to frequent misses

Implementation comple xity
■ Expensive recovery mechanisms

■ Many additional datapaths

Optimistic e valuations
■ Cheap misses

■ Unrealistic baselines
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Outline
Motiv ation and Over view

Register Cac hing

Use-based Register Cac he Management
■ Insertion policy

■ Replacement policies

Decoupled Inde xing

Evaluation

Conc lusion
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Use-Based Cac he Inser tion
Obser vation: a subset of v alues bypass  to all their consumer s

■ Avoid placing in the register cache values already communicated
through the bypass network

Bypass counting
■ Write to cache only if number of bypasses < predicted degree of use

■ Store remaining uses with each value in cache

■ Monitor subsequent uses (for use-based replacement)

Compare with non-b ypass  proposed b y Cruz et al. [ISCA 27]
■ Write to cache if value is not bypassed

■ Assumes single-use values

• Def-first use distance largely independent of degree of use

• Subsequent consumers experience higher latency
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Use-Based Victim Selection
Obser vation: LR U is poor

■ Does not accurately capture the behavior of register values

Use-based replacement
■ Use remaining uses stored in cache to select victim

Handling unkno wn  number s of remaining uses
■ Unkno wn default  when initial prediction unavailable

• During training of degree of use predictor

• Unknown default of 1 works well; 2 for larger cache sizes

■ Fill default  after register cache miss

• Fill default of 0 performs best

• Still need to fill!
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Outline
Motiv ation and Over view

Register Cac hing

Use-based Register Cac he Management

Decoupled Inde xing
■ Register cache set assignment

■ Round-robin indexing

■ Performance

Evaluation

Conc lusion
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Problem: Conflict misses
■ Standard cache index equals register tag modulo number of sets

■ No spatial locality in physical register tag references

Solution: Assign set inde x intellig entl y
■ Augment rename map to hold register cache index

■ Allocate set index with physical register using some algorithm

■ Provide set index to consumers along with physical register tag

Algorithm considerations
■ Avoid assigning long-lived v alues  to same cache set

■ Information available

• Predicted number of uses

• Set assignment history

• Current front end status, performance

Decoupled Inde xing
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Round-Robin Inde xing
Simple sc heme to a void conflicts

■ Single state variable: last
assigned set

■ Assumes execution order
resembles rename order

Advantage dependent on cac he
organization

■ Helps more with less associativity

■ More sets helps to a point

Room f or impr ovement
■ Data still indicates 25% of misses

due to conflicts

■ Use-based set assignment?
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Register Cac hing

Use-based Register Cac he Management

Decoupled Inde xing

Evaluation
■ Methodology

■ Cache parameters

■ Performance

Conc lusion
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Methodology
Simulator

■ Execution driven, SimpleScalar syscalls (trap to OS)

■ 512 instructions in-flight, 128-instruction window, 8-wide issue

■ 15-cycle minimum fetch redirect, 12 KB YAGS, 9KB DOU predictor

■ 32 KB 2-way L1 (4), 1MB 4-way L2 (12), 180 cycles to memory

SPECInt 2000, training inputs, 1 billion instructions

Register cac he miss model
■ Replay all  operations within one cycle issue (Alpha 21264-style)

■ Block issue port for duration of miss resolution

■ Re-issue delay to ensure complete writeback
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Register Cac he Tuning

Associativity  is impor tant
■ 4-way minimum

■ Capacity can compensate

■ Conflicts

Larger cac hes than prior w ork
■ 48-64 entries vs. 16

■ Due to wider, deeper pipeline

■ Use 48-entr y, 6-way
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Not written
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Register Cac he Miss Breakdo wn
LRU is bad

■ No write-filtering (75% never read)

■ Many capacity & conflict misses

Non-b ypass is w orse (!)
■ Reduces capacity and conflict misses

■ But, larger increase in misses from write
filtering

Use-based sc heme is superior
■ Insertion policy reduces capacity and

conflict misses

■ Small increase in misses from write
filtering

■ Replacement policy reduces misses from
premature evictions of useful values
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Performance vs. Cac he Size
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Small cac he sizes favor  filtering
■ Net gain from filtering

unneeded values

■ Non-bypass surpasses LRU for
caches with 16-24 entries

Very large cache sizes favor LRU
■ Not  due to replacement policy!

■ No misses from incorrect
filtering

■ Large cache -> low capacity/
conflict miss rate

■ Too large to be much benefit as
a cache



Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2003

Slide
19/22

Sensitivity to Register File Latenc y
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Use-based register cac he
exhibits least sensitivity

Backing file latenc y can be
lower  than monolithic

■ Few shared read ports

■ 24-port ⇒ 8-port

Use-based register cac he
trac ks full y-bypassed
register file
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+1.7%

+5.4%

+8.0%! +9.0%!

Incremental P erformance Breakdo wn
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Register Cac hing

Use-based Register Cac he Management

Decoupled Inde xing

Evaluation

Conc lusion
■ Future Work

■ Questions
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Future W ork
Augmented heuristics to reduce misses fr om write-filtering?

■ Account for mis-speculation

■ Use additional information (static, operand type, etc.)

Additional inde xing sc hemes to reduce conflict misses
■ Apply degree of use information

■ Synchronization of front-end and register cache

Non-deterministic sc heduling latenc y
■ Degree of use prediction + use counting

■ False positive problem

Combine with pre vious w ork to reduce cac he por ts
■ Cache write bandwidth <1 value per c ycle

■ Additional complexity


