
LOG-BASED TRANSATIONAL MEMORY

by

Kevin E. Moore

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN - MADISON

2007





i

Abstract

A pressing challenge in the movement to an explicitly parallel model of computing is to give programmers,

compiler writers and language designers a more powerful means of synchronization. My doctoral research

attacks this problem by investigating practical, high performance transactional memory systems. Transac-

tional memory gives programmers the ability to declare the synchronization properties their programs

need, without requiring that they develop a mechanism (e.g., a locking scheme) to enforce these properties.

Furthermore, transactions may be nested to allow programmers to build thread-safe libraries without

exposing implementation details such as locking conventions to higher levels of software.

Transactional memory systems may be implemented in software, in hardware, or in a combination of the

two. Typically, transactional memory systems do not limit the amount of memory a transaction may access

nor the length of time a transaction may run. Though intuitive for programmers, that model is poorly suited

for direct implementation in hardware, which is limited to structures of fixed size. Ideally, an implementa-

tion of transactional memory should: (1) make the expected common case (short transactions that commit)

fast; (2) defer rare and difficult-to-implement cases to software; (3) allow transactions of any size and dura-

tion; and, (4) allow programmers to nest transactions to arbitrary depths.

In my doctoral research, I developed Log-Based Transactional Memory (LogTM), a transactional memory

system that combines software-basedversion management (with limited hardware support) and conserva-

tive hardwareconflict detectionto support arbitrary-size transactions with limited hardware. Version man-

agement requires maintaining multiple versions of data values: old values, the values at the start of the

transaction, and new values, which are generated inside a transaction. Any memory location modified in a

transaction will hold its new value if the transaction commits, and its old value if the transaction aborts.

LogTM performs version management by eagerly updating memory in place during transactions and sav-



ii
ing old values in a per-thread transaction log. No further action is needed to commit a transaction since

new values are kept in place. To abort a transaction, LogTM restores saved values from the log. Fortu-

nately, (for most workloads) aborts are rare. Because aborts are infrequent, LogTM can reduce hardware

complexity by performing aborts in software without degrading performance. Conflict detection identifies

overlaps between the write set of each transaction with the read set or write set of other concurrent transac-

tions. Like other hardware transactional memory systems, LogTM detects conflicts on cached data by aug-

menting the cache coherence mechanism, e.g., by adding a read (R) and write (W) bit to each cache line.

LogTM implementations extend this mechanism (e.g., with sticky states, which enable the directory to

continue to send coherence messages to a processor for a blocks it has evicted from its cache) so that pro-

cessors can conservatively detect conflicts even for blocks not present in the cache.

Before I began work on LogTM, the only published hardware transactional memory systems relied heavily

on the cache. The size and associativity of the cache limited the scope of transactions. LogTM’s unique

log-based version management combined with innovative sticky states allow it to break this dependence on

the cache without adding complex hardware. Unlike previous schemes, which relied on keeping old values

in memory and storing new values in the cache, LogTM stores new and old versions in separate memory

locations, which may be cached and evicted independently. Like the stack, the transaction log is a part of a

thread s virtual memory and is effectively unbounded. Sticky states, although part of the coherence mecha-

nism, break the dependence between conflict detection and caching. By allowing conflict detection on

blocks after eviction, sticky states enable transactions whose read and write sets exceed the capacity or

associativity of the cache. Perhaps most importantly, LogTM guarantees that transactions appear atomic to

applications, but it allows some lower-level software to observe transactions’ intermediate values. This

allows LogTM to involve software in maintaining the atomicity of transactions. LogTM uses hardware to

perform the most performance-critical tasks, tracking read and write sets and detecting conflicts, but leaves

rare and complicated tasks, such as aborting transactions, to software.



iii

Acknowlegements



iv



v

Table of Contents

Abstract  i

Acknowlegements  iii

Table of Contents  v

List of Figures  xi

List of Tables  xiii

Chapter 1  Introduction 1

1.1   Motivation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1

1.2   Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   2

1.2.1   Serialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   2

1.2.2   The Trouble with Locks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   3

1.2.3   Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   4

1.3   Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   4

1.3.1   Limitations of Software Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   5

1.4   Hardware Transactional Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   6

1.4.1   Implementing Hardware Transactional Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . .   6

1.4.2   Virtualizing HTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   7

1.5   Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   7

1.6   LogTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   8

Chapter 2  Background 11

2.1   Cache-Coherent Multiprocessors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   11

2.2   Multi-Threaded Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   13

2.3   Transactional Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   14

2.3.1   Transactional Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   15

2.4   Concurrency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   16



vi

2.4.1   Concurrency Control for Mutual Exclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   16

2.4.2   Lock-Based Concurrency Control in Database Systems  . . . . . . . . . . . . . . . . . . . . .   16

2.4.3   Optimistic Concurrency Control in Database Systems . . . . . . . . . . . . . . . . . . . . . . .   18

2.5   Logging and Recovery in Database Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   19

2.6   Transactional Memory Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   19

2.6.1   Hardware Support for Database Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   20

2.6.2   Early Hardware Transactional Memory Systems . . . . . . . . . . . . . . . . . . . . . . . . . . .   20

2.6.3   Hardware Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   22

2.6.4   Recently Proposed HTMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   24

Chapter 3  Log-Based Transactional Memory (LogTM) 27

3.1   Eager Version Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   27

3.1.1   The Transaction Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   28

3.1.2   Transaction Commit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   30

3.1.3   Transaction Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   30

3.2   Eager Conflict Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   30

3.2.1   Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   31

3.2.2   Example Implementation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   31

3.3   Conflict Resolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   33

3.4   LogTM API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   33

3.5   Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   33

3.6   Discussion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   35

Chapter 4  Implementing LogTM 39

4.1   Implementing LogTM’s Eager Version Management . . . . . . . . . . . . . . . . . . . . . . . . . . .   39

4.1.1   Implementation Trade-Offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   39

4.1.2   Compiler-Supported Software Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   43



vii

4.1.3   In-Cache Hardware Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   44

4.1.4   Hardware/Software Hybrid Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   47

4.2   Implementing Eager Conflict Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   48

4.2.1   Tracking Read and Write Sets with R/W Bits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   48

4.2.2   LogTM-Directory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   49

4.2.3   LogTM-Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   54

4.2.4   Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   56

4.3   Implementing Conflict Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   57

4.3.1   Write Set Prediction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   58

4.4   Beginning and Ending Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   59

Chapter 5  Evaluation 61

5.1   Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   61

5.1.1   System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   61

5.1.2   Simulation Platform  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   62

5.2   Workloads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   63

5.2.1   Microbenchmarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   63

5.2.2   Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   64

5.3   LogTM Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   66

5.3.1   Microbenchmark Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   66

5.3.2   Benchmark Scalability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   67

5.4   Implementation Trade-offs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   69

5.4.1   Write Set Prediction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   69

5.4.2   Hardware Support for Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   71

5.4.3   Log Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   72

5.4.4   Abort Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   74



viii

5.5   Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   75

Chapter 6  Extending LogTM 77

6.1   Nested Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   77

6.1.1   Closed Nested Transactions (with Partial Abort) . . . . . . . . . . . . . . . . . . . . . . . . . . .   78

6.1.2   Open Nested Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   79

6.2   Virtualizing Conflict Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   81

6.2.1   Detecting Conflicts with Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   82

6.2.2   Supporting Unbounded Nesting with Signatures  . . . . . . . . . . . . . . . . . . . . . . . . . . .   83

6.2.3   Thread Switching and Migration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   84

6.3   Software Contention Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   85

6.4   Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   86

Chapter 7  Related Work 87

7.1   Hardware Transactional Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   87

7.1.1   Unbounded Transactional Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   87

7.1.2   Transactional Memory Coherence and Consistency . . . . . . . . . . . . . . . . . . . . . . . . .   89

7.2   Software Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   90

7.2.1   Lock-Based Transactional Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   91

7.3   Hardware-Software Hybrid Transactional Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . .   92

7.3.1   Transactional Lock Removal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   92

7.3.2   Hybrid Transactional Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   94

7.3.3   Virtual Transactional Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   95

7.3.4   Bulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   95

7.3.5   Page-Granularity Transaction Virtualization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   96

7.4   Speculative Multithreading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   96

7.4.1   Software Logging in Thread-Level Speculation . . . . . . . . . . . . . . . . . . . . . . . . . . . .   97



ix

Chapter 8  Conclusion 99

References  101



x



xi
List of Figures

1-1 Composability of Transactions v. Locks: (a) Moving an Element from one Hash Table to Another

Using Locks, (b) Using transactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   3

2-1 Conflicting Transactions: (a) An illegal, Non-Serial Execution, and (b) A Serial Execution.   18

3-1 The Transaction Log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   28

3-2 Execution of a Transaction with Two Alternative Endings.  . . . . . . . . . . . . . . . . . . . . . . . . . .   36

4-1 In-Cache Hardware Logging. (a) Logging in the L1 Cache, (b) Logging in the L2 Cache. . .   45

4-2 Hardware/Software Hybrid Buffered Logging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   47

4-3 In-Cache Conflict Detection in LogTM-Dir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   51

4-4 Conflict Detection on Un-Cached Data in LogTM-Dir Using Sticky States.  . . . . . . . . . . . . .   53

4-5 LogTM-Bcast Node.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   55

5-1 Cumulative Distribution of Transaction Read Set and Write Set Sizes.  . . . . . . . . . . . . . . . . .   65

5-2 Scalability of LogTM Microbenchmarks: (a) Scalability of BTree using LogTM Transactions with

0, 10 and 20% Updates, (b) Scalability of Lock-Based and Transactional Shared-Counter.  .   67

5-3 Scalability of LogTM vs. Locks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   68

5-4 Transaction Abort Rates for Three Write Set Predictors.  . . . . . . . . . . . . . . . . . . . . . . . . . . . .   70

5-5 Normalized Execution Time of LogTM with Write Set Prediction. . . . . . . . . . . . . . . . . . . . .   70

5-6 Performance Impact of Buffer-Spill Stalls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   71

5-7 Effect of Logging Granularity on Log Size.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   73

5-8 Affect of Abort Overhead on LogTM Execution Time: (a) With LOAD_PC Write Set Prediction,

and (b) with No Write Set Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   75



xii



xiii
List of Tables

2-1 A Transactional Memory Taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

3-1 The LogTM Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

4-1 Write Set Predictors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58

5-1 System Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

5-2 Microbenchmarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

5-3 Benchmark Inputs and Characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

5-4 Log Size/Utilization at Varying Log Granularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72

6-1 Nested Conflict Detection in LogTM-SE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83



xiv



1

Chapter 1

Introduction

Parallel programming is difficult. Transactional Memory can make it less so. But, supporting transactional

memory in hardware is too expensive and supporting it in software is too slow. As a result, transactional

memory systems have evolved in two ways: (1) hardware systems, to which software is added to “virtual-

ize” hardware’s physical limits and (2) software systems to which some hardware is added to improve

speed. Instead, LogTM takes a holistic approach—it implements unbounded transactional memory using

software (with some hardware assistance) to store and recover multiple versions of data (which may

require extensive state), and hardware to detect transaction conflicts (which must be performed quickly).

By implementing performance-critical aspects of transactional memory in hardware and the rest in soft-

ware, LogTM requires few hardware changes to implement, yet performs comparably to all-hardware

implementations.

1.1  Motivation

The remarkable performance gains that have fueled the computer industry for many years are today threat-

ened by two trends that are pulling hardware and software in opposite directions. The first is an increasing

emphasis on software reliability. As our society comes to rely ever more on computer systems, the cost of

software failures is increasing. At the same time, the expanding role of computer systems has led to more

complex software, making testing and debugging programs correspondingly more difficult. The second

trend is the industry-wide shift towards thread-level parallelism. Recently, all high-performance processor

makers have turned to chip multiprocessors (CMP), effectively making every computer sold today a multi-



2
processor. Many have also adopted multithreading, which allows each processor to execute multiple tasks

concurrently. Unlike the gains in single-threaded performance, increased thread-level parallelism only

speeds up parallel software. Unfortunately, the task of writing reliable software is only made more chal-

lenging with the introduction of parallelism. The chip industry’s current solution, increasing performance

by increasing thread-level parallelism, creates a dilemma for programmers: either ignore parallelism and

face stagnant performance, or embrace parallelism and face a new class of bugs.

1.2  Synchronization

In addition to the challenges of writing a correct sequential program, to write a correct parallel program,

one must first divide the program’s work into separate tasks, so that it may be performed in parallel by a

number ofthreadsof control. Next, one must ensure that each thread has access to the data on which it

operates. Finally, the writer of a parallel program must coordinate these threads in some way to ensure that

they access shared data structures in a consistent manner. To implement this coordination, parallel program

developers usesynchronizationto impose ordering constraints on the actions of various threads. In prac-

tice, determining the synchronization needed in a program, and devising a scheme to enforce it, is often

one of the most challenging aspects of parallel programs and a source of costly bugs.

1.2.1  Serialization

One intuitive model for synchronization is serial execution. Accesses from each thread to a shared data

structure are performed incritical sections. If critical sections execute serially with regard to other critical

sections, programmers may perform operations that leave shared data structures in inconsistent states tem-

porarily, without exposing those inconsistencies to other threads. Dijkstra described this problem as the

mutual exclusion problem [19]; only one thread may execute a critical section at a time.



3

On today’s hardware, ensuring mutual exclusion requires considerable effort from software. Programmers

must establish and maintain a convention to record entry to and exit from critical sections and to prevent

overlap between them. The current state of the art in parallel programming is to enforce mutual exclusion

using locks, words in memory that, by software convention, represent the ability of threads to access cer-

tain data. Typically, a lock is associated with a set of data. To access a shared data structure, a thread must

enter a critical section by acquiring the lock that protects that structure.

1.2.2  The Trouble with Locks

When used properly, mutual exclusion via locks provides an efficient mechanism for preventing inconsis-

tent accesses by concurrent threads. Using locks, however, is notoriously difficult, especially in large soft-

ware systems built out of many separate components. Ideally, programmers should be able to compose

large programs out of smaller pieces of code (e.g., reusable libraries) without knowing anything about their

internal mechanisms. Locks, however, impede such composition. Consider the example in Figure 1-1,

moving an item from one hash table to another. In the lock-based version (Figure 1-1-a), locks are needed

to prevent other threads seeing a state where the moving object is not present in either table. While these

locks may seem like a reasonable solution, even the simple example in Figure 1-1-a could result in a dead-

lock. If two threads callmove concurrently on the same two tables, but with the source and destination

void move(T s, T d, Obj key){
  LOCK(s);
  LOCK(d);
  tmp = s.remove(key);
  d.insert(key, tmp);
  UNLOCK(d);
  UNLOCK(s);
}

void move(T s, T d, Obj key){
  atomic {
   tmp = s.remove(key);
   d.insert(key, tmp);
  }
}

(a) (b)

FIGURE 1-1. Composability of Transactions v. Locks: (a) moving an
element from one hash table to another using locks, (b) using transactions.



4
reversed, both threads could acquire the lock on the source table, then block while trying to acquire the

lock on the destination table.

Additionally, programmers using locks must balance the desire for concurrency with the overhead of

acquiring and releasing many locks. Choosing fine-grain locks leads to greater concurrency, but incurs

greater overhead and increases the chances of synchronization bugs. Conversely, choosing coarse-grain

locks reduces lock overhead, but can reduce concurrency as more threads and processors are allocated to

the program.

1.2.3  Transactions

An alternative to the mutual exclusion model of synchronization is transactional programming. As devel-

oped in the database community [27], atransactionis defined as a transformation of state that is: atomic,

consistent, isolated, and durable. Atomicity guarantees that either all of the transaction’s actions will com-

plete, or none will. Consistency means that a transaction that finds the system in any consistent state will

leave the system in a (possibly different) consistent state and is the burden of the programmer. Isolation

means a transaction will execute as if all other threads or processes are stopped while it is running. Finally,

durability guarantees that a transaction, once completed, will not be undone, even in the event of a system

failure. In transactional programming, all operations that access shared state are part of some transaction.

1.3  Transactional Memory

Transactional Memory [34, 44] extends the transactional programming model to shared-memory pro-

grams. In place of critical sections protected by locks, programmers specify atomic transactions. Like a

database system, a transactional memory system guarantees that transactions will execute atomically and

in isolation. Unlike database systems, however, transactional memory systems do not guarantee that trans-



5
actions are durable. Forgoing the durability guarantee allows transactional memory systems to implement

transactions with much less overhead than database systems.

Compared to critical sections, transactions have several advantages. First, transactions free programmers

from reasoning about the correctness and performance of their locking scheme. Second, in addition to iso-

lation, which proper mutual exclusion ensures, transactions provide atomicity, assuring the programmer

that, even in the event of a failure, shared data structures will not be left in an inconsistent state. The main

advantage of transactional memory, however, is that—unlike lock-protected critical sections—transactions

compose naturally. In contrast to the lock-based move method (Figure 1-1-a), the transactional move

method (Figure 1-1-b), composes naturally with any internal transactions in the table class. The underlying

transaction system will automatically serialize calls tomove that operate on the same table without risking

deadlock.

1.3.1  Limitations of Software Transactional Memory

Transactional memory can be implemented in hardware, software, or a combination of the two. Software

Transactional Memory (STM) systems [30, 32, 69, 72], require no changes to existing hardware and are

therefore the easiest to implement. Most STMs, however, suffer from two serious drawbacks, (1) poor per-

formance and (2) weak atomicity. The fastest STM systems released to date are at best comparable to and

often slower than the best lock-based algorithms for many applications [1]. More importantly, most STMs

support onlyweak atomicity[8], meaning that transactions are isolated only from memory references that

are part of other transactions. Weak atomicity can result in nonintuitive behavior and expose details of the

STM implementation [44, 73]. As a result, supporting only weak atomicity will likely make writing and

debugging more challenging, eroding the primary benefit of transactional memory. Thus far, the only high-

performance STM to support strong atomicity incurs a 40% overhead over unsynchronized code [73].



6
Although many software developers may be willing to sacrifice performance for correctness (e.g., prevent-

ing deadlocks) the motivation for making a program run in parallel is to improve its performance.

1.4  Hardware Transactional Memory

Hardware Transactional Memory (HTM) has the potential to provide both high performance and strong

atomicity. HTM systems typically leverage cache coherence mechanisms to provide transactional isolation

much more efficiently than STMs. HTM systems are not only more efficient than STMs, but are more effi-

cient than lock-based synchronization for most applications. HTMs eliminate the overhead of acquiring

and releasing fine-grained locks. Because HTMs typically leverage the cache coherence mechanism, they

naturally check all memory references against any active transactions. Thus, they provide strong atomicity

with little or no additional overhead.

1.4.1  Implementing Hardware Transactional Memory

Implementing HTM primarily requiresversion managementandconflict detection, both of which are often

implemented by augmenting processor caches.Version managementhandles the simultaneous storage of

bothnewdata (to be visible if the transactioncommits) andold data (retained if the transactionaborts). A

common approach for version management is to use the cache to store new values, while old values remain

in memory.Conflict detectionsignals an overlap between thewrite set(data written) of one transaction and

the write orread sets(data written or read) of other concurrent transactions. Most HTMs leverage the

cache coherence mechanism to perform conflict detection.

HTMs that use caches for version management and conflict detection have been shown to excel for trans-

actions that execute for short durations and touch only small amounts of memory [29, 34, 65]. Long-run-

ning transactions that touch larger amounts of memory, however, present a challenge to such systems

because both version management and conflict detection break down when data involved in a transaction



7
leave the cache. Supporting transactions of arbitrary size and run time in hardware is difficult because

hardware is constrained by the physical size of its structures. Implementing unbounded transactions with

bounded physical structures requiresvirtualizing conflict detection and version management.

1.4.2  Virtualizing HTM

Virtualization is the use of system software to provide the illusion of unbounded or idealized hardware to

application programs. When physical resources are exhausted, software compensates, allowing applica-

tions to continue to function albeit more slowly. For example, virtual memory gives application programs

the illusion of a large private memory space even when physical memory is limited and shared by many

processes. It allows programmers to reason about common case memory behavior knowing that their pro-

grams may exceed the physical resources of the system so long as they do so rarely.

For transactional memory, virtualization requires abstracting the limitations of hardware structures used to

perform version management and conflict detection and ensuring that transactions do not break existing

virtualization mechanisms such as virtual memory and time slicing.

1.5  Problem Statement

Transactional memory is an emerging programming technique that promises to ease multi-threaded pro-

gramming provided that transactional memory systems can provide sufficient performance without sacri-

ficing the convenience of the transactional model. Currently, it appears that hardware support will be

necessary to implement transactional memory systems that support strong atomicity and still execute par-

allel programs as efficiently as lock-based synchronization. All-hardware implementations of transactional

memory are not practical; they either restrict the execution model by limiting the size or duration of trans-

actions, or introduce unnecessary expense by allocating hardware resources that are used infrequently.

Therefore, an implementation of transactional memory should strive to:



8
• make the common case fast, namely short transactions that commit;

• defer rare and difficult-to-implement cases to software; and

• allow—through a combination of hardware and software—transactions of any size and duration.

1.6  LogTM

To this end, I proposeLog-based Transactional Memory (LogTM), a transactional memory system that

combines software-based version management (with limited hardware support) and conservative hardware

conflict detection to support arbitrary-sized transactions with limited hardware. LogTM performs version

management by creating a per-threadtransaction login cacheable virtual memory, which holds the virtual

addresses and old values of all memory blocks modified during a transaction. In LogTM, a transaction

commits by discarding the log (resetting a log pointer) and flash clearing some local coherence state. No

other work is needed, because new values are already in place. A transaction aborts by walking the log in

software to restore values.

Contributions: In developing LogTM, I make the following contributions:

• I develop and evaluate a transactional memory system that supports unbounded transactions with lim-

ited hardware resources.

• I develop a transactional memory system that optimizes for commit, by using eager version manage-

ment to always store new values “in place,” which means that no data move on commit (even if data has

been replaced from a cache).

• I develop a means to extend a MESI directory protocol withsticky states, which enables (a) fast conflict

detection on evicted blocks and (b) fast commit by lazily resetting the state of evicted blocks.

Because the log resides in virtual memory, LogTM can perform version management for transactions of

any size. Hardware complexity is reduced because version management is decoupled from both proces-



9
sors’ caches and the coherence protocol. Furthermore, the most complex component of version manage-

ment, switching between old and new versions, is implemented in software. The common case, commit, is

fast because memory is updated in place during transactions. Chapter 3 describes LogTM’s API and gen-

eral mechanisms for performing conflict detection and version management.

In Chapter 4, I discuss implementation tradeoffs in LogTM and present two implementations of LogTM’s

hardware conflict detection, LogTM-Dir and LogTM-Bcast. Both systems detect in-cache conflicts using

an invalidation-based coherence protocol but do not require that transactional data be cached. LogTM-Dir

extends directory protocols withsticky statesto perform conflict detection even after transactional data has

been replaced from caches. LogTM-Bcast performs the same task by adding Bloom filters [7] to broadcast

coherence. For ease of implementation, LogTM always has the processor whose coherence request causes

a conflict be the one that resolves the conflict by waiting (to reduce aborts) or aborting (if deadlock is pos-

sible).

In Chapter 5, I show that the scalability and performance of using LogTM transactions for synchronization

on these systems are equal or better than those of lock-based synchronization. The remainder of Chapter 5

presents an evaluation of several of the implementation tradeoffs discussed in Chapter 4.

The evaluation in Chapter 5 demonstrates that LogTM is a viable approach for implementing transactional

memory. However, the implementations described in Chapter 4 are limited in several important ways. In

Chapter 6, I discuss several of those limitations and outline solutions. I discuss research related to LogTM

in Chapter 7.



10



11

Chapter 2

Background

In this chapter, I provide background information and establish terminology used throughout this disserta-

tion. First, I briefly describe the problem of cache coherence in shared-memory multiprocessors. Next, I

discuss two alternative models for writing parallel programs on shared-memory multiprocessors, multi-

threaded programming with mutual exclusion and transactional programming. Finally, I describe previ-

ously proposed transactional memory systems and their limitations, which LogTM seeks to overcome.

2.1  Cache-Coherent Multiprocessors

This dissertation concerns the design and programming of cache-coherent shared-memory multiproces-

sors. Cache-coherent multiprocessing, which has been widely used in server systems for many years, is

now ubiquitous as all high-performance microprocessors now include two or more processing cores per

chip. Cache-coherent multiprocessors contain several independent processors that share a single memory

system. To improve the effective access time of the shared memory, the individual processors maintain pri-

vate caches. Special hardware keeps these cachescoherent, ensuring that every load—whether it gathers its

data from a cache or memory—returns the value established by the previous store to that memory location.

Multiprocessors commonly enforce cache coherence using a broadcast snooping or directory-based coher-

ence protocol.

In broadcast snooping [25] systems, all processors share a coherence bus (or other broadcast medium).

When a processor attempts to access a block not present in its cache, it places a coherence request on the

bus. The request may be satisfied either by the memory, or by another processor that has a valid copy of the



12
block in its cache. All cache requests are ordered by the sequence on which they appear on the bus, and all

processors see all coherence requests.

Directory-based coherence protocols [10] reduce inter-processor bandwidth by not broadcasting coherence

requests. All coherence requests are sent to the directory, which tracks the presence of the block in all

caches. The exact combinations of states and messages depends on the protocol and is the subject of ongo-

ing research. The directory relays the coherence request by sending messages to other processors and to

memory, if necessary. To avoid congestion in any one node, the directory is one node (possibly a single

processor or group of processors) acts as the home node for each memory block.

A common class of directory-based coherence protocols are invalidation-based MESI protocols [78]. In a

MESI protocol, each block of memory resides in one of four logical states: Modified (M) the block is valid

in exactly one cache and not memory; Exclusive (E) the block is valid in one cache and memory; Shared

(S) the block is valid to read in one or more caches; and Invalid (I) the block is not valid in any cache.

These states are also used to track the state of memory blocks in processors’ caches. A processor may read

a block if it is in states M, E or S, but may only write a block if it is in state M. The home node tracks the

state of the block in all caches. For example, some directories record for each block either the address of

one processor that holds the block in E or M or asharers list—a list of processors that contain a shared

copy of the block. When a processor executes a load to a block not valid in its cache, it requests a shared

copy of the block by sending a get-shared (GETS) request to the directory. Upon receiving the request, the

directory either fetches the data from memory and adds the requestor to the sharers list, or forwards the

request (FWD-GETS) to the processor that has exclusive access to the block. When a processor executes a

store to a block not present in the M state in its cache, it sends a get-exclusive (GETX) request to the direc-

tory. The directory then sends invalidation messages (INV) to all processors on the sharers list, instructing

them to invalidate their copy or the requested block or forwards the request (FWD-GETX) to the processor

that holds an exclusive copy of the block.



13
2.2  Multi-Threaded Programming

One of the most common programming models for shared memory multiprocessors is multi-threaded pro-

gramming, in which a program consists of multiple cooperatingthreadsof control that share the same

address space and some region of memory. In this model, a thread is an abstraction of the state of a proces-

sor. Logically, all threads execute simultaneously, sharing memory, but maintaining private processor and

register state. Physically, however, the number of executing threads is limited by the number of processors

available to the program. Because all threads share the same memory region and address space, there is no

need for programmers to partition the program’s data. In addition, threads can communicate through nor-

mal loads and stores. These conveniences and the widespread availability of shared-memory multiproces-

sors have contributed to the popularity of the multi-threaded programming model.

The challenge in this programming model is to coordinate accesses by multiple threads to shared objects.

Consider one common data structure in multi-threaded programming, the task queue. Tasks can be placed

on the queue at any time. The tasks are later executed by the next available (idle) thread. This strategy pro-

vides a simple mechanism for distributing work to a pool of a threads. Typically, each thread begins an iter-

ation over its outer-most loop by grabbing an entry from a shared task queue. After reading the entry and

removing it from the queue, the thread performs the task specified in the task queue entry. Because the task

queue is shared, however, uncoordinated accesses to it by multiple threads could result in errors. For exam-

ple, if the queue is implemented as a singly-linked list, threads might pull the next entry by: (1) reading the

head pointer to a temporary variable, then (2) setting the head to the next entry (head->next). If two threads

executed that same code simultaneously, however, both would read the head pointer and copy the address

of the same task to their separate private variables. Next, both would set the shared head pointer to the next

entry in the list. In the end, both threads would be set to perform the same task.

Dijkstra identified this as the mutual exclusion problem [19]. Threads sharing a memory pool alternatively

executecritical andnon-critical sections of program code. Only one thread at a time can be executing its



14
critical section and a failure of a thread executing its non-critical section cannot cause other threads to

block indefinitely. If the threads in the example above access the task queue only in critical sections,

mutual exclusion is sufficient to ensure that each thread safely removes tasks from the queue without inter-

fering with other threads.

Lamport generalizes the mutual exclusion problem by observing that interactions between critical sections

are defined not by their actual overlap in physical time, but by causal relationships between them [43]. In

order for any critical or non-critical section to causally affect another, the two sections must operate on at

least one common memory location, and one of them must update that memory location. Thus, critical sec-

tions that do not share a causal relationship may execute concurrently without violating mutual exclusion.

2.3  Transactional Programming

An alternative to the multithreaded programming model described above is transactional programming.

Transactional programming was first proposed in database systems as an intuitive model for application

programmers to specify concurrency and durability requirements [27]. The transaction model combines

the apparent serialization of critical sections with atomicity—the guarantee that a transaction will execute

completely or not at all. Together, these properties guarantee that transactions will appear to execute in

some serial order.

Transactions in software are analogous to the familiar concept of a business transaction. Two or more par-

ties promise to take some action or set of actions contingent on the actions of the other parties. Either all

parties fulfill their promises, or none do. Transactions in computer software work the same way; all the

individual actions are completed or none are. More formally, a transaction in software is a transformation

of state that isatomic, consistent, isolatedanddurable. Atomicity guarantees that each transaction will

either complete all or none of its actions. Consistency requires that each transaction will find and leave the

system in a consistent state (it is the burden of the programmer to ensure that each transaction if run inde-



15
pendently will leave the system in a consistent state). Isolation guarantees that each transaction will exe-

cute as if it is the only transaction running in the entire system. Effectively, this means that transactions

will appear to be executed serially in some global order. Durability guarantees that, once executed, the

effects of a transaction will not be undone even if the system fails.

The terminology used to describe transactional memory operations was developed in the database commu-

nity. A transactionbeginstarts the execution of a transaction—the transaction becomesactive. An active

transaction can eithercommit—complete successfully—or,abort—terminate before completion, discard-

ing any updates. Theread setof a transaction is the set of objects (or memory locations) read by the trans-

action. Similarly, thewrite set of a transaction is the set of objects modified by the transaction.

This programming model has been widely successful in the database community and today, database

mangement systems are among the most scalable commercial applications.

2.3.1  Transactional Memory

Transactional memory is a programming model that applies the transaction concept to memory accesses in

shared-memory programs. The semantics of memory transactions are the same as that of database transac-

tions with one exception—memory transactions are not guaranteed to be durable (memory state itself is

not typically durable across system failures). The lack of a durability requirement allows memory transac-

tions to incur much less overhead than their database equivalents. In practice, memory transactions are

often used as a replacement for mutual exclusion locking in critical sections. Consequently, memory trans-

actions are typically much shorter (in number of instructions and execution time), access less memory and

contain fewer I/O operations than database transactions.



16
2.4  Concurrency Control

Concurrency control is the method by which a particular parallel execution model is enforced. In essence,

this amounts to the coordination of accesses by various concurrent threads or transactions sharing state.

This section describes several concurrency control algorithms used to enforce mutual exclusion and trans-

actional isolation.

2.4.1  Concurrency Control for Mutual Exclusion

Mutual exclusion is typically enforced through the use oflocks. A lock is simply a memory word used to

coordinate access to a particular data structure or critical section. Programmers often use a lock toprotecta

shared data structure. By convention, a thread mustacquirethe lock (e.g., by setting the lock word to ‘1’)

before it accesses the data and hold the lock for the duration of its critical section. In this convention, a lock

can only be held by a single thread. While the lock is held, any other threads that attempt to acquire the

lock must block. threads may block byspinning—repeatedly testing the status of the lock—to ensure

immediate notification when the lock is released, or by suspending—allowing the processor to execute

other threads—to save resources and possibly prevent deadlock. After a thread finishes its critical section,

it releasesthe lock (e.g., by setting the lock word back to free). If all threads follow this convention, mutual

exclusion is ensured because a thread must hold the lock throughout the critical section and only thread

may hold the lock at any given time.

Locks are typically acquired using atomic read-modify-write instructions. These instructions allow a

thread to atomically test the lock word (to see if any thread holds the lock) and set it (to acquire the lock).

2.4.2  Lock-Based Concurrency Control in Database Systems

Database systems have traditionally implemented transactions using a combination of locking and logging

[26]. Database locks may be shared—allowing multiple concurrent readers—or exclusive—allowing a sin-



17
gle writer. Database locks may be short or long. Ashort lockis a lock that is held for only one database

operation. Along lockis a lock that is held from the time it is acquired until the end of the current transac-

tion.

Database transactions will execute atomically if they are bothwell-formedandtwo-phase. A transaction is

well-formed if it acquires at least a shared lock for each database object it reads and an exclusive lock for

each object it modifies. This locking can be performed at any granularity so long as each active database

object is covered by an appropriate lock. A transaction is two-phase if it acquires all of its locks before it

releases any lock.

Most database systems enforce these requirements withstrict two-phase lockingandwrite-ahead logging

[68]. In addition to being well-formed, strict two-phase locking requires that a process executing a transac-

tion does not release any locks associated with that transaction until it completes (i.e. all locks are long

locks). Write-ahead logging requires that the database record a log entry to stable storage for each database

update before the effect of that update is recorded to stable storage. This policy ensures that the database

has a record of, and the ability to undo, all updates from transactions that have not yet committed [26].

Although the transactional programming model requires that transactions appear to execute atomically,

databases run many transactions in parallel in order to process transactions more quickly. Some transac-

tions, however,conflictand cannot be safely overlapped. A transaction conflict occurs when two transac-

tions access the same object and at least one of the accesses is an update (the same criteria Lamport

required for a causal relationship). The transactions outlined in Figure 2-1 demonstrate a simple conflict.

Both T0 and T1 access variables A and B, both of which are modified by one of the transactions.



18

Since the two-phase requirement prevents a running transaction from surrendering any lock on an object

that it has accessed, one transaction may have to wait until another processor commits or aborts its transac-

tion before it can continue. This waiting can lead to deadlock if two transactions are each waiting for an

object held by the other. More generally, deadlock can occur any time there is a cycle in the graph of

dependences between transactions. For example, in Figure 2-1 (a), both transactions T0 and T1 success-

fully acquire the first block in their transaction, loading A and B respectively. Once they read these vari-

ables, however, they are not allowed to release the locks held on them for the duration of the transaction.

Neither transaction can proceed until the other aborts. Database systems can avoid deadlocks by aborting

transactions when they attempt to block, or detect deadlocks by tracking the dependences between active

transactions. Most systems allow deadlocks to form, then resolve them by aborting one of the blocked

transactions [68].

2.4.3  Optimistic Concurrency Control in Database Systems

An alternative to strict two-phase locking in database systems isoptimistic concurrency control[42]. Opti-

mistic concurrency control is motivated by the observation that locking introduces an overhead that is only

necessary in the worst case. Instead of using locks to prevent conflicting accesses, optimistic concurrency

control mechanisms detect conflicts and abort the offending transaction. Optimistic concurrency schemes

LD A

ST B

LD B

ST A

T0 T1

FIGURE 2-1. Conflicting Transactions: (a) An illegal, Non-Serial
Execution, and (b) A Serial Execution.

LD A

ST B

LD B

ST A

(a) (b)

T0 T1



19
divide transactions into three phases: read, validate and write. During the read phase, a transaction updates

local copies of the modified objects. After a transaction completes its read phase, the system scans the read

set to see if all the values read are still valid. A transaction T is valid unless its read set overlaps with the

write set of a transaction that executed its write phase while T executed its read phase, or if T’s write set

overlaps the write set of another transaction that ran its write phase while T ran its write set. If T fails vali-

dation, it aborts without executing its write phase.

2.5  Logging and Recovery in Database Systems

Database systems that use lock-based concurrency control typically update tuples in place during transac-

tions for efficiency. The atomicity requirements of transactions, however, require that, if a transaction

aborts, all of its updates must be undone. Many systems implement crash recovery and transaction rollback

by maintaining an undo/redo log. Using the popular ARIES recovery algorithm [52], transactions add

entries to a shared log for each update they make. Each log record contains the before-image (old values)

and after-image (new values) of the updated record and theLastLSN, the log sequence number of the most

recent previous log record pertaining to its transaction. Starting at the end of the log, the rollback copies

the old values from the log record back to their original location (the modified tuple) and follows the

LastLSN to find the next most recent log record for the transaction. Once the last LSN field is null, the

undo is complete; and, all of the transactions have been undone in reverse order.

2.6  Transactional Memory Systems

Several transactional memory systems have been proposed with varying levels of hardware support. This

section describes some particularly influential systems and characterizes several classes of transactional

memory system.



20
2.6.1  Hardware Support for Database Transactions

Some of the first proposals to add transactional semantics to the hardware interface sought to provide hard-

ware support for the execution of database transactions. One such example is the 801 Storage system [13].

The 801 includes three architectural features designed to make database programs more efficient and easier

to write: (1) large virtual storage, (2)database storageand (3) a 1-level store. Their innovative database

storage includes support for database-style transactions on the one-level store with support for atomic

commit, undo and recovery. Their programming interface makes storage to memory and the file system

equivalent—any data structure supported in memory can be saved to disk. The transactions they envision

are similar in scale to database transactions. They are long-running (thousands of instructions) and update

stable storage [13].

2.6.2  Early Hardware Transactional Memory Systems

To the best of my knowledge, Knight’s “An Architecture for Mostly Functional Languages” [40] is the first

to propose transactional operations on memory. Knight reasons that the transaction model is a convenient

interface between the compiler and the hardware to automatically extract parallelism from sequential pro-

grams written in “mostly-functional” languages. Unlike in purely-functional languages, some actions are

allowed to have side effects (stores), and therefore must be performed in a particular order. Knight pro-

poses that the compiler group operations into transactional blocks, which may include many loads, but

only one store.

In Knight’s scheme, the hardware executes transactional blocks optimistically in parallel except for their

one store. Transactional blocks are “confirmed” (committed) in program order. The hardware maintains a

dependency list for all memory locations read by each transaction. As transactions are confirmed, the hard-

ware checks the dependency list of each active transaction. Any transaction which depends on the store

from the newly-confirmed transaction is aborted and re-executed. Knight outlines an implementation based



21
on two fully-associative caches. One cache, the dependency cache, tracks which main-memory locations

have been read during the current transaction. The other, the confirm cache, holds transactional stores

(although the transactional blocks in the paper are limited to only one store, the hardware would support

transactions with as many stores as fit in the confirm cache). The data in the confirm cache is only written

back to main memory when the transaction is confirmed [40].

Some processors provide the Load-Locked Store-Conditional (LL/SC) synchronization primitive [37, 15,

75], which allows atomic read-modify-write operations on a single memory location. LL-SC synchroniza-

tion uses two separate instructions. The first,load-locked loads the value of a memory location into a

processor register and begins to monitor the memory location for stores. The second,store-condi-

tional, stores a value to the memory location only if that location has not been modified since the execu-

tion of the last load-locked instruction. LL/SC can be used to implement many common synchronization

primitives such as test-and-set, fetch-and-increment/decrement, and compare and swap.

Stone et al. propose the Oklahoma Update Protocol [77], which extends the LL/SC primitive with the

introduction of multiple reservations, or linked registers. The extra linked registers are combined with a

different update mechanism, which allows multiple atomic stores. A “transaction” in this scheme proceeds

as follows. First, the process performs one or more “Read-and-Reserve” operations, which define the read-

set of the transaction. The process can speculatively update any of the locations previously read with a

“Store-Contingent” operation. Finally, the process attempts to commit the transaction with a “Write-If-

Reserved” action. The commit operation checks the valid bits of each reservation register, to see if any of

the linked locations has been updated during the transaction. If all the reservations are still valid, the pro-

cess enters the “commit phase.” During the commit phase, coherence operations are deferred. The commit

phase requires obtaining exclusive access to all memory locations updated by the transaction. Once the

processor has obtained the proper permissions for each block updated in the transaction, all of the updates



22
are propagated back to the cache, any deferred requests are processed and the transaction exits success-

fully.

2.6.3  Hardware Transactional Memory

Transactional Memory was first introduced by Herlihy and Moss introduced in their 1993 ISCA paper,

“Transactional Memory: Architectural Support for Lock-Free Data Structures [34].” Their goal in design-

ing a memory system based on atomic transactions was to support short critical sections—normally pro-

tected by locks—directly in hardware. Programmers, with the support of a compiler, designate

transactional memory operations with special instructions.

Specifically, Herlihy & Moss propose the addition of four transactional instructions:load transactional

(LT), store transactional(ST),validateandcommitto the instruction set of a typical RISC architecture. LT

and ST instructions signal to the processor that the data accessed by this load or store should be placed in

the transactional cache. They also indicate that a transaction has begun if one is not already active. The val-

idate instruction returns the status of the current transaction. The commit instruction returns a boolean

value indicating whether or not the transaction succeeded (a violation of transactional semantics does not

trigger a fault or trap). The programmer and compiler are free to choose the appropriate course of action in

the case of a failed transaction.

They propose an implementation that uses a modified victim cache to store data accessed as part of a trans-

action. This transactional cache is the key mechanism in their scheme. All values accessed in a transaction

are stored in a separate transactional cache. This transactional cache, they argue, should be small and fully-

associative (very much like a victim cache [38]) so that the size of a transaction is not limited by worst-

case cache conflicts, and so that transactional state can be cleared quickly (1 cycle in their proposal) in the

case of a failed transaction. Since there is no requirement that the transactional cache hold only transac-

tional data, unused entries in the transactional cache can be used as a victim cache for non-transactional



23
data. Unmodified data stored in the transactional cache can be in any of the normal cache states. Transac-

tional stores cause the allocation of two entries in the transactional cache: the original (non-modified) data

word, and the new (updated) value. The copy that represents the value modified by the transaction will sur-

vive if the transaction commits and is marked with the transactional cache state XABORT. The other,

which stores the value in memory before the transaction, will persist if the transaction aborts is marked

with the state XCOMMIT. If a processor aborts its current transaction, it signals the transactional cache to

invalidate all entries in the XABORT state and change all entries with state XCOMMIT to normal (non-

transactional) states. At the end of a transaction, the executing processor attempts to verify that no other

processors have made intervening accesses to a memory location involved in the transaction. If it detects a

conflicting memory action, the transaction is aborted and none of its updates are propagated to main mem-

ory. Otherwise, the transaction succeeds and all of its operations appear to take place atomically.

The cache coherence protocol proposed is based on Goodman’s snooping protocol [25] (the authors also

develop an adaptation based on a directory protocol in a separate technical report [33]). Non-transactional

requests behave exactly the same as in the Goodman protocol. However, requests for data may be refused

by a processor in the middle of a transaction (with a “busy” response) as long as the request is also made as

part of a transaction. The protocol, however, does not allow a busy response for non-transactional requests

from other processors. The requesting processor, upon seeing the refusal, aborts its own transaction and

retries (possibly waiting to avoid repeated conflicts). A side effect of this policy is that non-transactional

operations take precedence over transactional ones because non-transactional requests are always granted

even if the responding processor is actively executing a transaction. This policy also violates strict two-

phase locking since a non-transactional request can “steal” a block of memory away from a processor in

mid-transaction. The authors preserve transactional semantics by guaranteeing that the transaction in the

example above will never commit.



24
2.6.4  Recently Proposed HTMs

The emergence of CMPs has reenergized research on transactional memory. Recently, several researchers

have proposed HTMs, which differ primarily in their implementations of version management and conflict

detection. Upon a store, some transactional memory systems useeager version managementand put the

new value in place. Others uselazy version managementto (temporarily) leave the old value in place. Con-

flict detection iseagerif conflicts are detected upon executing offending loads or stores andlazy if con-

flicts are detected later (e.g., when transactions commit). The taxonomy in Table 2-1 characterizes several

recently proposed HTMs as to whether they use eager or lazy strategies for version management and con-

flict detection.

TCC. Hammond et al.’sTransactional Memory Coherence and Consistency (TCC)[29], like database sys-

tems that use optimistic concurrency control, uses lazy version management and lazy conflict detection.

Store values are buffered at the processor’s L1 cache and overwrite the L2 cache and memory only upon

commit. TCC detects conflicts between transactions by broadcasting each transaction’s write set on com-

mit. Pending transactions abort if any memory location in the broadcast is a part of their write set.

LTM. Ananian et al.’sLarge Transactional Memory (LTM)[5] uses lazy version management on cache

overflows, storing new values in a hash table in uncached memory, while old values remain in place. When

data fits in cache, LTM stores the new value in cache and the old value at memory. This coaxes the coher-

ence protocol to store two different values at the same address. Repeated transactions that modify the same

block, however, require a writeback of the block once per transaction. In contrast to TCC, LTM detects

conflicts eagerly, checking for conflicts on each memory operation. LTM conflict detection is complex,

however, due to support for the case where a processor replaces transactional data. Upon receiving a coher-

ence request from the directory, such an LTM processor must walk an uncacheable in-memory hash table

before responding (and possibly aborting).



25

VTM. Rajwar et al.’sVirtual Transactional Memory (VTM)[66] also uses lazy version management on

cache overflows with memory holding old values and an in-memory table (XADT) holding new (and a sec-

ond copy of old) values. VTM does not specify version management when data fits in cache, but rather rec-

ommends other proposals [5, 29, 34, 65, 77]. VTM also uses eager conflict detection.

UTM. Ananian et al.’sUnbounded Transactional Memory (UTM)[5] proposes using both eager version

management and eager conflict detection. This follows the example of the vast majority of DBMSs that use

conservative concurrency control (CCC)[21]. UTM’s implementation is complex, however, requiring sub-

stantial changes to the memory system.

Version Management

Lazy Eager

C
o

n
fl

ic
t

D
et

ec
ti

o
n

La
zy TCC [29]

(like OCC DBMSs [42])

E
ag

er LTM [5], VTM [66]
(on cache conflicts)

UTM [5], LogTM [new]
(like CCC DBMSs [21])

TABLE 2-1. A Transactional Memory Taxonomy



26



27

Chapter 3

Log-Based Transactional Memory (LogTM)

LogTM is a strategy for implementing transactional memory a transactional memory system that combines

software-based version management (with limited hardware support) and conservative hardware conflict

detection to support arbitrary-sized transactions with limited hardware. LogTM adapts a well-known data-

base algorithm for implementing transactions, strict two-phase locking and write-ahead logging. LogTM

uses write-ahead logging to perform version management by saving old values before new values are writ-

ten in place. LogTM detects conflicts eagerly, in a manner equivalent to strict two-phase locking. To bal-

ance implementation cost and performance, LogTM divides the work of providing atomicity and isolation

in transactions between hardware and software. For speed, hardware detects conflicts and can aid logging;

to save complexity, transaction updates are rolled back by software. The following sections describe the

requirements for LogTM’s version management, conflict detection and conflict resolution. The rest of the

chapter describes the LogTM API and discusses the trade-offs involved in implementing the various com-

ponents of transactional memory in hardware or software.

3.1  Eager Version Management

A defining feature of LogTM is its use of eager version management, wherein “new” values are stored in

place while old values are saved in an alternate location. Specifically, in LogTM, the old values of registers

are saved in a register checkpoint and old values of memory are stored in thetransaction log, a thread-pri-

vate section of the user program’s virtual address space. If the transaction aborts, a software abort handler

restores old values from the log and register checkpoint.



28

3.1.1  The Transaction Log

The transaction log is a region of virtual memory, used by each thread to store the old values of all memory

locations modified during a transaction. The base and bounds of the log are defined by two processor regis-

ters:Log Base andLog Pointer. A thread setsLog Base when it allocates space for the log—e.g.,

at thread creation, or when the LogTM system is initialized. The LogTM system updatesLog Pointer

each time it adds an entry to the log. Figure 3-1 illustrates the layout of the log in virtual memory. The

main array is a representation of virtual memory, with virtual addresses shown on the left. The shaded area

C 0E 0
8 0 0 85 0

V A M e m o r y

L o g B a s eL o g P o i n t e r

0 0
4 0

8 0

N e w V a l u e s

U n d oR e c o r d
C 0

1 0 0
FIGURE 3-1. The Transaction Log.



29
(bottom of Figure 3-1) represents the transaction log for the current thread. The unshaded area represents

shared memory locations, e.g., part of the heap.

A LogTM system maintains the log at a fixed granularity, logically dividing memory into fixed size blocks.

Figure 3-1 shows a region of shared memory (unshaded) and the log of an active transaction that has exe-

cuted three stores (shaded). The three pairs of shaded blocks in Figure 3-1 represent the old and new values

of three memory blocks, each 8 bytes long. The new value of each block is stored in place, and the old

value is stored in an undo record in the log. Each undo record includes the virtual address of the modified

block and its old value. Because the purpose of the log is to restore pre-transaction values, a LogTM sys-

tem need only log the first update to any given memory location.

In database terminology, the transaction log is an undo-only log—i.e., it does not contain sufficient infor-

mation to re-execute a transaction nor to recover the state of memory in the event of a crash [52]. This is in

contrast to the logging used in most database systems. In a typical database, the log is used for recovery as

well as transaction rollback. Importantly, because the transaction log is not used for recovery, there is no

need to store the log on disk or other stable storage. Furthermore, since the log is not needed after the com-

mit of a transaction, unlike the log in most database systems, the transaction log in LogTM is thread private

and may be discarded after a transaction completes.

The log is defined in virtual memory for which physical memory is allocated on demand. If adding a log

entry exhausts the physical memory in the log, the current thread takes a page fault and uses the existing

virtual memory support to allocate an additional page for the log. Because the transaction log is stored in

virtual memory, it may grow arbitrarily large. Log pages may be swapped to disk without impacting

LogTM’s version management.



30
3.1.2  Transaction Commit

On commit, the executing thread simply clears its transaction log by settingLog Pointer equal to the

Log Base and discards its register checkpoint. No copying is needed because new values are already in

place.

3.1.3  Transaction Abort

To maintain atomicity in the event of a transaction abort, LogTM must undo any updates from the aborting

transaction by restoring the old values maintained in the transaction log and register checkpoint to their

original locations in memory and processor registers. In order to save hardware complexity, LogTM per-

forms this restoration in software. In LogTM, a transactional memory program registers an abort handler

which will be called when a transaction aborts. The abort handler is expected to undo the effects of the

aborted transaction using the transaction log. For example, a handler can rollback a transaction by reading

the undo records in the log in last-in-first-out order, copying the old values in each record to the corre-

sponding address. Once the handler has processed the log, it can restore the processor registers to their pre-

transaction states.

3.2  Eager Conflict Detection

LogTM requires eager conflict detection, which means that a LogTM system must detect and resolve any

conflict triggered by a memory request before that request completes. In LogTM, this detection is the

responsibility of hardware. Implementations of LogTM are expected to leverage the coherence mechanism

to implement conflict detection efficiently. LogTM implementations must report all true conflicts between

concurrent transactions, but to reduce hardware complexity and cost, they are allowed to report false con-

flicts to simplify implementation.



31
3.2.1  Requirements

LogTM’s eager conflict detection is based on strict two-phase locking. In place of the shared and exclusive

locks used in database systems, however, LogTM requires read and writeisolation. Unlike locking, isola-

tion does not prescribe any particular conflict resolution mechanism (e.g., blocking). If a block is read iso-

lated, it cannot be written by any thread without generating a conflict. If a block is write isolated, it cannot

be read or written by any thread without generating a conflict.

Requirement 1: Transactions Must be Well Formed.In order for a thread to read a memory loca-

tion in a transaction, that thread must first obtain read isolation on that location. In order to write a location,

a thread must first obtain write isolation on that location. If an attempt to acquire read or write isolation

results in a transaction conflict, the system must signal a conflict before the offending memory instruction

is retired.

Requirement 2: Isolation Must be Strict Two-Phase.Any memory location that becomes read or

write isolated by being read or written in a transaction must remain isolated until the commit or abort of

that transaction.

Requirement 3: Isolation Must be Released at Transaction End.Conflicts may prevent one or

more transactions from making forward progress. In order to ensure forward progress in the system, a

thread must release its isolation when it aborts or commits its transaction.

3.2.2  Example Implementation

For small transactions—the expected common case—the entire read and write set of the transaction

remains in the private cache of the executing processor. In this case, a standard invalidation-based cache

coherence protocol is well suited to detecting transaction conflicts. As discussed in Chapter 2, cache-

coherent multiprocessors that use invalidation-based coherence protocols typically enforce the invariant



32
that every block of memory resides in one of three logical states: (I) the block is invalid in all caches, (S)

one or more caches hold a valid read-only copy of the block and (M) one cache only has a writable copy of

the block. Such systems already require that a processor obtain shared (read only) access to a memory

location before it may be read and exclusive access (read/write permission) before it may be written. As a

result, if isolation is provided by the coherence mechanism, these protocols enforce the well formed

requirement by default. Additionally, these rules ensure that any memory access that hits in the local (pri-

vate) cache will not trigger a transaction conflict.

Conflict detection in such a system works might work as follows: each processor tracks the read and write

sets of its active transaction with two additional bits per line in its private cache. The read (R) bit indicates

that the block has been read during the current transaction. The write (W) bit indicates that the block has

been written during the current transaction and potentially contains data values from an uncommitted

transaction. When a processor P executes a load or store, it first checks its local cache. If the corresponding

block is not present, P issues a request for the block to the memory system. That request is sent to one or

more other processors (e.g., via a broadcast or forwarded by a directory). Those processors check their

local state (in the cache or memory controller) to detect conflicts with any transactions running there. The

presence of a conflict is returned along with the coherence response. That response signals the conflict (if

any) to P, which resolves the conflict. The states of any copies of the contended block in the responding

processors’ caches remain the same, as do the R and W bits there, until the transactions running on those

processors end. This fulfills the strict two-phase requirement. Finally, at the end of a transaction, the pro-

cessor flash-clears the R and W bits in its cache, fulfilling the requirement to release all read and write iso-

lation after the transaction commits or aborts.



33
3.3  Conflict Resolution

Detecting a transaction conflict informs a transactional memory system that its current execution schedule

will violate the isolation of one or more concurrent transactions. To preserve isolation, the system must

resolvetransaction conflicts by serializing the conflicting transactions. A transactional memory system can

serialize the execution of a set of transactions by aborting or stalling one or more of the transactions.

Resolving conflicts by aborting transactions risks livelock if all transactions are aborted before completion.

Resolving conflicts by stalling, however, risks deadlock if transactions are forced to wait indefinitely.

In LogTM, transaction conflicts are resolved by the thread that makes the memory request that first causes

the conflict. The requesting thread can resolve the conflict by aborting its transaction. Or, because the con-

flict is detected before the conflicting memory access is completed, the requesting thread can resolve the

conflict by either stalling—waiting for the conflicting transaction to commit or abort¡.Because aborts are

costly in LogTM, resolving conflicts via stalling can improve performance. Implementations that resolve

conflicts by stalling, however, must take care to avoid deadlocks.

3.4  LogTM API

Table 3-1 presents LogTM’s interface in three levels. Theuser interface(top) allows user threads tobegin,

commitandabort transactions. Compilers could translate higher level constructs such as an atomic block

to LogTM’s begin_transaction andcommit_transaction calls like the Java compiler gener-

ates monitor enter and exit calls from statically scoped synchronized blocks [47]. The system/library inter-

face (middle) lets thread packages initialize per-thread logs and register an abort handler. Upon an abort,

LogTM lets the abort handler “undo” the log via a sequence of calls using the low-level interface (bottom).

In the common case, the handler can restart the transaction with user-visible register and memory state



34

User Interface

begin_transaction()  Increments TM Count. If TM Count > 0, subsequent dynamic state-
ments form a transaction. Logically saves a copy of user-visible non-memory thread state (i.e.,
architectural registers, condition codes, etc.).

commit_transaction()  Decrements TM Count. When TM Count == 1, commit ends a suc-
cessful transaction. Discards any transaction state saved for potential abort.

abort_transaction()  Transfers control to a previously-registered abort handler which
should undo and discard the current transaction and set TM Count to 0. A system may choose
to restart the transaction or execute other code.

System/Library Interface

initialize_logtm_transactions(Thread* thread_struct, Address log_base,

Address log_bound)  Initiates a thread’s transactional support, including allocating virtual
address space for a thread’s log. As for each thread’s stack, page table entries and physical
memory may be allocated on demand and the thread fails if it exceeds the large, but finite log
size. (Other options are possible if they prove necessary.) We expect this call to wrapped with a
user-level thread initiation call (e.g., for P-Threads).

register_abort_handler(void (*) abort_handler) Registers a function to be called
if a transaction is aborted. Abort handlers are registered on a per-thread basis. The registered
handler should assume the following pre-conditions and ensure the following post-conditions:

Abort Handler Pre-conditions: Abort has occurred. System may have restored some or all mem-
ory blocks written by the thread to their pre-transaction state. Other memory blocks written by
the thread (a) have new values in (virtual) memory but these blocks are isolated and (b) have
their (virtual) address and pre-write values in the log. If a block is logged more than once, its first
entry pushed on the log must contain its pre-transaction value. Log also contains a record of
pre-transaction user-visible non-memory thread state.

Abort Handler Post-conditions: Abort handler called undo_log_entry() to pop off every log
entry. Abort handler then called complete_abort_with_restart() or
complete_abort_without_restart().

Low-Level Interface

undo_log_entry()  Reads a block’s (virtual) address and pre-write data from the last log
entry, writes the data to the address, and pops the entry off of the log. The system may end iso-
lation on the block if is sure that pre-transaction value is now restored (i.e., there are not earlier
duplicate log entries for this address).

complete_abort_with_restart()  End isolation on all memory blocks, restore thread’s
non-memory state from last begin_transaction(), and resume execution there.

complete_abort_without_restart()  End isolation on all memory blocks, discard
thread’s non-memory state from begin_transaction(), and return to abort handler. Use to
handle error conditions.

TABLE 3-1. The LogTM Interface



35
restored to their pre-transactions values. Rather than just restart, an abort handler can also complete an

abort and run arbitrary user code to manage aborts.

3.5  Example

Although presented separately in this chapter, conflict detection and version management interact in

important ways. To better understand the way LogTM’s eager version management and eager conflict

detection work together, consider the example depicted in Figure 3-2. Figure 3-2 illustrates the logical exe-

cution of a simple transaction. Assume that the current thread’s log begins at virtual address (VA) 1000 (all

numbers in hexadecimal), but is empty (Log Pointer=Log Base). In this example, logging is per-

formed on 8-byte blocks (the values of which data are given as a two-digit values) and conflict detection is

performed on 16-byte cache lines (pairs of blocks). The R and W flags on the right indicate whether a

cache line is read or write isolated by the conflict detection mechanism. Circles indicate changes from the

previous snapshot.

Part (a) shows the thread beginning a transaction by incrementing itsTM Count. Part (b) shows a load

from virtual address 00 acquiring read isolation on that block. Part (c) depicts a store to virtual address 40

acquiring write isolation on that block and logging the block’s virtual address and old data (34). Part (d)

shows a read-modify write of address 22 that acquires read and write isolation for the encompassing block

and writes the log with the block’s virtual address and old data (23). Part (e) shows a transaction commit

that resetsTM Count andLog Pointer, and releases all read and write isolation. Part (f) shows an

alternative where instead of committing after part (d), the thread aborts its transaction and must restore val-

ues from the log before resettingTM Count andLog Pointer, and releasing read and write isolation.



36

1 2
3 4

D a t a B l o c kV A0 02 04 01 0 0 01 0 2 01 0 1 0
2 3

L o g B a s e 1 0 0 0L o g P o i n t e r 1 0 0 0T M C o u n t 1

( a ) b e g i n _ t r a n s a c t i o nR W0 00 00 0
1 2

3 4
D a t a B l o c kV A0 02 04 01 0 0 01 0 2 01 0 1 0

2 3
L o g B a s e 1 0 0 0L o g P o i n t e r 1 0 0 0T M C o u n t 1

( b ) l o a d r 1 , ( 0 0 ) R W1 00 00 0
1 2

5 6
D a t a B l o c kV A0 02 04 01 0 0 01 0 2 01 0 1 0 4 0

2 3
3 4L o g B a s e 1 0 0 0L o g P o i n t e r 1 0 1 0T M C o u n t 1

( c ) s t o r e r 2 , ( 4 0 ) R W1 00 00 1

1 2
5 6

D a t a B l o c kV A0 02 04 01 0 0 01 0 2 01 0 1 0 4 02 2
2 4
3 42 3L o g B a s e 1 0 0 0L o g P o i n t e r 1 0 2 0T M C o u n t 1

( d ) l o a d r 3 ( 2 2 )r 3 = r 3 + 1s t o r e r 3 , ( 2 2 ) R W1 01 10 1
1 2

5 6
D a t a B l o c kV A0 02 04 01 0 0 01 0 2 01 0 1 0 4 02 2

2 4
3 42 3L o g B a s e 1 0 0 0L o g P o i n t e r 1 0 0 0T M C o u n t 0

( e ) c o m m i t _ t r a n s a c t i o nR W0 00 00 0
1 2

3 4
D a t a B l o c kV A0 02 04 01 0 0 01 0 2 01 0 1 0 4 02 2

2 3
3 42 3L o g B a s e 1 0 0 0L o g P o i n t e r 1 0 0 0T M C o u n t 0

( f ) a b o r t _ t r a n s a c t i o n/ * A l t e r n a t i v e t o ( e ) * /R W0 00 00 0

FIGURE 3-2. Execution of a Transaction with Two Alternative Endings.



37
3.6  Discussion

LogTM is designed to provide robust performance when transactions exceed the size or associativity limits

of the hardware. To support such transactions, LogTM must therefore provide both conflict detection and

version management for data outside processors’ private caches and other dedicated hardware structures.

Conflict detection and version management pose separate challenges to operating outside the cache. The

distinct characteristics of these challenges lead LogTM to handle each differently, extending hardware to

provide conflict detection for out-of-cache transactions and deferring version management to software.

Version management in unbounded transactions is difficult because the space required to store the separate

versions is unbounded. Version management is the maintenance of the program’s data values and must

therefore be performed precisely—i.e., values cannot be altered, lost or associated with the wrong version.

Because this version information must be maintained precisely, a transactional memory system must pro-

vide storage for both old and new versions of each object modified in a transaction, which requires space

equal to the write set of the largest transaction in the program (in addition to the program’s existing space

requirements). Memory provides ample space to maintain both old and new versions of transactional data,

but using memory in such a way requires associating separate addresses for each version and implementing

a policy to ensure that every memory access reaches the proper version. Fortunately, however, versions are

switched rarely—on abort if eager version management is used, or on commit otherwise. LogTM employs

eager version management because aborts should be rarer than commits. LogTM takes advantage of that

rarity by passing the responsibility for switching versions to software, in the form of a software abort han-

dler.

Conflict detection for unbounded transactions is challenging because, unlike version management, it must

be logically performed on every memory access by every processor. Although caches can filter out conflict

checks for accesses that hit in the cache, conflict detection is still performed frequently. Conflict detection

is especially challenging to implement in software because it requires remote operations, i.e., the read and



38
write set of an overflowing transaction must be checked on every cache miss from every other processor.

Fortunately, unlike version management, conflict detection need not be performed precisely, but merely

conservatively. A conflict detection mechanism must report all true conflicts between transactions, but

reporting a conflict when one does not exist (false conflict) will affect performance, but not correctness.

LogTM leverages this property by tracking read and write sets conservatively in hardware. By allowing

false conflicts, LogTM can detect all true conflicts between transactions of any size while using finite

structures—amenable to hardware implementation—to track read and write sets.

Most HTMs that support large transactions proposed thus far have used lazy version management [5, 11,

29, 66]. Doing so allows these systems to abort transactions quickly and easily. Because aborts are fast and

simple, these systems can choose to abort transactions when they encounter traps, interrupts or other oper-

ating system events that interfere with transaction processing. LogTM, however, strives to support large

and long-running transactions. To do so, it must handle such events without relying on aborting transac-

tions.

Eager version management provides two important advantages in LogTM. First, updating memory in place

means that loads never need to check local write buffers. Second, using eager version management makes

commits fast even for large transactions. Ideally, transaction commits will be more common than transac-

tion aborts. Early studies suggest that this is likely to be the case for most workloads [5, 16, 54, 67]. Fur-

thermore, resolving conflicts by stalling rather than aborting (Section 4.3) andwrite set prediction

(Section 4.3.1), can significantly increase the fraction of transactions that commit.

Eager conflict detection detects conflicts sooner and eliminates the need for cascading rollbacks on sys-

tems that use eager version management. Detecting conflicts early can reduce wasted work in two impor-

tant ways. First, detecting a conflict early allows a transactional memory to abort a transaction early, giving

it the opportunity to switch execution to a different thread or transaction. Because transactions are atomic,

any transaction that does not commit does not contribute to the progress of the program. A transactional



39
memory system that can identify unsuccessful transactions early can abort those transactions sooner and

potentially run other code that will make progress. Second, detecting conflicts early, allows a transactional

memory system to resolve many conflicts by stalling instead of aborting a transaction, which eliminates

wasting work all together.

In summary, strict two-phase locking and write-ahead logging has proven to be an effective strategy for

implementing transactions in database systems. Eliminating the requirement for durability and leveraging

hardware support allows LogTM to adapt this successful algorithm to efficiently implement lightweight

memory transactions with little overhead. Eagerly making updates in place allows LogTM to support large

transactions without copying on commit and makes processing commits, which should be more common,

easier than processing aborts. Detecting conflicts completely in hardware allows for efficient execution

even in presence of large transactions. This combination allows LogTM systems to balance performance

and implementation cost in transactional memory.



40



39

Chapter 4

Implementing LogTM

In the previous chapter, I outline the LogTM system and API without specifying a particular implementa-

tion. Here, I discuss the challenges of implementing LogTM especially LogTM’s eager version manage-

ment and eager conflict detection. Section 4.1 discusses several trade-offs in implementing LogTM’s

version management and presents three solutions that vary in complexity and performance. Section 4.2

presents two concrete implementations of LogTM’s eager conflict detection based on directory and broad-

cast-based coherence. Section 4.3 presents a policy for resolving conflicts in LogTM.

4.1  Implementing LogTM’s Eager Version Management

Recall from the previous chapter that the LogTM interface (Section 3.4) specifies that the transaction log

must contain an undo record for each block modified by the transaction at the time of an abort. LogTM

implementations must also restore the value of processor registers to their pre-transaction values before a

transaction can safely be re-executed. Implementations, however, are free to perform these tasks in many

ways.

4.1.1  Implementation Trade-Offs

This sub-section describes several design dimensions LogTM system designers must address when imple-

menting LogTM’s version management.

Hardware vs. Software Register Checkpointing.LogTM designers seeking the highest performing

system should consider including a hardware register checkpointing mechanism. Hardware register check-



40
pointing has been proposed both for transactional memory [5, 29, 46, 65] and as a mechanism for imple-

menting speculation in out-of-order processors [3]. Systems that use register renaming [86] can checkpoint

the register rename table and lock physical registers holding transactional values. Systems that use archi-

tectural register files could employ a bulk copy mechanism such as the one used by the UltraSPARCIII

processor [36].

Alternatively, to reduce hardware costs, register state could be saved and restored in software. The log pro-

vides convenient storage for register values. For small transactions that do not make any procedure calls, a

compiler could be modified to generate code to save only the registers that will be overwritten by the trans-

action.

Implicit vs. Explicit Logging. Perhaps the most important design choice is whether logging will be

performedexplicitly—as specifically directed by software, e.g., a hardware instruction—orimplicitly—as

a side effect of another instruction, e.g., a transactional store. This decision is particularly important

because it affects the instruction set architecture, which changes much less frequently than the microarchi-

tecture. Explicit logging could be performed using existing instructions, e.g., by copying values from

updated memory locations to the log in software, then incrementing the log pointer register directly.

Explicit logging could also be enhanced by special instructions that use dedicated hardware to more effi-

ciently create log entries. Such instructions could also optionally check hardware state that tracks transac-

tion write sets to eliminate unnecessary duplicate log entries.

Implicit logging will likely be more difficult to implement than explicit logging. A store with implicit log-

ging must: (1) translate the address of the log pointer; (2) read the old values from the target memory block

and write them to the log, (3) record the target memory block’s virtual address to the log, (4) write new val-

ues into the cache or store buffer, and (5) increment the log pointer. This is especially true for RISC archi-

tectures, in which instructions tend to be short, simple operations that can be performed directly by the

microarchitecture. Modern micro architectures that convert CISC instructions into series of micro-ops



41
[35], however, provide an interesting alternative. Such machines could implement logging that is implicit

as seen by application software, but implemented by explicit micro-ops. Stores in a transaction might

translate to a different series of micro-ops than non-transactional stores.

Implicit logging, however, allows for a cleaner interface for transactional memory programs. Fewer addi-

tional instructions must be added to the instruction set, and functions that are called both inside and outside

transactions do not need to be written or compiled differently for the two cases. Whereas, if explicit log-

ging is used, any function that is invoked from within a transaction must contain these logging instructions.

Buffered vs. Direct Logging.LogTM requires that the transaction log be appropriately filled on abort.

Prior to an abort, however, implementations are free to store undo information in any form. An implemen-

tation of LogTM could use a smalllog bufferto temporarily store a small number of log entries. The log

buffer could be filled by hardware via either explicit or implicit logging. For explicit logging, hardware

might provide a special log instruction that copies a memory block to the log buffer. Because the size of the

buffer is limited, for large transactions, log entries in the log buffer must be spilled to the log itself (in vir-

tual memory). These spills could be performed implicitly in the background, or explicitly by making the

contents of the log buffer visible to software.

Use of a log buffer has three primary advantages. First, it can reduce bandwidth demand on the memory

system. Because transactions often have small write sets, a small log buffer can eliminate the need for

copying data to the log for many transactions. Second, storing to a log buffer could be used to reduce the

pressure to translate log addresses. Because the log buffer is not part of virtual memory, address translation

can be deferred until the buffer is spilled to memory. Finally, using a log buffer offers an opportunity to

provide hardware support for logging without defining the log format in hardware. Instead, the log format

can be defined by the software used to spill the log buffer to the transaction log in memory.



42
Logging Granularity. Logically, the log can be stored at any granularity provided that all transactional

updates are included in the log, and that isolation is maintained on all memory locations that are logged.

That freedom allows system designers to select the granularity that will perform best for their system and

workloads. Using a larger granularity reduces the number of log records generated by each transaction.

Using larger records, can potentially reduce the overall size of the log by reducing the number of addresses

in the log, provided there is enough spatial locality in transactional stores to fill the larger records. Smaller

records, however, can reduce the size of the log if more memory locations are logged than actually

updated. Reducing the size of the log may reduce the amount memory system traffic added by logging.

Logging Location. LogTM systems are free to store log values—either buffered or in memory—at any

level of the memory hierarchy. In general, memory that is closest to the processor (e.g., registers and L1

caches) is faster, smaller and more centralized. Higher levels of the memory system (L2/L3 caches and

main memory) are larger, slower and more distributed. Storing log records near the processor generates

additional memory system read traffic when data are modified, but not read, in a transaction. But, storing

log records farther from the processor can generate additional memory system write traffic when the stor-

age for a log record is not co-located with the corresponding store target (e.g., if they are stored in different

cache banks). Also, because log entries are only read on transaction aborts, which are rare (Section 5.4),

storing them in lower levels of cache (and not in the L1) may improve the effectiveness of the L1 cache for

many workloads. In deciding where to store the log, there is a trade-off between using extra valuable

capacity and bandwidth at low levels of the memory system, and managing the complexity of storing the

log at lower levels of the memory system, where updated memory locations are potentially far from the

memory that holds the log.

Most processors today include write back second-level caches protected by Error Correcting Codes (ECC)

[61] for reliability. Such caches can be extended to create log entries. Store instructions typically modify a

small number of bytes of memory, e.g., 4-8 B. Cache lines are typically much larger (e.g., 64-128 B). This



43
discrepancy means that store operations typically merge new values—recorded by the given store instruc-

tion—with values already in memory. To perform this merge, the cache must hold a valid copy of the mem-

ory block. That copy contains the exact values that must be recorded in the undo record that corresponds to

the store. Furthermore, if the cache is protected by ECC, the cache must read the values in the entire ECC

word to compute a new ECC code after each such merge. Since the entire memory word is already being

read, the calculation of the new ECC code provides a convenient opportunity to copy old values to the log,

particularly if the log is maintained at the granularity of an ECC word.

Logging at higher levels of the memory system (e.g., second or third-level caches), although efficient in

terms of memory system traffic, requires additional hardware complexity. First, L2 and L3 caches are typi-

cally physically tagged. Undo records, however, require the blocks’ virtual address. Therefore, the proces-

sor must pass both the virtual and physical addresses of the target memory location. Second, because larger

caches are typically multi-banked, the log target and store target may be stored in different banks. There-

fore, values copied from the store target must be moved from their original bank to the bank that holds the

corresponding undo record. Finally, although log stores are nearly always cache hits, the cache must be

able to handle misses to the log (i.e., the memory block that will hold the undo record is not present). In

that case, the cache must have sufficient space to buffer log values, or must be able to stall the processor

until the miss has been serviced.

4.1.2  Compiler-Supported Software Logging

Designers seeking to implement LogTM with minimal hardware support should consider software-imple-

mented explicit logging and software register checkpoints. TheLog Base andLog Pointer registers

can be read and modified by user instructions. Because the log is stored in user-addressable virtual mem-

ory, ordinary loads and stores can access log values as well. In software logging, user software generates a

log entry by first writing the virtual address of the block to the log—the current value of



44
Log Pointer—then copying each word in the block to subsequent locations in the log. Once the log

holds the block address and old values, the software increments the log pointer by the size of a log entry.

To reduce the burden on the programmer, a modified compiler generates the logging instructions automati-

cally. Because both the logging actions and the transaction rollback mechanism are under software control,

the programmer can choose the logging granularity that is most appropriate for a given application.

Software logging instructions can be automatically generated by a compiler. The compiler’s code genera-

tor could naively insert logging instructions that copy the appropriate memory block to the log before each

store instruction. Functions called both from sites within transactions and outside transactions would have

to be compiled twice, once with logging and once without. A runtime system usingjust-in-timecompila-

tion, however, could dynamically re-compile functions so that they include logging [1] on demand when

they are called within transactions.

4.1.3  In-Cache Hardware Logging

To implement LogTM with the best possible performance, designers should consider adding hardware sup-

port for direct implicit logging at the first level of cache that is write-back. In such a system, the processor

translates the target address andLog Pointer value for each transactional store into physical addresses

and sends the physical addresses to the cache along with the new value. The processor uses a single-entry

micro-TLB, such as the one used to pre-translate instruction pages in the VAX-11/780 [70], to translate

Log Pointer.

If the L1 cache is write-back, write-allocate, and protected with ECC bits, as in the AMD Opteron [39], the

L1 cache controller should create log entries at the same granularity at which ECC codes are computed.

Figure 4-1 illustrates a LogTM system performing logging in an ECC-protected, write-back L1 cache.

First, the processor sendsLog Pointer, the new value, and both the virtual and physical addresses of

the store target to the data cache. The cache translates the address of the log target (Log Pointer) using



45

a micro-TLB. The cache then looks up both the store target and log target addresses (L1 cache lookups are

often performed in parallel with address translation using virtual addresses and virtually indexed caches).

Assuming both the log target and store target lookups hit in the cache, the cache next copies the value of

the store target block (one ECC word) to a buffer (the ECC buffer in Figure 4-1) and immediately copies

the value of that block to the log target. The cache can then append the store target virtual address to the

old data values in the log to complete the undo record. In parallel, the cache merges the new value from the

processor into the ECC word in the ECC buffer. When values are merged, the cache can calculate the ECC

code for the modified block. Once the new code is ready, the cache copies it along with the entire ECC

word back to the store target memory location.

If, on the other hand, the L1 cache is write-through, write-no-allocate and not ECC protected, like the L1

caches in the Sun UltraSPARC T1 (Niagara) [41], logging should be performed at the L2 cache, or the

closest write-back cache. The Niagara already sends store values and physical addresses directly to the L2

S t o r eB u f f e rD a t aE C CC P U
S t o r e T a r g e tL 1 D C a c h eE C C L o g T a r g e t V A E C CB u f f e r

S t o r eB u f f e r
D a t aE C C

C P U
S t o r e T a r g e tL 2 C a c h e

L 1 DX % b a rC P U L 1 D
E C C B a n k 1L o g T a r g e tB a n k 0

D a t aV A E C C B u f f e rU n d o R e c o r d
( a ) ( b )

FIGURE 4-1. In-Cache Hardware Logging. (a) Logging in the L1
Cache, (b) Logging in the L2 Cache.



46
cache, which is a multi-banked cache that is shared by the eight processors on each chip. The transaction

log may be safely stored in a shared cache because each thread’s log is private. In Niagara, even if the tar-

get line is present in the L1 cache, the L1 copy of the line is not updated until after the data reaches the L2.

Figure 4-1 (b) illustrates the data flow in a LogTM system performing logging in Niagara-like caches

(assuming both the log target and store target hit in the cache). Again, the processor sends

Log Pointer, the new value, and the virtual and physical addresses of the store target to the cache.

Here, the processor sends these values straight to the shared L2 cache using the on-chip crossbar (shown as

X-bar in Figure 4-1 (b)). Specifically, the processor sends these values to the cache bank that holds the

store target. The target bank copies old values from the store target memory location to the ECC buffer.

Next, the bank copies these values again, and combines them with the virtual address of the store target, to

form the undo record. The cache bank buffers the undo record while it arbitrates for the crossbar, which it

uses to send the undo record to the cache bank that holds the log target. Next, the new values from the pro-

cessor (shown as the shaded section in the Data field in Figure 4-1) are incorporated into the values in the

register. One the full block is assembled, the new ECC code is calculated. When the new values and new

ECC code are ready, the cache copies them to the target memory block.

Performing logging in the cache will reduce the traffic on the L1-to-processor interconnect. Logging in the

L2 will reduce traffic to the L1 cache banks by eliminating the transfer of memory locations that are modi-

fied, but not read by the transaction. Logging in the L2, however, will increase traffic on the L2 bank inter-

connect whenever the target of a store and its corresponding log storage are not located in the same bank.

In a system like the Niagara, Logging in the L2 will also complicate arbitration for the L2 crossbar.



47

4.1.4  Hardware/Software Hybrid Logging

An alternative to the complexity of all-hardware logging and the overheads of software-only logging is to

support implicit logging with a log buffer located near the processor or L1 cache. The log buffer is filled

quickly by hardware, and spilled periodically to memory by a software handler. Because the log buffer

may be filled without translating theLog Pointer to the physical address of the log, logging using a

buffer does not require additional address translation. Figure 4-2 depicts the log buffer and information

flow in buffered logging. Solid arrows represent values sent during transaction execution (buffer fill) and

dashed arrows represent values sent during buffer spill. Stores send new values to the store buffer and

eventually to the cache (solid arrows). When the cache receives a store, it first sends the old values to the

log buffer. When the log buffer fills, the processor takes a trap to empty the buffer to memory, much like

TLB miss traps in SPARC processors [82]. As depicted by the dashed arrows, the trap handler reads old

T a g a n d D a t a A r r a y
S t o r eB u f f e rC P U

L o g T a r g e t S t o r e T a r g e t
C a c h e

L o gB u f f e rR e g i s t e r F i l e
FIGURE 4-2. Hardware/Software Hybrid Buffered Logging.



48
values from the log buffer first into registers, then writes them to memory with conventional store instruc-

tions.

Log buffers could provide the speed of all-hardware logging for many transactions without requiring the

added complexity of (logically) performing an additional address translation for each transactional store

instruction. Characterizations of critical sections in multi-threaded programs [16] and transactional mem-

ory workloads [67] as well as my experiments (Chapter 5), show that a small log buffer could process all

logging for many transactions in the benchmarks studied in this dissertation.

4.2  Implementing Eager Conflict Detection

LogTM requires that implementations detect conflicts eagerly in hardware. Fortunately, existing coherence

mechanisms are well-suited to detect transaction conflicts provided that transactional data reside in the

cache. LogTM, however, requires that hardware detect conflicts for all transactions, even those with read

and write sets that exceed the capacity or associativity of processors’ caches. The primary challenge in

implementing LogTM’s eager conflict detection is therefore to detect conflicts on data accessed in a trans-

action, but no longer in the cache.

In this section, I first describe a mechanism for tracking transactions’ read and write sets. Next, I present

two implementations of LogTM’s eager conflict detection, LogTM-Dir and LogTM-Bcast, which use

directory and broadcast coherence respectively. Both systems leverage the coherence mechanism for fast

detection, but do not require the caching of transactional data.

4.2.1  Tracking Read and Write Sets with R/W Bits

Most transactions are expected to have small read and write sets and thus, operate entirely in the cache—

i.e., all data accessed in a transaction remain cached until the transaction completes. In this case, a LogTM

implementation can use cache meta-state, e.g., the cache coherence state to record the membership of each



49
block in the current transaction’s read or write set. The example systems that follow both extend data

caches to store two additional bits with each cache line: the R bit, which denotes presence in the transac-

tion’s read set, and the W bit, which denotes presence in the transaction’s write set.

4.2.2  LogTM-Directory

LogTM Directory (LogTM-Dir) extends a conventional MESI directory-based multiprocessor (MESI-Dir)

with novelsticky statesand support fornegative acknowledgements(NACKs) to provide transactional con-

flict detection even when transactional data sets exceed the capacity or associativity of processors’ private

caches.

MESI-Dir. MESI-Dir is a cache-coherent non-uniform memory access (ccNUMA) multiprocessor

loosely based on the SGI Origin multiprocessor [45]. Like the SGI Origin, MESI-Dir is comprised of sev-

eral nodes, each of which contains: a processor (nodes in the SGI Origin had two processors), a region of

memory and a directory memory. Also like the SGI Origin, MESI-Dir maintains coherence using a full-bit

vector directory and an invalidation-based MESI coherence protocol. Both protocols support the clean

exclusive state (E) with silent evictions—i.e., processors may evict lines in the E state without notifying

the directory. Unlike in the Origin protocol, however, in MESI-Dir’s protocol, the directory does not send

speculative data replies for blocks owned by processors (blocks in states E or M). As a result, in MESI-Dir,

a processor must send an extra message (the CLEAN message) to the directory in the case that it receives a

forwarded shared or exclusive request for a block not present in its cache (e.g., a block that was formerly

present in the E state and replaced silently from the cache). The directory responds to CLEAN messages

by sending the data from memory to the original requester. The extra message causes MESI-Dir to be

slower in this case, but omitting speculative data responses reduces the use of interconnection bandwidth.



50
LogTM-Dir. LogTM-Dir first extends MESI-Dir with NACK messages that signal transaction conflicts.

Processors respond with a NACK to any coherence message that would otherwise require the violation of

LogTM’s strict two-phase requirement—i.e. a transaction conflict. When all transactional data are cached,

LogTM-Dir behaves like the example implementation described in Section 3.2.2. Figure 4-3 illustrates two

cases of transaction conflict: Figure 4-3 (a) depicts processor P0 attempting to read a block transactionally

modified by processor P1; Figure 4-3 (b) shows P0 attempting to write a block transactionally read by P1.

The blocks represent the state of a single memory block in each processor’s cache and at the directory/

memory. The cache state includes both the coherence state (MESI) and the transactional R and W bits. In

Figure 4-3 (a), the directory forwards P0’s shared request (GETS) to P1. P1 checks its local cache for the

requested block. Finding the block present and the W bit set, P1 responds with a NACK, alerting P0 of the

conflict. In the second case, P0 sends a get-exclusive request (GETX) to the directory. The directory

responds by sending invalidation messages (INV) to all of the processors on the sharers list (P1 and P2).

Both P1 and P2 have shared copies of the block, but only P1 has read it as part of a transaction (i.e., the R

bit is set in P1’s cache). P2 responds with an ACK message according to the MESI-Dir protocol, but P1

seeing that the block is present in its cache and that the R bit for the block is set, responds with a NACK

signalling the presence of a conflict to P0.

To detect transaction conflicts on data outside the executing processor’s private cache, LogTM-Dir adds

logical sticky-Sandsticky-Mstates. These states allow the directory to forward all potentially conflicting

memory requests to the executing processor, even after the block is evicted from the cache. The states are

logical in that the behavior of the directory controller is the same for the S and sticky-S state and for the M

and sticky-M states. The difference is that in a sticky state, the processor does not posses a valid copy of

the data.

Because LogTM permits implementations to report false conflicts, LogTM-Dir could simply have proces-

sors respond with a NACK whenever the requested memory block is not present in the cache—i.e., when-



51

ever no R and W bits are available. Instead, to reduce the frequency of false conflicts, each processor

maintains a singleoverflow bit, which is set when it evicts any block from its cache for which the R or W

bit is set. When the overflow bit is set, a LogTM processor conservatively assumes that any invalidation

messages or forwarded requests from the directory concerning blocks not present in its cache conflict with

its current transaction and responds with a NACK. When the overflow bit is clear, however, LogTM-Dir

responds positively according to the same protocol used by MESI-Dir (i.e., it responds by sending an ACK

or CLEAN message).

A block enters the sticky-M state if a processor evicts a block for which the W bit is set. As shown in

Figure 4-4 (a), the processor sends the modified data to the directory in a transactional write-back message

(WB_XACT), indicating that the block is part of its current transaction. The directory controller receives

the modified data from the evicting processor (the new version) and updates the in-memory copy of the

block. But, because the block must still be isolated as part of a transaction, the directory does not change

the coherence state of the block. Instead, the block enters the sticky-M state, wherein the directory refers

all requests for the block to the evicting processor, which no longer possesses a copy of the block. Because

the block was modified in the transaction, any request for the block (load or store) must result in a transac-

M @ P 1
I ( � � ) M ( R W )P 0 P 1

D i r e c t o r yG E T S F W D _ G E T S
N A C K

S { P 1 , P 2 }
I ( � � ) S ( � � )P 0 P 2

D i r e c t o r yG E T X I N V
A C KS ( R � )P 1 I N V

N A C K
FIGURE 4-3. In-Cache Conflict Detection in LogTM-Dir.

(a) (b)



52
tion conflict. When the evicting processor receives forwarded GETS or GETX requests from the directory

for any block not present in its cache, it responds with a NACK.

A block enters the sticky-S state when a processor executing a transaction evicts a block for which the R

bit is set (meaning the block was read as part of the current transaction). As in the base protocol, the evic-

tion is silent and the evicting processor remains on the directory’s sharers list. If the R bit is set, a LogTM-

Dir processor sets its overflow bit. Because the block was read, but not modified in the transaction (other-

wise the processor would have the block in the M state), only a store to that block will cause a conflict.

Because the evicting processor is on the directory’s sharers list, any store to the evicted block will cause

the directory to send an invalidation message to the evicting processor. When it receives the invalidation

message, the evicting processor first checks its local cache for the block. Seeing that the block is not

present and thus precise information about the transactional status of that block (i.e., R/W bits) is not avail-

able, the evicting processor then checks its overflow bit to determine if the invalidation may indicate a pos-

sible transaction conflict. If the overflow bit is set, the processor NACK’s the request to ensure safety.

A sticky-M state is usually cleaned on the first access to the sticky block following the termination (suc-

cessful or otherwise) of the transaction that caused it to enter the sticky state. When a processor next issues

a request for the block (by definition it cannot be valid in any processor’s cache), the directory forwards the

request to the block’s former owner. Because the requested block is not present in its cache, the former

owner responds to the forwarded request by checking its overflow bit. Assuming the overflow bit is clear,

the former owner can rule out a possible conflict and respond positively to the request. The responding pro-

cessor cannot supply the data, however, since it is not caching the block. This situation is identical to that

which arises when a MESI-Dir processor silently replaces a block in the E state. As in that case, the pro-

cessor sends a CLEAN message to the directory. Upon receiving this message, the directory knows that the

data in memory is valid. The directory then responds by sending the data from memory to the requesting

processor and changing the owner of the block to be the requesting processor. The directory changes the



53

state of the block from sticky-M to E since the requestor will receive an exclusive copy of the data regard-

less of whether it issued a GETS or GETX request.

A sticky-M state will not be cleared, however, if the processor that is the former owner of the block is cur-

rently executing a subsequent overflowed transaction. In that case, the responding processor will not be

able to distinguish whether the block in sticky-M was put in that state as a part of its current transaction or

a previous one. Therefore, to ensure safety, it must conservatively NACK the request. Assuming that over-

flowed transactions are uncommon, such false conflicts are likely to be rare because they require not one,

but at least two transactions to overflow on the same processor.

(a) (b)

s t i c k y M @ P 1I ( � � ) I ( � � )P 0 P 1
D i r e c t o r yG E T S F W D _ G E T S

N A C K
s t i c k y S { P 1 , P 2 }I ( � � ) I ( � � )P 0 P 2

D i r e c t o r yG E T S I N V
N A C KS ( � � )P 1 I N V

A C K

M @ P 0[ o l d ]M ( � W ) [ n e w ]P 0
D i r e c t o r y

W B _ X A C T S { P 0 }D i r e c t o r y
S ( R A )P 0s t i c k y M @ P 0[ n e w ]I ( � � ) [ � � � ]P 0

D i r e c t o r y
W B _ A C K s t i c k y S { P 0 }D i r e c t o r y

I ( A A )P 0

o v e r fl o w

o v e r fl o wo v e r fl o w

FIGURE 4-4. Conflict Detection on Un-Cached Data in LogTM-Dir Using Sticky
States.



54
The rarity of overflowed transactions will prevent false conflicts from degrading performance in most situ-

ations, but the sticky states could potentially cause problems when more than one transactional application

is running on the same machine. Specifically, if a thread from process A, which has recently run and com-

mitted a large transaction that overflowed the cache and left blocks in sticky states, is preempted and a

thread from process B is scheduled in its place, then any overflowing transaction executed by the thread

from B will potentially affect the performance of all threads in A. Although both applications will run cor-

rectly, the system will not be able to provideperformance isolation between them [90].

4.2.3  LogTM-Broadcast

LogTM-Broadcast (LogTM-Bcast) is based on the AMD Hammer as described in [2, 50]. As according to

the Hammer protocol, all requests in LogTM-Bcast are sent to memory, which, like a directory, either

responds with data, or forwards the request to other processors. Unlike directory-based systems, however,

memory does not maintain a list of sharers or a pointer to an owning node. Instead, all forwarded requests

are broadcast to all nodes. The “directory” in an Hammer system simply serves as an ordering point for

memory requests, but does not reduce coherence bandwidth.

For transactions in which all data remain in the executing processor’s private cache, LogTM-Bcast detects

conflicts in essentially the same manner as LogTM-Dir. Cache lines are annotated with R and W bits to

track the read and write set of the current transaction. Memory requests are sent to the directory, then

broadcast to all nodes. Processors receiving GETS or GETX requests check the R and W bits for the corre-

sponding line (if present in their cache). Each processor responds with an ACK or NACK depending on

whether the R and W bits in their cache represent a conflict.

When transactional data overflow the cache, however, the behavior of LogTM-Bcast differs from that of

LogTM-Dir. LogTM-Bcast does not need sticky states because all coherence requests are broadcast to all

nodes. This guarantees that all potentially conflicting memory requests will automatically be sent to any



55

processor executing a transaction, regardless of whether or not that processor has a valid copy of the

requested block in its cache. Broadcasting, however, also means that many more non-conflicting requests

will be sent to each processor. If LogTM-Bcast were to employ the single-bit overflow filtering scheme

used in LogTM-Dir, every cache miss on every processor would generate a conflict with any transaction

that overflows its processor’s cache. Instead, LogTM-Bcast uses a Bloom filter [7] to store a conservative

summary of the portion of the read and write sets that have overflowed the local cache.

Bloom filters encode membership in a set allowingfalse positives—reporting membership when the object

is not present—but notfalse negatives—reporting absence when the object is present. Similar to a hash-

table, an object’s location in a Bloom filter is determined by a hash function. When an object is inserted

into a Bloom filter, however, multiple indices are selected using multiple hash functions. The record at

each location is then updated to indicate the presence of the newly inserted object (e.g., by setting a pres-

ence bit or incrementing a counter). To test for the presence of an object in the filter set, the locations cor-

responding to the result of each hash function are inspected. If any one of them is zero, the object is

guaranteed not to be a member of the set.

Figure 4-5 shows a LogTM-Bcast node. Each node contains a processor, private L1 instruction and data

caches, and a private unified L2 cache. Each node also contains read (R) and write (W) overflow filters.

L 2 C a c h e
C P U L 1 D

D a t aT a g R W Ro v e r fl o wfi l t e r W L 1 I
FIGURE 4-5. LogTM-Bcast Node.



56
During the execution of a large transaction, when a block is evicted from the cache that has been accessed

in a transaction, its address is added to the filter. If the R bit of the block was set at the time of its eviction,

its address is added to the R overflow filter. Both the R and W overflow filters are cleared along with the R

W bits in the cache when a transaction completes. Because cache blocks are never removed from the read

or write set of an active transaction, there is no need to store a count at each filter location. This makes the

filters smaller and removes any concern over saturating the counters. The overflow filters are similar to the

Bloom filters employed in JETTY [56] and transaction signatures proposed by Ceze et al. [11].

4.2.4  Discussion

In the event that a cache block containing a memory location in the read or write set of an active transac-

tion is evicted from the executing processor’s private cache, LogTM-Dir and LogTM-Bcast both continue

to track accesses to the block by (1) ensuring that the executing processor is notified of (and has a chance

to NACK) all conflicting memory operations and (2) filtering out many false conflicts at the processor.

Which of these presents the greater challenge depends on the underlying coherence mechanism. In broad-

cast systems, like LogTM-Bcast, all potentially conflicting memory operations are trivially guaranteed to

be sent to the executing processor because all memory operations that miss in a processor’s cache are

broadcast to all other processors. Because many non-conflicting memory accesses are sent to each proces-

sor, however, filtering out false conflicts becomes difficult. LogTM-Bcast includes an overflow Bloom fil-

ter to reduce the rate of false conflicts. In directory systems like LogTM-Dir, on the other hand, novel

coherence extensions (e.g., sticky states) are required to ensure that conflicting memory operations are

routed to processors that no longer contain the shared block. A directory, however, acts as a filter for coher-

ence requests, which allows LogTM-Dir to filter out most false conflicts with a single overflow bit.

LogTM-Dir’s directory tracks sharers with a full bit vector. Alternatively, some ccNUMA systems employ

coarse-vector directories [28], in which each bit represents a group of processors. Coarse vector directories



57
will increase the likelihood of false conflicts in LogTM. Because all processors in a group receive invalida-

tion messages intended for any processor in the group, a coarse vector directory is a less effective filter of

coherence requests. As a result, a system using a coarse vector directory will behave more like a broadcast

protocol. To compensate, LogTM implementations that use coarse vectors could add an overflow filter like

the one used by LogTM-Bcast. Since even a coarse vector director filters many coherence requests, such a

system could presumably use smaller filters than LogTM-Bcast.

4.3  Implementing Conflict Resolution

LogTM-Dir and LogTM-Bcast implement conflict resolution (Section 3.3) using theRequester Stallspol-

icy [9]. Both systems logically order transactions using the distributed timestamp method from Transac-

tional Lock Removal [65]. To guarantee forward progress and reduce aborts, Requester Stalls only aborts a

transaction that (a) could introduce deadlock and (b) is logically later than the transaction with which it

conflicts. LogTM-Dir and LogTM-Bcast detect potential deadlock by recognizing the situation in which

one transaction is both waiting for a logically earlier transaction and causing a logically earlier transaction

to wait. This is implemented with a per-processorpossible_cycle flag, which is set if a processor sends

a NACK to a logically earlier transaction. Under the Requester Stalls policy, a processor aborts its transac-

tion if it receives a NACK from a logically earlier transaction while itspossible_cycle flag is set.

An additional challenge in implementing conflict resolution in LogTM is that conflicts are detected late in

the processor pipeline. Most memory exceptions (e.g., TLB misses, page faults, access violations, etc.)

occur early, before a load or store instruction triggers a request to the memory system. LogTM conflicts,

however, are not detected until the memory system responds to memory instructions. This late notification

is a potential problem for processors that maintain precise exceptions. By the time a LogTM implementa-

tion determines a load or store instruction has generated a conflict, subsequent instructions may be nearing

completion or simply waiting to retire. The semantics of transactions, however, may reduce the importance



58

of precise exceptions for conflicts. If a LogTM processor executes a memory instruction that causes a

transaction conflict, it may resolve that conflict by stalling that instruction, or aborting its transaction. In

the first case, a late notification causes no harm. A stalled memory instruction behaves like a memory

instruction waiting for a long-latency cache miss. In the second case, there is little need to capture the pre-

cise state of the current and subsequent instructions because the semantics of transactions dictate that their

effects will be discarded.

4.3.1  Write Set Prediction

Because LogTM’s eager version management makes aborts more costly, reducing the frequency of aborts

can significantly improve performance. Transaction conflicts occur whenever the read or write set of one

active transaction overlaps with the write set of another. Many of these conflicts can be resolved by stalling

rather than aborting one of the transactions. Aborts are only necessary when a cycle forms between waiting

processors. Frequently, this occurs when transactions read a memory location then write to that same loca-

tion later in the transaction. This type of cycle can be broken bywrite set prediction—eagerly acquiring

exclusive access on the first load to memory locations that will be modified later in the transaction. By

acquiring write isolation early, the system detects the conflict while it is still possible to serialize the trans-

actions.

TABLE 4-1. Write Set Predictors

Predictor State Description

SINGLE-ENTRY
1 address per static trans-
action

Tracks 1 address per static location, updated on the
first store of the transaction.

LOAD-PC
Map of load target
address to load PC, list of
upgrade load PCs

Tracks the PC of each load by target address in a
transaction. If a load target is stored to, the associ-
ated PC is added to the upgrade list.

ALWAYS None Always requests exclusive access.



59
Table 4-1 lists three simple write set predictors. SINGLE-ENTRY remembers the physical address of the

memory location modified by the first store during the first execution of each static transaction. Whenever

any transaction from the application subsequently loads that address, the transaction will eagerly acquire

write isolation on that address. During transaction execution, LOAD-PC maintains a mapping of loaded

addresses (load targets) to the program counter (PC) values of the corresponding load instructions. If any

memory locations in the read set are later updated in the same transaction, LOAD-PC uses the load target-

to-PC mapping to insert the PC of the load instruction into a predictor table. Subsequent executions of that

load instruction trigger early acquisition of write isolation. ALWAYS acquires write isolation for all trans-

actional loads and stores.

In their comparison of HTM systems, Bobba et al. found that the conflict resolution policy can have a sig-

nificant impact on the performance of an HTM [9]. They also show that the Requester Stalls policy per-

forms well in comparison to other schemes when combined with write set prediction.

4.4  Beginning and Ending Transactions

LogTM systems can implement thebegin_transaction andcommit_transaction calls in the

LogTM API with new instructionsxbeginandxcommit. The xbegin instruction first checks the TM Count

register. If TM Count is zero, xbegin increments the TM Count register. If the system supports register

checkpoints in hardware, xbegin takes a register checkpoint. The xcommit instruction decrements TM

Count. If TM Count becomes zero, xcommit resets Log Pointer to Log Base and discards the any register

checkpoint.



60



61

Chapter 5

Evaluation

This chapter assesses the assumptions that underlie the LogTM system (Chapter 3) and presents an evalua-

tion of the LogTM implementations presented in Chapter 4. Section 5.1 describes the methodology used in

the evaluation, including system model assumptions. Section 5.2 describes the workloads used in this eval-

uation. Section 5.3 presents the overall performance of LogTM. Section 5.4 discusses the performance

impact of various implementation trade-offs in LogTM.

5.1  Methods

The evaluation of LogTM presented in this chapter was performed using execution-driven full-system sim-

ulation of LogTM-Dir. To account for the variability in multi-threaded workloads, I introduce a small ran-

dom perturbation in the memory response time as suggested by Alameldeen et al. [4] and run each

simulation multiple times. The performance results shown below represent the average of these runs. The

error bars shown are the 95% confidence intervals.

5.1.1  System Model

This chapter assumes the LogTM-Dir implementation described in Section 4.2.2. Table 5-1 summarizes

memory system and processor parameters. The system includes up to 32 processors, each with two levels

of private cache. A MESI directory protocol maintains coherence over a high-bandwidth switched inter-

connect. Though single-issue and in-order, the processor model includes an aggressive, single-cycle non-



62

memory IPC. A detailed model of the memory system includes most timing intricacies of the transactional

memory extensions.

5.1.2  Simulation Platform

The simulation framework uses Simics [48] in conjunction with customized memory models built with the

Wisconsin GEMS toolset [84]. Simics, a full-system functional simulator, accurately models the SPARC

architecture but does not support transactional memory. The LogTM interface was instead simulated using

Simics “magic” instructions—special no-ops that Simics catches and passes to the memory model. To

implement the xbegin instruction (Section 4.4), the memory simulator uses a Simics call to read the

thread’s architectural registers and create a checkpoint. During a transaction, the memory simulator models

the log updates. After an abort rolls back the log, the register checkpoint is written back to Simics, and the

thread restarts the transaction.

The memory system simulator performs the rollback of transactional updates in simulated hardware and

approximates the timing of software rollbacks. The execution time of a rollback is estimated using a fixed

penalty to model the overhead of trapping to the abort handler plus a penalty for each entry in the transac-

tion log to account for execution of the software handler itself. This abort penalty is applied in two ways.

First, when a load or store instruction triggers an abort, execution on that processor is stalled for the abort

penalty before the register state is restored and the transaction re-executed. Second, the W bits remain set

Component Settings

Processors 32, 1 GHz, single-issue, in-order, non-memory IPC=1

L1 Cache 16 kB 4-way split, 1-cycle latency

L2 Cache 4 MB 4-way unified, 12-cycle latency

Memory 4 GB 80-cycle latency

Directory
Full-bit vector sharers list;

 Directory cache, 6-cycle latency

Interconnection Network Hierarchical switch topology, 14-cycle link latency

TABLE 5-1. System Model Parameters



63

for the duration of the abort penalty, potentially stalling conflicting transactions. This approximation

allows me to more easily measure the effect of abort latency on performance in LogTM (Section 5.4).

5.2  Workloads

LogTM’s design is based on certain assumptions about the behavior of transactions. The wisdom of deci-

sions such as favoring commits over aborts and providing support for large transactions will depend on the

characteristics of transactions run on such systems. Due to the lack of software written for transactional

memory, however, I can only make rough estimates of the behavior of transactions in future software. In

this evaluation, I use two strategies to select applications on which to test LogTM: (1) using microbench-

marks that execute simple operations on common data structures and (2) converting critical sections in

today’s lock-based programs into LogTM transactions.

5.2.1  Microbenchmarks

The promise of transactional memory is to facilitate the writing of parallel programs. I demonstrate

LogTM’s ability to deliver this promise by measuring the scalability of the microbenchmarks described in

Table 5-2. These simple programs were written with minimal regard for parallelization. They simply

enclose high level operations on shared data in LogTM transactions. The first, BTree, contains two opera-

tions, lookup and insert. Lookup searches the tree for a particular key. Insert adds a new key-value pair to

Description Settings % Xact
Cycles/
Xact

B-Tree

Threads alternate between
insert and lookup operations
on a single tree. Each lookup
or insert is performed in a
transaction.

9-ary B-Tree, initially 5-levels
deep. 20% update, 80%
lookup

80.2% 1810

Shared
Counter

All threads repeatedly incre-
ment a single counter.

2500 cycle average think time
between transactions

3.0% 669

TABLE 5-2. Microbenchmarks



64

the tree, possibly splitting one or more nodes. Each operation is executed in its entirety in a single LogTM

transaction. BTree creates a number of threads, each of which performs a random series of inserts and

lookups. The second, Shared-Counter, creates a number of threads, each of which increments a single

shared counter. The threads pause for a random think time between 0 and 5000 cycles. In addition to a brief

description, Table 5-2 lists relevant inputs, the fraction of cycles spent executing transactions (% Xact) and

the average length of each transaction in cycles (Cycles/Xact) for each microbenchmark.

5.2.2  Benchmarks

In addition to the microbenchmarks described above, this chapter evaluates LogTM on a set of benchmarks

from the SPLASH [74] and SPLASH-2 [85] benchmark suites, and a benchmark based on the lock man-

ager of an open source database. Table 5-3 describes the configuration of the benchmarks and the input

parameters used to run them. The LogTM versions of these benchmarks replace locks with begin and end

transaction calls. Barriers and other synchronization mechanisms were not changed. The lock versions use

PARMACS library locks [6], which use test-and-test-and-set locks, but yield the processor after a pre-

determined number of attempts (one for these experiments). In one case (Raytrace), the benchmark code

has been optimized for transactions by reorganizing a data structure to reduce false sharing. Reduced false

sharing allows Raytrace to run much faster than the original program [54].

Benchmark Input Synchronization Methods % Xact Cycles/Xact

Barnes 512 bodies Locks on tree nodes 15.5% 5660

Cholesky 14 Task queue locks 0.456% 1800

BkDB 512 Operations Locks 87.0% 81500

MP3D 4096 molecules Locks 84.5% 2160

Radiosity “largeroom” Task queue & buffer locks 21.2%  4290

Raytrace image=car Work list & counter locks 68.4% 24600

TABLE 5-3. Benchmark Inputs and Characteristics



65

Perhaps because they were adapted from lock-based programs, these benchmarks contain transactions that

are generally short in duration and have small read and write sets. Table 5-3 includes the number of trans-

actions and the average duration of transactions in each benchmark, and Figure 5-1 displays the distribu-

tion of the size of transaction read and write set sizes for each of the benchmarks measured in 64-byte

blocks. Transactions in Radiosity, Cholesky and MP3D are short, and have small read and write sets. For

the most part, Barnes and BkDB have the largest transactions. Barnes represents the simulated bodies in an

octtree. The largest transactions re-balance this tree, writing approximately 30 memory blocks. BkDB uses

transactions to coordinate updates to its lock table. Some transactions include the allocation of new lock

0 200 400 600 800

Transaction Read Set Size (in 64-Byte lines)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Barnes
Cholesky
BkDB
MP3D
Radiosity
Raytrace

0 10 20 30 40

Transaction Write Set Size (in 64-Byte lines)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Barnes
Cholesky
BkDB
MP3D
Radiosity
Raytrace

FIGURE 5-1. Cumulative Distribution of Transaction Read Set and Write Set
Sizes.



66
objects, which requires writing to several queues and the new lock object. In Raytrace, most transactions

are small, reading and writing just a single memory block. But, Raytrace also uses transactions to coordi-

nate the allocation of memory from its free list. Some transactions traverse this free list, reading thousands

of memory blocks.

5.3  LogTM Performance

In order to demonstrate the potential of transactional memory in general and LogTM in particular, I present

the scalability of the simple microbenchmarks described above. Next, I compare the relative scalability of

the benchmark applications written using LogTM transactions to locks. Because the performance of

LogTM relative to locks is dependent on many parameters, I choose one set of parameters for the overall

comparison and analyze the effect of varying those parameters separately in detail.

The LogTM configuration in this experiment uses LOAD_PC write set prediction, buffered logging with a

64-entry log buffer, and assumes an abort handler trap latency of 200 cycles and a 40-cycle per-block over-

head for restoring old values. Section 5.4 will evaluate the impact of these parameters in detail.

5.3.1  Microbenchmark Scalability

Figures 5-2 (a) and (b) display the speedup over single-threaded execution of the BTree and Shared-

Counter microbenchmarks, respectively. Figure 5-2 (a) shows that the BTree benchmark scales well to 31

threads when the fraction of inserts is low. BTree reaches a speedup of 23 on 31 threads with no updates

and a speedup of 10 with 10% updates. Although the speedup decreases to 8 with 20% updates, adding

threads continues to be effective up to 31 threads. In the Shared-Counter benchmark, all threads contend

for access to single counter and, in the lock version, its associated lock. Figure 5-2 shows that the LogTM

transactions eliminate much of the overhead associated with acquiring and releasing the contended lock.



67

5.3.2  Benchmark Scalability

The results below demonstrate that LogTM improves scalability in several of the workloads described in 5-

3, increasing the maximum achievable speedup for all benchmarks except Cholesky and BkDB, which do

not scale with locks or transactions. In one case, Raytrace, LogTM also increases the number of processors

used to achieve peak throughput.

Figures 5-3 (a)-(f) display the speedup of both lock-based and transaction-based benchmarks as the num-

ber of threads is increased from 1 to 31. For all of the benchmarks besides MP3D and BkDB, the LogTM

version of the benchmark has a higher peak speedup than the lock-based version. For Barnes, the improve-

ment is modest, but for Raytrace, Radiosity and MP3D, LogTM provides a dramatic increase in peak per-

formance.

10 20 30

Threads

0

5

10

15

20

S
pe

ed
up

20%
10%
0%

10 20 30

Threads

0

1

2

3

S
pe

ed
up

LogTM
EXP Lock

(a) BTree

FIGURE 5-2. Scalability of LogTM Microbenchmarks: (a) Scalability of
BTree using LogTM Transactions with 0, 10 and 20% Updates, (b)
Scalability of Lock-Based and Transactional Shared-Counter.

(b) Shared-Counter



68

10 20 30

Threads

0

1

2

3

4

S
pe

ed
up

LogTM
Lock

10 20 30

Threads

0.0

0.5

1.0

S
pe

ed
up

LogTM
Lock

10 20 30

Threads

0

2

4

6

S
pe

ed
up

LogTM
Lock

10 20 30

Threads

0

5

10

15
S

pe
ed

up

LogTM
Lock

10 20 30

Threads

0

10

20

30

S
pe

ed
up

LogTM
Lock

10 20 30

Threads

0

10

20

30

S
pe

ed
up

LogTM
Lock

(c) Cholesky

(b) BkDB(a) Barnes

FIGURE 5-3. Scalability of LogTM vs. Locks

(d) MP3D

(e) Radiosity (f) Raytrace



69
For most of the benchmarks, the LogTM program and the lock program reach their peak performance at

the same number of threads—Barnes at 15, MP3D at 29 and Cholesky at 12. Radiosity and Raytrace, on

the other hand, scale much more effectively with LogTM, not reaching peak performance on LogTM until

22 and 31 threads, respectively, while lock-based Radiosity and Raytrace reach their peaks at only 15 and 3

threads.

5.4  Implementation Trade-offs

As discussed in Chapter 4, LogTM may be implemented in many ways, using varying levels of hardware

support for log creation, log rollback, conflict resolution and write set prediction. In this section, I measure

the performance impact of several of these trade-offs.

5.4.1  Write Set Prediction

One important factor in the performance of LogTM is the frequency of aborts. LogTM’s eager version

management is optimized for the case that aborts are rare and, as the results below demonstrate, its perfor-

mance suffers when aborts are common.

I compare the three schemes for predicting write sets in transactions described in Section 4.3.1: SINGLE-

ENTRY, LOAD-PC and ALWAYS. Figure 5-4 displays the relative abort rate—the ratio of aborts to all

attempted transactions. An abort rate of zero means that all transactions commit, whereas an abort rate of

one indicates that all transactions abort (livelock). SINGLE-ENTRY suffices to reduce the abort rate for

several benchmarks, especially Raytrace, which frequently updates shared counters inside transactions.

LOAD-PC and ALWAYS dramatically reduce the abort rate for all benchmarks. With LOAD_PC, only in

BkDB do more than half of all transactions abort.



70

T
his

reduction
in

abortrate,in
m

ostcases,leads
to

better
perform

ance
in

LogT
M

.F
igure

5-5
displays

the

perform
ance

of
LogT

M
using

each
of

the
w

rite
set

predictors
norm

alized
to

the
perform

ance
of

the
lock-

based
program

.
A

s
show

n
in

F
igure

5-5,
w

rite
set

prediction
provides

a
substantialperform

ance
im

prove-

0.0

0.2

0.4

0.6

0.8

Aborts/Attempted Transaction

NONE
1_ENTRY
LOAD_PC
ALWAYS

B
arnes

NONE
1_ENTRY
LOAD_PC
ALWAYS

B
kD

B

NONE
1_ENTRY
LOAD_PC
ALWAYS

C
holesky

NONE
1_ENTRY
LOAD_PC
ALWAYS

M
P

3D

NONE
1_ENTRY
LOAD_PC
ALWAYS

R
adiosity

NONE
1_ENTRY
LOAD_PC
ALWAYS

R
aytrace

F
IG

U
R

E
 5-4.

Transaction A
bort R

ates for T
hree W

rite
S

et P
redictors.

0 1 2 3

Speedup (over locks)

NONE

1_ENTRY

LOAD_PC

ALWAYS

B
arnes

NONE

1_ENTRY

LOAD_PC

ALWAYS

B
kD

B

NONE

1_ENTRY

LOAD_PC

ALWAYS

C
holesky

NONE

1_ENTRY

LOAD_PC

ALWAYS

M
P

3D

NONE

1_ENTRY

LOAD_PC

ALWAYS

R
adiosity

0 5 10 15 20 25

Speedup (over locks)

NONE

1_ENTRY

LOAD_PC

ALWAYS

R
aytrace

F
IG

U
R

E
 5-5.

N
orm

alized E
xecution T

im
e of LogT

M
 w

ith
W

rite S
et P

rediction.



71

ment in several workloads. In particular, write set prediction speeds up LogTM on the benchmarks on

which it performs the worst. Overall, LOAD-PC provides the most consistent performance improvements.

Although ALWAYS reduces aborts more than LOAD-PC, it also introduces more stalls, which erode the

benefits of fewer aborts.

5.4.2  Hardware Support for Logging

Section 4.1.4 describes buffered logging. The log buffer reduces processor-to-cache memory traffic and

eliminates the need to perform a virtual to physical address translation on the log pointer for each store.

When the buffer fills, however, software spills the contents of the hardware buffer to the in-memory log.

Figure 5-6 examines the effect of the size of the log buffer on LogTM performance. For several bench-

marks, the size of the log buffer has little effect on performance at all. Only Radiosity and BkDB seem par-

ticularly sensitive to the size of the buffer. Even for those workloads, however, a reasonable size buffer

(e.g., 64 entries) provides performance within 10% of that of an unlimited buffer.

0.0

0.5

1.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

1 4 16 64 25
6

10
24

40
96

10
00

00
0

Barnes

1 4 16 64 25
6

10
24

40
96

10
00

00
0

Cholesky
1 4 16 64 25
6

10
24

40
96

10
00

00
0

BkDB

1 4 16 64 25
6

10
24

40
96

10
00

00
0

MP3D

1 4 16 64 25
6

10
24

40
96

10
00

00
0

Radiosity

1 4 16 64 25
6

10
24

40
96

10
00

00
0

Raytrace

FIGURE 5-6. Performance Impact of Buffer-Spill Stalls.



72

5.4.3  Log Granularity

Section 4.1 discusses the trade-offs involved in selecting the granularity at which to build the transaction

log in LogTM. The optimal granularity depends on the size of transactions’ write sets and the degree of

spatial locality in them, both of which are dependent on the workload. For the workloads examined in this

dissertation, the optimal logging granularity is quite small—likely 4 or 8-byte blocks.

Table 5-4 displays the average number of log entries per transaction (Blk/T) and average number of bytes

used in each logged block (B/Blk) for logging at several different granularities. These results suggest that a

small logging block size will be more efficient for these workloads. For many of the benchmarks, increas-

ing the logging granularity (block size) does not result in a significant reduction of log entries per transac-

tion. Of these benchmarks, only for Barnes and BTree does increasing the block size from 8 B to 64 B (an

8-fold increase) reduces the number of log entries by a factor of two or more. For Raytrace, increasing the

block size beyond 4 B has almost no impact on the number of log entries.

Figure 5-7 compares the average size of the transaction log for logging performed at granularities from 4

bytes to 64 bytes assuming that addresses are 64-bits (8-bytes). Individual bars divide the log size into

three components: Values (old values in the log), Address (virtual addresses of updated memory locations),

and Unused (old values of memory locations not actually modified). For BkDB, Cholesky and Raytrace,

the smallest logging granularity (4 bytes) results in the smallest log. These are the workloads with the least

Block
Size

Barnes BkDB BTree Cholesky Mp3D Radiosity Raytrace

Blk/T B/Blk Blk/T B/Blk Blk/T B/Blk Blk/T B/Blk Blk/T B/Blk Blk/T B/Blk Blk/T B/Blk

4 19.6 3.92 4.97 3.98 22.4 4.00 2.91 4.00 4.80 4.00 4.26 4.00 2.02 4.00

8 12.7 6.04 4.39 4.50 18.2 4.92 2.77 4.20 2.79 6.88 2.69 6.33 1.98 4.08

16 8.68 8.86 3.88 5.10 12.0 7.47 2.64 4.41 2.03 9.47 2.13 8.00 1.98 4.08

32 6.80 11.3 3.80 5.20 7.51 11.9 2.59 4.49 1.62 11.8 1.90 8.95 1.98 4.08

64 5.51 14.0 3.32 5.96 4.76 18.8 2.00 5.88 1.47 13.1 1.75 9.72 1.98 4.08

TABLE 5-4. Log Size/Utilization at Varying Log Granularities



73

amount of spatial locality in transactions’ write sets. In each case, increasing the logging granularity fails

to reduce the Address component of the log. For Barnes, MP3D and Radiosity, an 8-byte logging granular-

ity is most efficient. For these workloads, increasing the log granularity significantly reduces address over-

head, but eventually also increases unnecessary logging. Up to 16-byte blocks, the increase in unused

space is largely offset by the reduction in address overhead. Beyond 16-byte blocks, however, the unused

space dominates other components, becoming more than half the log at a 64-byte granularity. Somewhat

surprisingly, in BTree, logging large blocks reduces address overheads significantly, but logging 4-byte

blocks is most efficient. Overall, logging at an 8-byte granularity seems to be the best fit for these work-

loads. Logging on 8-byte blocks is never much less efficient than logging at 4-byte blocks. Furthermore,

most high performance computer systems now support 64-bit (8-byte) operations directly in hardware.

Interestingly, the benchmark for which a large block size results in the greatest reduction of log entries,

BTree (22.4 to 4.76), was written using transactions from the outset rather than converted from a lock-

based program. It may be the case that programs written specifically for transactional memory will use

transactions that are longer-running and that write to more memory locations than the critical sections in

programs written using lock-based mutual exclusion.

0

100

200

300

Lo
g 

S
iz

e 
(in

 B
yt

es
)

Unused

Address

Values

4 8 16 32 64

Barnes

4 8 16 32 64

BkDB

4 8 16 32 64
BTree

4 8 16 32 64

Cholesky

4 8 16 32 64

MP3D

4 8 16 32 64

Radiosity

4 8 16 32 64

Raytrace

FIGURE 5-7. Effect of Logging Granularity on Log Size.



74
5.4.4  Abort Overhead

LogTM saves hardware complexity by implementing transaction rollback in software. To justify that strat-

egy, I have argued that aborts are sufficiently rare that any overhead incurred in handling them will not

affect performance. Figure 5-8 shows the effect of varying the overhead of handling aborts on the perfor-

mance of LogTM-Dir. Recall that earlier experiments in this chapter have assumed a 200-cycle overhead to

jump to the abort handler and a 40-cycle per memory block overhead to process undo records. The three

bars in Figure 5-8 display the relative speedups of idealized abort processing, in which all aborts take only

1 cycle, the base 200 cycle/40 cycle implementation and a pessimistic model, in which trapping to the

abort handler takes 1000 cycles and processing each undo record requires 200. Figure 5-8 (a) shows this

comparison when the system uses the default LOAD_PC write set predictor. For the benchmarks where

write set prediction is most effective (Raytrace, Radiosity, and MP3D), the abort overhead has almost no

effect on performance. Of those benchmarks, only Radiosity is effected at all, and only slightly. Bench-

marks for which write set prediction is not successful, however, suffer more significant performance degra-

dations when abort overheads increase. Not surprisingly, large abort overheads affect BkDB and Barnes,

which have the highest rate of transaction aborts, more than the other workloads.

One might expect that the sensitivity to abort delay is simply a function of the abort rate. Consider, how-

ever, the difference between Figure 5-8 (a) and Figure 5-8 (b). The same workloads are less sensitive to

increased abort overheads when write set prediction is not used, despite the higher frequency of aborts.

This counter intuitive behavior is a result of the difference in the way LogTM handles read-only and read-

write data on abort. When a LogTM transaction aborts, it maintains write isolation on its write set during



75

the execution of the abort handler. Doing so prevents other threads from observing updates from the abort-

ing transactions. But, LogTM transactions release read isolation immediately because memory locations in

the read set are not accessed during the abort. Write set prediction turns some reads into writes, expanding

the effective write set of a transaction. By moving contended blocks from the read set to the write set, write

set prediction, delays the transfer of those blocks from an aborting transaction to an active one, actually

degrading performance when abort overheads are high.

5.5  Summary

In summary, the scalability of the two microbenchmarks, BTree and Shared Counter, which were written

using obvious transactions, on LogTM demonstrates that transactional memory can simplify the writing of

at least some parallel programs. Larger programs can also benefit from LogTM. The five benchmarks stud-

ied in this chapter all perform as well or better when using transactions than they do using locks; Raytrace

and Radiosity perform much better. One of the keys to good performance in LogTM is to reduce the fre-

quency of aborts. Stalling first to resolve conflicts combined with pc-based write set prediction reduces the

0.0

0.5

1.0
S

pe
ed

up
 (

ov
er

 id
ea

liz
ed

 a
bo

rt
s)

1/
0

20
0/

40
10

00
/2

00

Barnes

1/
0

20
0/

40
10

00
/2

00

Cholesky

1/
0

20
0/

40
10

00
/2

00

BkDB

1/
0

20
0/

40
10

00
/2

00

MP3D

1/
0

20
0/

40
10

00
/2

00

Radiosity

1/
0

20
0/

40
10

00
/2

00
Raytrace

0.0

0.5

1.0

S
pe

ed
up

 (
ov

er
 id

ea
liz

ed
 a

bo
rt

s)

1/
0

20
0/

40
10

00
/2

00

Barnes

1/
0

20
0/

40
10

00
/2

00

Cholesky

1/
0

20
0/

40
10

00
/2

00

BkDB

1/
0

20
0/

40
10

00
/2

00

MP3D

1/
0

20
0/

40
10

00
/2

00

Radiosity

1/
0

20
0/

40
10

00
/2

00

Raytrace

(a) (b)

FIGURE 5-8. Affect of Abort Overhead on LogTM Execution Time: (a) With
LOAD_PC Write Set Prediction, and (b) with No Write Set Prediction.



76
frequency of aborts to less than 1 in 10 transactions for 6 of the 8 workloads studied and less than 2 in 10

for all workloads except BkDB.

For the most part, transactions in the workloads I studied are small, reading and writing only a few tens of

bytes in the common case. Several of the workloads, however, have a few transactions that are much larger.

Buffered logging is well suited to this distribution. Using reasonably sized buffers (e.g., 16 entries), most

transactions’ logs will fit entirely within the buffer. Since these workloads exhibit little spatial locality in

the write sets of their transactions, logging at a small granularity, such as 8 bytes, reduces overall log size

and could increase the efficiency of buffered logging.



77

Chapter 6

Extending LogTM

The implementations of LogTM presented in Chapter 4, and evaluated in Chapter 5 successfully abstract

the size of hardware caches and buffers by supporting transactions whose read and write sets exceed the

capacity of those structures. But, those implementations still restrict transactions in important ways. Since

the introduction of LogTM in 2006 [54], researchers including myself have worked to extend LogTM to

address these limitations. This chapter describes three distinct challenges and discusses how my collabora-

tors and I have adapted LogTM to meet them. Our solutions demonstrate that despite the limitations of the

original LogTM implementations, the LogTM framework can support fully-virtualized transactional mem-

ory with limited hardware support.

6.1  Nested Transactions

Software developers commonly create large applications by combining independently written modules.

Ideally, such modules arecomposable—they may be combined in various ways and used with knowledge

only of module interfaces, not internal mechanisms. But, writing composable modules that contain syn-

chronization (particularly lock-based synchronization) has proven difficult [31]. For example, the lock-

based move method in Figure 1-1 (a) cannot be safely included in a library module due to the risk of dead-

lock. In contrast, transactions compose naturally and transactional memory provides a means for program-

mers to write thread-safe modules that may be used without knowledge of internal mechanisms such as

locking protocols.



78
Facilitating composability in transactional memory programs, however, requires that transactional memory

systems support thenestingof transactions—starting and ending one transaction from inside another.

Without such support, programmers would not be able to use libraries that contain transactions. When

transactions are nested, we call the first transaction theparentand the transaction started from within the

child. LogTM naively supports nesting byflattening, or subsuming child transactions into their parents.

The LogTM systems presented in Chapter 4 implement flattening with a counter (TM Count), which is

incremented at transaction begin and decremented at commit. Only transaction begins when the counter is

zero and transaction commits that return the counter to zero are meaningful. In the database literature [22,

57, 83] and, recently, in transactional memory literature [51, 55, 58, 59, 60] researchers have developed

two optimizations over flat nesting: (1)closednesting with partial aborts and (2)opennesting, which have

been shown to increase both the expressiveness of transactions and the performance of transactional sys-

tems.

6.1.1  Closed Nested Transactions (with Partial Abort)

In closed nesting, the read and write sets of a child transaction remain separate while the child is active, but

merge with those of the parent when the child commits. This allows closed nested transactions to abort

independently of their parent transactions. A closed nested transaction may access any updates made thus

far by its (uncommitted) parent transaction without causing a transaction conflict. All of the child’s

updates, however, remain isolated from other threads until both the child and the parent have committed.

Closed nesting seeks to improve performance over flattening by aborting and re-executing only the child

transaction (and not its parent) when possible. Consider the case of a long running parent transaction

which rarely conflicts with other transactions or aborts, but which calls library function that uses a transac-

tion to access a highly contended data structure. With flat transactions, conflicts in the child transaction can



79
cause the entire long-running parent transaction to abort. Closed nesting eliminates such costly and unnec-

essary rollbacks.

Moravan et al. develop extensions to LogTM, specifically LogTM-Dir, to support closed nesting [55]. The

solution they propose, called Nested LogTM, involves primarily: (1) segmenting the transaction log

(Section 3.1.1) into frames—one for each nested transaction—and, (2) replicating conflict detection state,

e.g., R/W bits (Section 4.2) for each level of nesting supported.

Beginning a nested transaction in Nested LogTM is similar to beginning a top-level transaction in LogTM-

Dir. The system allocates a new frame in the transaction log and logically checkpoints the register state.

The hardware also allocates a new set of R/W bits in the cache. Subsequent loads and stores update these

bits leaving the parents’ read and write set unchanged. If the nesting depth of a transaction exceeds the

number of sets of R/W bits, Nested LogTM resorts to flattening transactions.

Conflict detection in Nested LogTM is identical to its counterpart in flat LogTM except that each coher-

ence request checks all sets of R/W bits. If a conflict is found at any nesting depth, the request is NACK’ed.

Additionally, the coherence hardware tracks the shallowest nesting depth that may be involved in a cycle.

That depth is then passed to the abort handler to ensure that an abort unrolls only as many transaction lev-

els as is necessary to resolve the pending conflict.

Committing a nested transaction requires two additional steps. First, the committing child transaction’s log

frame is merged with that of its parent by setting a committed flag in its header. The header then becomes a

garbage header, which occupies space in the log, but is ignored on abort. Second, the R/W bits of the com-

mitting child are merged with those of its parent. This merge can be implemented efficiently with a ‘flash-

OR’ circuit [55].

Supporting the partial aborts themselves is simple in LogTM since aborts are implemented in software.

Nested transactions are rolled back independently by unrolling the corresponding frames in the transaction



80
log. If more than one level of nesting is aborted, the abort handler unrolls frames in LIFO order, just as it

reads the individual undo records in each frame in LIFO order.

6.1.2  Open Nested Transactions

Open nested transactionsseek to increase concurrency and to provider richer semantics for transactional

programming. Open nesting relaxes the atomicity and isolation guarantees of closed transactions by com-

mitting child transactions independently of their parent transactions. Specifically, when an open child com-

mits, it releases isolation on all memory locations it has accessed, allowing other threads to see its effects

before its parent has committed. This allows long-running transactions to access contended resources with-

out overly restricting concurrency. For example, a long-running transaction that allocates memory without

open nesting must maintain isolation on the free list until it commits. A long running transaction that allo-

cates memory in an open nested transaction only needs to hold isolation on the free list for the duration of

the allocation.

Open nested transactions behave like closed nested transactions until commit. Whereas in close nesting the

read and write sets of the child are merged with that of its parent, in open nesting, when the child transac-

tion commits, it’s read and write sets are cleared and its updates are exposed to all threads.

Open nesting’s relaxation of atomicity and isolation increases concurrency, but adds significant complexity

to the programming model. One source of this complexity is the fact that open nested transactions are not

atomic with their parent. If a parent transaction aborts after it has executed an open nested child, the child

transaction, which has committed is not rolled back. Instead, open nested transactions may registercom-

pensating actionsto perform a logical reversal of the operation performed in the open nest if its parent

aborts. Designing compensating actions requires knowledge of the semantics of the program and is there-

fore left to programmers.



81
Moravan et al. extend LogTM to support open nesting by adding compensating action records to the log

and clearing R/W bits on commit. Open nested transactions begin exactly like their closed counterparts—

the system increments the nesting level and allocates a new log frame, saving the register state. Increasing

the nesting level, as in closed nested transactions, allocates a new set of R/W bits for the child transaction.

Open commits, however, are quite different. The commit of an open nested transaction clears the child’s

conflict detection state (e.g., R/W bits) and log frame instead of merging them with that of the parent. Iso-

lation is released on blocks accessed by the committing child transaction by flash clearing its set of R/W

bits. The child’s log frame is cleared by resetting the log frame pointer to parent’s header and the log

pointer to the child’s header (allowing it to be overwritten). After clearing the log and R/W bits, the system

writes a compensating action record to the log. The compensating action record specifies a function to be

called and a list of arguments to be passed in case the parent aborts. If the parent aborts, the software abort

handler replays the log in reverse order alternately restoring values when it encounters undo records, and

performing compensating actions when it encounters compensating action records.

6.2  Virtualizing Conflict Detection

LogTM’s version management is well suited to virtualization. Storing the transaction log in virtual mem-

ory means that log values may be evicted from the cache and even paged to disk without affecting the state

of a transaction. Furthermore, using virtual addresses in the transaction log means that pages accessed in a

transaction can be re-mapped to different physical addresses without affecting transaction version manage-

ment. Virtualizing conflict detection, however, is more challenging.

Conflict detection is more difficult to virtualize in all HTM systems because, unlike version management,

conflict detection must be performed even for suspended transactions. Systems that employ eager conflict

detection must check all loads and stores against the read and write sets of all active transactions, including

those that are suspended. Systems that employ lazy conflict detection must validate committing transac-



82
tions against the updates of all transactions that ran concurrently, including those that ran when the transac-

tion was suspended.

Virtualizing conflict detection is particularly challenging in LogTM, because LogTM requires hardware

conflict detection for transactions of any size. Recall that both LogTM-Dir and LogTM-Bcast implement

conflict detection using read (R) and write (W) bits for blocks in processors’ caches and sticky states and

bloom filters respectively for evicted blocks (Section 4.2). These mechanisms present a challenge to virtu-

alization for two reasons: (1) their state is not easily saved and restored and (2) they map read and write

sets based on processors and physical addresses rather than threads and virtual addresses.

6.2.1  Detecting Conflicts with Signatures

Yen et al. [87] address the difficulty of saving and restoring R/W bits in LogTM by instead tracking read

and write sets usingsignatures[11]. Signatures are compact encodings of sets of addresses. More pre-

cisely, a signature representing a set of addresses, S, encodes a superset of S because many sets of

addresses may alias to the same filter value.

A signature implements several operations. Let O be a read or a write and A be a block-aligned physical

address. INSERT(O, A) adds A to the signature’s O-set. Every load instruction invokes INSERT(read,A)

and every store invokes INSERT(write, A). CONFLICT(read, A) returns whether A may be in a signa-

ture’s write set (thereby conflicting with a read to A). CONFLICT(write, A) returns whether A may be in a

signature’s read- or write-sets. Both tests may return false positives (report a conflict when none existed),

but may not have false negatives (fail to report a conflict). Finally, CLEAR(O) clears a signature’s O-set.

Signatures may be implemented in a variety of ways including using a Bloom Filter [7]. Ceze et al. [11]

and Yen et al. [87] describe several signature implementations.

Signature aliasing can cause some non-conflicting memory requests to be incorrectly interpreted as con-

flicts. Suchfalse conflictsserialize the execution of transactions. Serialized execution, however, is legal in



83
the transactional execution model. Signature aliasing thus affects performance, but not correctness. As a

result, signatures are amenable to LogTM’s conservative conflict detection, where the system must detect

all conflicts, but may report false conflicts.

Most importantly, signatures can be saved and restored by software. Yen et al. take advantage of that capa-

bility to virtualize conflict detection in LogTM, calling their new design LogTM-Signature Edition, or

LogTM-SE. Unlike the implementations of LogTM presented in Section 4.2, LogTM-SE, tracks transac-

tions’ read and write sets with a read and write signature for each processor. LogTM-SE also maintains a

summary signature, which encodes the aggregate read and write set of suspended transactions. The ability

to save and restore the active signature and to track the state of suspended transactions in the summary sig-

nature allows LogTM-SE to supporting unbounded nesting, thread suspension and migration and paging.

6.2.2  Supporting Unbounded Nesting with Signatures

Nested LogTM [55] uses the transaction log to provide version management for an arbitrary number of

nested transactions, but can only support conflict detection for a fixed number of levels. LogTM-SE over-

comes that limitation by tracking the aggregate read and write set of the parent and child transaction

together in hardware and using the flexible storage in the transaction log to save conflict detection state for

each nested transaction.

LogTM-SE’s nested conflict detection is based on the observation that clearing the read and write set of a

child transaction is equivalent to restoring the read and write set—or read and writesignature—that held

when the child transaction began. Therefore, LogTM-SE can independently clear the read and write sets of

committing or aborting child transactions by restoring a checkpoint of the signature state when before the

child began. Table 6-1 lists the effect of beginning, committing and aborting nested transactions on the



84

read and write sets of active transactions and the actions taken by LogTM-SE to track that state. LogTM-

SE saves the current hardware signature (read and write) to the log on each nested transaction begin. On

commit of a closed transaction, no action is necessary because the hardware signature already represents

the combination of the parent and child’s read and write sets. To abort a transaction (or commit an open

transaction), LogTM-SE simply restores the signature saved on the log.

6.2.3  Thread Switching and Migration

In LogTM-SE, all of a thread’s transactional state—its version management and conflict detection state—

is accessible to the operating system (OS). The version management state—old and new versions of trans-

actional data—reside in virtual memory and do not need to be saved, moved, or updated on thread

switches. A thread’s conflict detection state can be saved by copying the read/write signatures to the log’s

current header. However, the hardware must continue to track conflicts with the suspended thread’s signa-

tures to prevent other threads from accessing uncommitted data. For example, another thread in the same

process may begin a transaction on the same thread context and try to access a block in its local cache. The

system must check this access to ensure that the block is not in the write-set of a descheduled transaction.

Operation Logical Effect LogTM-SE Action

Begin Nested Transaction no effect
Save read and write signa-
tures to log.

Abort Nested Transaction
clear child read and write
set, parent read and write
sets unchanged

Restore signature checkpoint

Closed Nested Commit
merge parent and child’s
read and write sets

Mark child header as ‘gar-
bage’ (discards signature
checkpoint)

Open Nested Commit
discard child’s read and
write sets

Restore signature checkpoint

TABLE 6-1. Nested Conflict Detection in LogTM-SE.



85
The challenge is to ensure that all active threads check the signatures of descheduled threads in their pro-

cess on every memory reference.

LogTM-SE achieves this goal using an additional hardware signature, the summary signature, which repre-

sents the union of the read and write-sets of all suspended transactions. The OS maintains the following

invariant for each active/summary signature pair: If thread T of process P is scheduled to use an active sig-

nature, the corresponding summary signature holds the union of the saved signatures from all descheduled

threads from its process P. On every memory reference, including hits in the local cache (both transactional

and non-transactional), LogTM-SE checks the summary signature to ensure that the request does not con-

flict with a descheduled transaction. Multi-threaded cores, where each thread on a core may belong to a

separate process, require a summary signature per thread context.

The OS maintains, in software, a summary signature for the entire process and coordinates the updating of

the hardware summary signatures on each processor. When descheduling a thread, the OS merges the

thread’s saved signatures into its process summary signature. It then interrupts all other thread contexts

running threads from the process and installs the new summary signature. Any memory request that con-

flicts with a saved signature immediately traps to a conflict handler, since stalling is not sufficient to

resolve a conflict with a descheduled thread. When the OS reschedules a thread, it copies the thread’s saved

signatures from its log into the hardware read/write signatures. However, the summary signature is not

recomputed until the thread commits its transaction, to ensure that blocks in sticky states remain isolated

after thread migration. The thread executes with a summary signature that does not include its own signa-

tures, to prevent conflicts with its own read- and write-sets. On transaction commit, LogTM-SE traps to the

OS, which pushes an updated summary signature to active threads. Thus, with a single additional hardware

signature per thread and small changes to the operating system, LogTM-SE supports both context switch-

ing and thread migration.



86
The cost of context switching within a transaction is relatively high, and for that reason we expect operat-

ing systems to support preemption control mechanisms [80] that defer context switches occurring within a

transaction if possible. In addition, aborting short transactions may be preferable to incurring the overhead

of propagating new summary signatures.

6.3  Software Contention Management

The ability to suspend active transactions LogTM-SE provides, however, poses a potential performance

problem for LogTM. The conflict resolution policy used by LogTM-Dir (the Requester Stalls policy) will

perform poorly if an active transaction conflicts with a suspended transaction. In the Requester Stalls pol-

icy, transactions only abort when they are both stalling and stalled-by an older transaction. Therefore, a

suspended transaction (if is not stalled) might continue to stall an active transaction and not abort until it

resumes execution. Scherer and Scott have developed several contention management policies for STM

that consider suspended transactions [71].

LogTM can be extended to support software contention management by trapping to software on transac-

tion conflicts. Load and store instructions that trigger aborts in LogTM already transfer control to a soft-

ware handler. Implementing software contention management would simply entail extending that

mechanism to be called on all conflicts rather than only on aborts. Theregister_abort_handler

method in the LogTM API (Section 3.4) would be replaced by aregister_contention_manager

method. Applications would not need to register an abort handler in such a system because the abort han-

dler could be called by the contention manager.

6.4  Summary

Each of the extensions described above follows a similar pattern. Nested LogTM segments the transaction

log, exposing the version management state of nested transactions to software. The software handler uses



87
that state to unroll nested transactions. LogTM-SE exposes conflict detection state to software, allowing

the OS to suspend, resume and migrate threads without aborting active transactions. To support software

contention management, LogTM exposes the presence of conflicts to software, which can then implement

a host of policies. In each case, the behavior of the transactional memory system is made more flexible by

granting software access to more hardware state and more control over system policies. None of these

extensions alters the fundamental LogTM strategy: perform conflict detection conservatively (but quickly)

in hardware, and version management (mostly) in software by updating memory in place and logging old

values. Although they may supplant earlier LogTM implementations, these extensions attest to the flexibil-

ity of the LogTM framework for transactional memory.



88



87

Chapter 7

Related Work

LogTM builds on and has been influenced by the substantial body of research in transactional memory and

other areas. This chapter outlines some of the most pertinent related work including other transactional

memory proposals. Section 7.1 outlines other HTM schemes and contrasts them to LogTM. Section 7.2

discusses STM systems similar to LogTM. Section 7.3 describes various software transactional memory

and hybrid hardware/software transactional memory schemes. Section 7.4 discusses the similarities and

differences between transactional memory and thread-level speculation.

7.1  Hardware Transactional Memory

LogTM is one of several HTM systems, each of which uses a different techniques for version management

conflict detection, especially when transactions are long running or touch large amounts of memory. Here,

I revisit alternative proposals and contrast them to LogTM.

7.1.1  Unbounded Transactional Memory

Of the various transactional memory systems, LogTM is most similar to the work of Annanian et al. [5]

who propose Unbounded Transactional Memory (UTM) to support transactions without any limitation on

size or run time and Large Transactional Memory (LTM) to support merely large transactions with less

hardware overhead. UTM is an idealized memory system designed to support atomic memory transaction

of any length and any footprint (limited only by the size of virtual memory). Threads running a UTM trans-

action may be suspended or even migrated to other processors without aborting the transaction. UTM



88
transactions are not required to abort if they access data that is not currently in physical memory nor if data

they have modified is paged to disk.

Unlike many transactional memory systems, including LogTM, UTM does not rely on the cache coherence

mechanism to detect transactions conflicts. UTM maintains transactional atomicity and isolation with a

transaction log that is both a before-image log of transactional updates (like LogTM’s log) and a cache

block-granularity lock table, which it uses to enforce a strict two-phase locking concurrency control policy.

Each running transaction has a separate log consisting of a commit record, which stores the status of the

transaction (pending, committed or aborted), and a series of log entries. Each log entry contains: (1) the

address of the memory block to which the entry applies, (2) the pre-transaction value of that memory block

and (3) a pointer to the last log entry for the block, if one exists. These pointers form a linked list of read-

ers, which contains the identities of all the transactions that have read the block. In addition to the log,

UTM stores extra state for each block in memory, which consists of a pointer to the most recent log entry

for this block and a bit, which indicates whether the block has been modified or merely read as part of a

transaction. Together with the log pointer (null indicates no transaction), the bit encodes a shared or exclu-

sive lock on the corresponding memory block.

Compared to UTM, LogTM requires less hardware support. Unlike LogTM, UTM adds state to each block

in memory. UTM uses this extra state to store pointers to its log, which it uses both version management

and conflict detection. Furthermore, UTM manages this extra state completely in hardware, whereas

LogTM delegates complex actions such as aborting transactions and managing transaction contention to

software.

Like LogTM, Large Transactional Memory (LTM) [5, 46] uses the coherence protocol to detect conflicts

for cached data. A single additional bit in the cache tags tracks the cache lines accessed in the current

transaction. The cache also aids version management. The cache stores the new value of memory locations

modified in the transaction, while main memory retains the pre-transaction value. The requirement that



89
memory keep the pre-transaction value of modified memory locations requires the cache to write back the

pre-transaction value of a modified memory location before it is overwritten in a transaction. For example,

if a processor modifies the same cache line in multiple transactions, the cache must write back the line to

memory in each transaction.

LTM supports transactions whose footprints exceed the capacity of the cache by spilling transaction state

to a reserved (un-cached) region of memory. When a long transaction exceeds the capacity of a cache set,

the hardware sets a per-set “overflow” bit and writes the overflowing transactional data to a hashtable in

un-cached memory. The hash table is established by operating system software, but directly accessed and

updated by the hardware. Subsequent loads to an overflowed cache set must also check the hashtable

(which functions effectively as an in-memory victim cache). The cache controller must also search the

hash table before responding to any coherence request that indexes to an overflowed cache set. While the

controller is searching the hash table, all incoming cache interventions are stalled using NACKs.

LTM differs from LogTM in both its version management and in the way it divides the work of maintain-

ing transactional memory semantics between hardware and software. When transactions fit in the cache,

LTM stores new values in the cache and relies on memory to hold old values. This policy forces LTM to

write dirty blocks back to memory before they are modified in a transaction and requires special action

when transactional blocks are evicted from the cache. In contrast, LogTM always stores old values in sep-

arate memory locations—the log—allowing both new and old values to be evicted independently without

any additional actions. Like UTM, LTM implements transactional memory completely in hardware.

7.1.2  Transactional Memory Coherence and Consistency

Transactional Memory Coherence and Consistency (TCC) [29] seeks both to implement atomic memory

transactions and to simplify the design of multiprocessor memory systems by executing all programs as a

series of atomic transactions. TCC is specifically designed for CMPs. It takes advantage of the high band-



90
width communication that is possible between processors on the same chip. TCC is based on optimistic

concurrency. Each processor executes transactions speculatively. Processors keep an extra bit of state per

word in the cache to track the read set of each transaction. At the end of a transaction, processors broadcast

their updates to all other processors. Processors receiving commit messages check each address against

their read set. If there is a conflict, the speculative transaction is aborted and restarted. TCC relies on keep-

ing transactional data in the private local cache and victim buffer of each processor in most cases. TCC can

maintain atomic semantics when the data set of the transaction exceeds the on-chip buffers, but only by

serializing transactions. Specifically, the processor executing the long-running transaction must obtain and

hold the commit privilege until the transaction completes. This restricts the other processors to only per-

forming speculative operations [29].

TCC differs from LogTM in both version management and conflict detection. Unlike LogTM, TCC uses

lazy version management—storing new values in a per-thread write buffer. Also unlike LogTM, TCC

employs lazy conflict detection—invalidating conflicting transactions on each commit. LogTM also differs

from TCC in its ability to continue to execute transactions in parallel after a cache eviction.

7.2  Software Transactional Memory

The emergence of CMPs has also spurred research in transactional memory systems implemented com-

pletely in software, or software transactional memory (STM). These systems uses conventional synchroni-

zation techniques (blocking and non-blocking) in low-level libraries or in compiler generated code

snippets to implement application-level transactions on today’s hardware. Like HTMs, STMs vary in their

implementation of version management and conflict detection. STMs also differ in the granularity on

which each operation is performed. Thus far, most STMs perform conflict detection and version manage-

ment on a block or object granularity. Many object-based STMs use lazy version management and non-

blocking conflict detection and resolution [30, 32, 49]. These systems use an extra level of indirection (e.g.,



91
through a locator object) and atomic read and update operations to atomically switch versions on transac-

tion commit.

7.2.1  Lock-Based Transactional Memory

Of all the STM systems developed so far, LogTM is most similar to lock-based STMs, such as the Multi-

Core Runtime System (McRT) developed by Saha et al. [69], and Ennals’ blocking STM [20]. Like

LogTM, McRT implements eager version management, allowing transactions to update memory in place

and saving old values to an undo log. McRT also uses a strict two-phase locking algorithm for protecting

memory locations written in a transaction. Unlike LogTM, however, McRT uses read-versioning for read-

only data instead of read locking. In an STM, read locking is far more expensive than in an HTM. To

acquire a read lock, a thread must perform an atomic update of the lock word, which will invalidate that

word in all other processors’ caches and may disrupt the pipeline of the executing processor. Instead, read

versioning allows a thread to store a version number locally without invalidating any cache lines on other

processors’ caches. LogTM, on the other hand, leverages the coherence protocol itself to implement a read

lock using state in the cache or processor (e.g. R/W bits or signatures). Threads can acquire read locks

without performing any additional memory operations and without triggering cache invalidations.

Dice and Shavit support Saha and Ennals’ claim that lock-based STMs are more efficient than non-block-

ing STMs, but argue that late acquisition of write locks performs better under contention. Although they

agree with Saha’s findings that eager version management is more efficient, they argue that the improve-

ment in concurrency from acquiring locks at commit is more compelling. Based on these findings, they

propose Transactional Locking, which uses lazy version management and write locking at commit. Trans-

actional Locking outperforms Ennal’s STM on benchmarks with significant contention. Dice and Shavit,

however, do not consider write set prediction or alternate conflict resolution policies, which I have shown

improve the performance of LogTM. Because McRT and Ennal’s STM, like LogTM, useencounter-time



92
locking (the STM equivalent of eager conflict detection), one might expect that write set prediction and

careful contention management to provide similar benefits for those systems as well.

7.3  Hardware-Software Hybrid Transactional Memory

Other researchers have proposed hybrids between software and hardware transactional memory systems.

Such hybrid systems offer the possibility of a gradual migration to support for HTM by allowing the same

program to take advantage of transactional memory hardware if it is present, but still run correctly other-

wise. In addition, these hybrid schemes allow smaller, simpler transactions to run in hardware, while pro-

viding compatibility with software transactions, which can be used to run transactions not supported by the

hardware.

7.3.1  Transactional Lock Removal

Speculative Lock Elision (SLE) [64] and Transactional Lock Removal (TLR) [65] are hardware optimiza-

tions that allow shared-memory multiprocessors to execute lock-based critical sections in a transactional

manner without explicitly executing lock and release operations. TLR & SLE provide significant perfor-

mance benefits to multiprocessors running conventional lock-based programs. Since using locks is the

most common method of synchronization for shared-memory programs, implementing SLE & TLR will

provide a speedup on a wide range of existing software. Although the applicability of TLR and SLE to

existing software is certainly appealing to computer designers, their impact is ultimately limited by the fact

that they do not provide the programmer a better way to write concurrent programs.

Speculative Lock Elision is based on the observation that the initial lock acquire and final lock release of a

typical critical section protected by test and set locks form a temporally silent pair. That is, the release

undoes the effect of the acquire. As a result, if all the actions of a critical section are observed to occur

simultaneously—as they should to preserve critical-section behavior—there is no evidence that the acquire

and release ever occurred. SLE uses processor speculation to elide the lock operations and perform short



93
critical sections optimistically. If there is a conflict (e.g. the lock is contended), the speculative critical sec-

tion is squashed. The processor can then either retry the critical section speculatively, or revert to conven-

tional operation and perform the lock acquire. SLE reduces the overhead of lock operations and can

eliminate unnecessary serialization of critical sections. SLE, however, does not improve performance in

the presence of contention. In that case, critical sections must be serialized, and SLE can lead to increased

overhead [64].

TLR extends SLE with a mechanism for serializing critical sections efficiently without reverting to the

original lock actions. TLR detects lock acquire and release operations and treats code between them as a

transaction. As with SLE, TLR elides the acquire and executes the transaction speculatively. TLR, how-

ever, does not blindly squash its speculative execution when a conflict is detected. Instead, a TLR-enabled

processor can defer a memory request until it finishes its current transaction. Naturally, deferring memory

requests can lead to conflicts between processors running transactions with overlapping data sets. Rajwar

and Goodman outline a starvation-free conflict resolution algorithm based on local timestamps. In their

scheme, each transaction is assigned a local timestamp. Each processor updates its timestamp at the end of

each successful TLR transaction, by choosing a value later than the timestamp of any request it deferred

during the last transaction. During a conflict, the transaction with the lower sequence number wins, and the

other is squashed. Transactions maintain their sequence numbers so that each transaction will eventually

become the oldest in the system and win all remaining conflicts [65].

Unlike LogTM and other HTMs, SLE and TLR do not change the programming model. Programmers must

still create a locking mechanism that will correctly synchronize their programs and avoid deadlock. SLE

and TLR, in particular, may alleviate common performance problems with locks, e.g. overly conservative

synchronization. But, because the programming model is still lock-based, SLE and TLR do not address the

problems associated with lock composition. Because the programs work with locks, however, SLE and

TLR can improve the performance of existing non-transactional codes, which HTMs cannot do.



94
7.3.2  Hybrid Transactional Memory

Hybrid Transactional Memory (HyTM) aims to combine the speed of HTM with the robustness of STM

[18]. In addition, HyTM promises a smoother adoption path for transactional memory support in both lan-

guages and hardware. HyTM proponents argue that programmers will adapt to transactions only if transac-

tional memory is both supported on their current hardware (STM) and if transactional memory will

provide performance benefits in the long run (HTM). Meanwhile, hardware designers will be loath to

spend precious hardware resources on structures that do not speed up current applications. With HyTM,

programmers can begin developing transactional memory applications immediately, which they will not

have to re-write to take advantage of the HTM capabilities of future hardware.

Damron et al. propose two HyTM schemes that ensure compatibility between software and hardware trans-

actions. The first scheme maintains a single global counter that tracks the number of currently executing

software transactions. Each software transaction updates the counter when it begins and decrements the

counter when it commits or aborts. Each hardware transaction reads the counter, which then becomes part

of the transaction’s read set. Therefore, any software transaction that begins will abort all active hardware

transactions when it updates the counter. Checking the software transaction counter requires very little

overhead for hardware transactions, but as soon as any transaction runs as a software transaction, all other

transactions must do so as well.

HyTM has the advantage that little—in fact no—hardware support is necessary to execute transactional

memory. The hardware support the authors propose is also simpler and easier to implement than LogTM.

That simplicity, however, comes a price. Damron et al. report that LogTM significantly outperforms HyTM

on several benchmarks [53].



95
7.3.3  Virtual Transactional Memory

Virtual Transactional Memory (VTM) [66] is a combined hardware/software solution to virtualize a cache-

based HTM. VTM handles transaction conflict detection and version management after cache evictions,

paging, and context switches. Like LogTM, VTM detects conflicts eagerly, but VTM performs version-

management lazily—preventing transactions from updating shared memory locations until commit. Also

like LogTM, VTM implements transactions with a combination of hardware and software. In VTM, how-

ever, some transactions are executed completely in hardware, and others completely in software, or low-

level PAL or micro-code. In contrast, LogTM executes some aspects of all transactions in hardware (e.g.,

conflict detection) and other aspects in software (e.g., transaction rollback).

7.3.4  Bulk

Ceze et al. developed Bulk to support transactional memory with arbitrary-sized transactions and thread

level speculation with large tasks [11]. Bulk encodes read and write sets insignatures. Signatures, like

Bloom filters [7], over approximate membership in read and write sets, allowing false positives (incorrectly

reporting membership), but not false negatives (incorrectly reporting non-membership).

Bulk implements HTM using lazy version management and lazy conflict detection like TCC. In Bulk,

however, a processor commits a transaction by broadcasting its write signature instead of its entire write

set. Similarly, when processors receive commit messages, they compare the received write signature

against their own read and write signatures. As in TCC, if a processor detects a possible conflict (a non-

null intersection), it aborts its transaction.

Because signatures can encode any number of addresses, transactions in Bulk can access any number of

cache blocks without serializing transactions. Cache lines touched in a transaction may be evicted silently

if they do not contain modified data. Any data modified in a transaction, however, must be saved to a pri-



96
vate overflow area in memory before they are evicted from the cache. Values in the overflow area are only

copied back to their main memory location on commit.

Also, unlike TCC, Bulk allows non-transactional operation. To detect conflicts between transactions and

non-transactional memory accesses, processors check their read and write signatures for potential conflicts

on every incoming coherence request. This practice requires that all coherence requests are compared

against all active signatures, effectively requiring a broadcast-based coherence protocol.

7.3.5  Page-Granularity Transaction Virtualization

Several researchers have also proposed using the virtual memory paging mechanism to provide version

management and conflict detection for transactions that overflow a cache-based HTM [14, 17]. Of these,

LogTM is most similar to Chuang et al.’s Page-Based Transactional Memory (PTM). One variant of PTM,

Copy-PTM, uses eager version management like LogTM. Unlike LogTM, however, the PTM mechanism

is evoked on the eviction of any cache line accessed in an active transaction. Furthermore, the mechanism

has a high overhead—the first cache eviction to a given page in a transaction triggers a copy of the entire

page.

7.4  Speculative Multithreading

Speculative multithreading [23, 24, 76, 79, 81] or thread-level speculation, breaks a single thread of com-

putation into multiple tasks, which, like transactions, may be executed in parallel if their data accesses do

not conflict. Speculative tasks and transactions have three important differences. First, speculative tasks

must appear to execute in a pre-defined order whereas transactions may execute in any sequential order.

Second, because speculative tasks are part of a single thread, they share register values as well as memory.

Finally, because the threading is transparent to the programmer, there is no need to support a software

driven abort, or rollback in thread-level speculation.



97
Garzaran et al. introduce a taxonomy of speculative threading approaches, which they apply both to their

own work and to other proposals [23]. Schemes are first divided into Architectural Main Memory (AMM)

and Future Main Memory (FMM) categories. AMM mechanisms prevent speculative data from reaching

memory. The output of a given task must be buffered until the task is ready to commit. In FMM schemes,

tasks write directly to memory and maintain a backup copy of all data that are speculatively overwritten. In

general, FMM schemes allow speculative tasks to be larger, but suffer longer delays from squashing tasks.

AMM systems are divided into Eager AMM and Lazy AMM. Eager AMM systems merge all task updates

with memory at task commit. Lazy AMM relies on normal cache write backs to merge updates with main

memory, but must track which processor currently has the most recent copy of any given datum. Specula-

tive multithreading architectures are further divided into single-task and multi-task architectures. Multi-

task architectures allow a single processor to operate on more than one speculative task at a time. Both sin-

gle-task and multi-task architectures can support either a single or multiple version of a given memory

location. Using their taxonomy, LogTM is single-T FMM.

7.4.1  Software Logging in Thread-Level Speculation

Of the many thread-level speculation schemes, LogTM is most similar to the designs developed by the

Iacoma group at the University of Illinois. Their system use Future Main Memory (FMM)—the thread

level speculation equivalent of eager version management. The group presented two systems using soft-

ware and hardware logging to rollback speculative state.

The first of these schemes was that presented by Zhang et al. [88, 89], which performs version manage-

ment using a hardware-controlled undo log. The undo log is physically distributed throughout the various

nodes in the system. Entries are added to the log by the directory controller at the home node of an array

element. A processor executing a task (loop iteration) that updates an element first sends a protocol mes-

sage to the home directory controller for the element. That controller then copies the value of that element



98
(possibly generating and sending other protocol messages to other nodes) to a free entry in the local por-

tion of the undo log.

Garzaran et al. developed the software logging scheme to reduce hardware complexity [24]. The compiler

adds instructions to save the previous value of each memory location the task overwrites to the undo log.

Software only controls the management of the undo log. Special hardware is still required to detect con-

flicts between tasks. In this case, the authors propose adding special memory instructions to allow these

compiler-inserted instructions to access the task IDs. Each log record includes the ID of the task that wrote

the stored version and the ID of the task that wrote the log record. Software logging performs well for

applications with few squashes due to inter-task dependences—about 10% slowdown compared to a hard-

ware-only implementation. Two drawbacks of this approach are (1) pollution in the cache from log-man-

agement and (2) cascaded rollbacks.



99

Chapter 8

Conclusion

Although only time will tell if transactional memory will ultimately succeed, there is already evidence that

it will play some role in the future of parallel processing. Transactional memory is already gaining momen-

tum with programmers. For example, all three of the languages developed for the High-Productivity Com-

puter Systems challenge [62] include an atomic construct [12, 63]. Similarly, while thus far no mainstream

processors have included support for HTM, a wide and growing body of research continues to demonstrate

its potential.

In order for processor makers to adopt HTM, however, they must be convinced that its benefits—ease of

programming or better performance—justify the expense required to build it. The key for researchers

investigating transactional memory, therefore, is to find implementations of transactional memory systems

that support a convenient, unrestricted transactional execution model while at the same time balancing

transactional memory performance and implementation cost.

After developing and evaluating LogTM, I am ever more convinced that the only way to achieve this in a

transactional memory system is through hardware/software cooperation. Supporting an unrestricted trans-

actional memory interface, including support for very large transactions and virtualization events, is

impractical, if not wasteful, in hardware. But, pure STM seems unlikely to ever match the performance of

HTM or hardware-accelerated transactional memory. Leveraging cache coherence provides hardware

implementations an enormous advantage over their software counterparts, especially for conflict detection.

LogTM and its extensions have shown that transactional memory need not be invisible to software, but

can, in fact, incorporate software in its implementation.



100
My experience with LogTM also leads me to believe that using eager version management and eager con-

flict detection is a viable approach for implementing transactional memory. That approach is only effective

if abort rates are low. But, the abort rate can be controlled by the conflict detection and resolution policies.

The combination of the Requester Stalls conflict resolution policy and write set predictionmakesaborts

rare. Eager version management and LogTM are particularly appealing when large transactions are consid-

ered because LogTM’s version management is virtualized by default.

Much of the success of LogTM is due to the fact that it exposes transaction state—the version information

in the log—to software. Similarly, Nested LogTM, LogTM-SE and LogTM-SE adapted for software con-

tention management all expose more of the details of transactional memory to various software compo-

nents, which allows those systems to be both more useful and cheaper to implement than the original

LogTM.



101
References

[1] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin Saha, and Tatiana

Shpeisman. Compiler and Runtime Support for Efficient Software Transactional Memory. InPro-

ceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI), pages 26–37, 2006.

[2] Ardsher Ahmed, Pat Conway, Bill Hughes, and Fred Weber. AMD Opteron Shared Memory MP

Systems. InProceedings of the 14th HotChips Symposium, August 2002.

[3] Haitham Akkary, Ravi Rajwar, and Srikanth T. Srinivasan. Checkpoint Processing and Recovery:

An Efficient, Scalable Alternative to Reorder Buffers.IEEE Micro, 23(6), Nov/Dec 2003.

[4] Alaa R. Alameldeen and David A. Wood. Addressing Workload Variability in Architectural Simu-

lations.IEEE Micro, 23(6):94–98, Nov/Dec 2003.

[5] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and Sean Lie.

Unbounded Transactional Memory. InProceedings of the Eleventh IEEE Symposium on High-Per-

formance Computer Architecture, February 2005.

[6] Ernest Artiaga, Nacho Navarro, Xavier Martorell, and Yolanda Becerra. Implementing PARMACS

Macros for Shared Memory Multiprocessor Environments. Technical report, Polytechnic Univer-

sity of Catalunya, Department of Computer Architecture Technical Report UPC-DAC-1997-07,

January 1997.

[7] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.Communica-

tions of the ACM, 13(7):422–426, July 1970.

[8] Colin Blundell, E Christopher Lewis, and Milo M.K. Martin. Deconstructing Transactional

Semantics: The Subtleties of Atomicity. InWorkshop on Duplicating, Deconstructing, and

Debunking (WDDD), June 2005.

[9] Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D. Hill, Michael M. Swift, and

David A. Wood. Performance Pathologies in Hardware Transactional Memory. InProceedings of

the 34th Annual International Symposium on Computer Architecture, June 2007.

[10] Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problems in Multicache Sys-

tems.IEEE Transactions on Computers, C-27(12):1112–1118, December 1978.



102
[11] Luis Ceze, James Tuck, Calin Cascaval, and Josep Torrellas. Bulk Disambiguation of Speculative

Threads in Multiprocessors. InProceedings of the 33nd Annual International Symposium on Com-

puter Architecture, June 2006.

[12] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel Programmability and the

Chapel Language.International Journal of High Performance Computing Applications, 2007.

[13] Albert Chang and Mark F. Mergen. 801 Storage: Architecture and Programming.ACM Transac-

tions on Computer Systems, 6(1), February 1988.

[14] Weihaw Chuang, Satish Narayanasmy, Ganesh Venkatesh, Jack Sampson, Michael Van Bies-

brouck, Gilles Pokam, Osvaldo Colavin, and Brad Calder. Unbounded Page-Based Transactional

Memory. InProceedings of the Twelfth International Conference on Architectural Support for

Programming Languages and Operating Systems, October 2006.

[15] Duk Chun and Shabbir Latif. MIPS R4000 Synchronization Primitives. Technical Report AP004,

MIPS Technologies, Inc., April 1993.

[16] JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Austen McDonald, Brian D. Carlstrom, Christos

Kozyrakis, and Kunle Olukotun. The Common Case Transactional Behavior of Multithreaded Pro-

grams. InProceedings of the Twelfth IEEE Symposium on High-Performance Computer Architec-

ture, February 2006.

[17] JaeWoong Chung, Chi Cao Minh, Austen McDonald, Hassan Chafi, Brian D. Carlstrom, Travis

Skare, Christos Kozyrakis, and Kunle Olukotun. Tradeoffs in Transactional Memory Virtualiza-

tion. InProceedings of the Twelfth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, October 2006.

[18] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchango, Mark Moir, and Daniel Nuss-

baum. Hybrid Transactional Memory. InProceedings of the Twelfth International Conference on

Architectural Support for Programming Languages and Operating Systems, October 2006.

[19] E. W. Dijkstra. Solution of a problem in concurrent programming control.Commun. ACM,

8(9):569, 1965.

[20] Robert Ennals. Efficient Software Transactional Memory. Technical Report IRC-TR-05-051, Intel

Research Cambridge, January 2005.

[21] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions of Consistency and Predicate

Locks in a Database System.Communications of the ACM, 19(11):624–633, 1976.

[22] Hector Garcia-Molina, Dieter Gawlick, Johannes Klein, Karl Kleissner, and Kenneth Salem. Mod-

eling Long-Running Activities as Nested Sagas.IEEE Bulletin of the Technical Committee on

Data Engineering, 14(1):14–18, 1991.



103
[23] María Jesús Garzarán, Milos Prvulovic, Victor Viñals, José María Llabería, Lawrence Rauchw-

erger, and Josep Torrellas. Tradeoffs in Buffering Memory State for Thread-Level Speculation in

Multiprocessors. InProceedings of the Ninth IEEE Symposium on High-Performance Computer

Architecture, February 2003.

[24] María Jesús Garzarán, Milos Prvulovic, Victor Viñals, José María Llabería, Lawrence Rauchw-

erger, and Josep Torrellas. Using Software Logging to Support Multi-Version Buffering in Thread-

Level Speculation. InProceedings of the International Conference on Parallel Architectures and

Compilation Techniques, September 2003.

[25] James R. Goodman. Using Cache Memory to Reduce Processor-Memory Traffic. InProceedings

of the 10th Annual International Symposium on Computer Architecture, pages 124–131, June

1983.

[26] J. Gray, R. Lorie, F. Putzolu, and I. Traiger. Granularity of Locks and Degrees of Consistency in a

Shared Database. InModeling in Data Base Management Systems, Elsevier North Holland, New

York, 1975.

[27] Jim Gray. The Transaction Concept: Virtues and Limitations. InProceedings of the 7th Interna-

tional Conference on Very Large Data Bases, September 1981.

[28] Anoop Gupta, Wolf-Dietrich Weber, and Todd Mowry. Reducing Memory and Traffic Require-

ments for Scalable Directory-Based Cache Coherence Schemes. InInternational Conference on

Parallel Processing (ICPP), volume I, pages 312–321, 1990.

[29] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben Hertzberg,

Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun. Transactional

Memory Coherence and Consistency. InProceedings of the 31st Annual International Symposium

on Computer Architecture, June 2004.

[30] Tim Harris and Keir Fraser. Language support for lightweight transactions. InProceedings of the

18th SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and Applica-

tion (OOPSLA), October 2003.

[31] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable Memory

Transactions. InProceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPOPP), June 1991.

[32] Maurice Herlihy, Victor Luchangco, Mark Moir, and William Scherer III. Software Transactional

Memory for Dynamic-Sized Data Structures. InTwenty-Second ACM Symposium on Principles of

Distributed Computing, Boston, Massachusetts, July 2003.



104
[33] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural Support for Lock-

Free Data Structures. Technical Report Technical Report 92/07, Digital Cambridge Research Lab,

1992.

[34] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural Support for Lock-

Free Data Structures. InProceedings of the 20th Annual International Symposium on Computer

Architecture, pages 289–300, May 1993.

[35] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The microarchi-

tecture of the Pentium 4 processor.Intel Technology Journal, February 2001.

[36] Tim Horel and Gary Lauterbach. UltraSPARC-III: Designing Third Generation 64-Bit Perfor-

mance.IEEE Micro, 19(3):73–85, May/June 1999.

[37] IBM Corporation.Book E: Enhanced PowerPC Architecture, version 0.91, July 21, 2001.

[38] Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small

Fully-Associative Cache and Prefetch Buffers. InProceedings of the 17th Annual International

Symposium on Computer Architecture, pages 364–373, May 1990.

[39] Chetana N. Keltcher, Kevin J. McGrath, Ardsher Ahmed, and Pat Conway. The AMD Opteron

Processor for Multiprocessor Servers.IEEE Micro, 23(2):66–76, March-April 2003.

[40] Tom Knight. An Architecture for Mostly Functional Languages. InProceedings of the ACM Con-

ference on LISP and Functional Programming, pages 105–112, 1986.

[41] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-Way Multi-

threaded Sparc Processor.IEEE Micro, 25(2):29–25, Mar/Apr 2005.

[42] H. T. Kung and J. T. Robinson. On Optimistic Methods for Concurrency Control.ACM Transac-

tions on Database Systems, pages 213–226, June 1981.

[43] Leslie Lamport. The Mutuall Exclusion Problem: Part I, A Theory of Interprocess Communica-

tion. J. ACM, 33(2):313–326, 1986.

[44] James R. Larus and Ravi Rajwar.Transactional Memory. Morgan & Claypool Publishers, 2006.

[45] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. InPro-

ceedings of the 24th Annual International Symposium on Computer Architecture, pages 241–251,

June 1997.

[46] Scott Lie. Hardware Support for Unbounded Transactional Memory. Master’s thesis, MIT, May

2004.

[47] Tim Lindholm and Frank Yellin.The JavaTM Virtual Machine Specification. Sun Microsystems,

1999.



105
[48] Peter S. Magnusson et al. Simics: A Full System Simulation Platform.IEEE Computer, 35(2):50–

58, February 2002.

[49] V.J. Marathe, W.N. Scherer III, and M.L. Scott. Adaptive Software Transactional Memory. In

Pierre Fraigniaud, editor,Distributed algorithms, volume 3724 ofLecture Notes In Computer Sci-

ence, pages 354–368, September 2005.

[50] Milo M. K. Martin et al. Protocol Specifications and Tables for Four Comparable MOESI Coher-

ence Protocols: Token Coherence, Snooping, Directory, and Hammer. http://www.cs.wisc.edu/

multifacet/theses/milo_martin_phd/, 2003.

[51] Austen McDonald, JaeWoong Chung, Brian Carlstrom, Chi Cao Minh, Hassan Chafi, Christos

Kozyrakis, and Kunle Olukotun. Architectural Semantics for Practical Transactional Memory. In

Proceedings of the 33nd Annual International Symposium on Computer Architecture, June 2006.

[52] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A Transaction Recovery

Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging.

In Readings in Database Systems, pages 251–285. Morgan Kaufmann Publishers, 1998.

[53] Mark Moir. Hybrid Transactional Memory. Presented at the Twelfth International Conference on

Architectural Support for Programming Languages and Operating Systems, October 2006.

[54] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A. Wood.

LogTM: Log-Based Transactional Memory. InProceedings of the Twelfth IEEE Symposium on

High-Performance Computer Architecture, pages 258–269, February 2006.

[55] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D. Hill, Ben Liblit,

Michael M. Swift, and David A. Wood. Supporting Nested Transactional Memory in LogTM. In

Proceedings of the Twelfth International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 359–370, October 2006.

[56] Andreas Moshovos, Gokhan Memik, Babak Falsafi, and Alok Choudhary. JETTY: Filtering

Snoops for Reduced Power Consumption in SMP Servers. InProceedings of the Seventh IEEE

Symposium on High-Performance Computer Architecture, January 2001.

[57] J. Eliot B. Moss.Nested transactions: an approach to reliable distributed computing. PhD thesis,

Massachusetts Institute of Technology, 1981.

[58] J. Eliot B. Moss. Nesting Transactions: Why and What Do We Need? TRANSACT Keynote

Address, June 2006.

[59] J. Eliot B. Moss. Open Nested Transactions: Semantics and Support. InWorkshop on Memory Per-

formance Issues, February 2006.



106
[60] J. Eliot B. Moss and Antony L. Hosking. Nested Transactional Memory: Model and Preliminary

Architecture Sketches. InSCOOL Workshop, October 2005.

[61] W. W. Peterson and E. J. Weldon, Jr.Error-Correcting Codes. MIT Press, 1972.

[62] DARPA Information Processing and Technology Office. High Productivity Computer Systems.

http://www.highproductivity.org/.

[63] Fortress Project. Fortress Project Home. http://fortress.sunsource.net/.

[64] Ravi Rajwar and James R. Goodman. Speculative Lock Elision: Enabling Highly Concurrent Mul-

tithreaded Execution. InProceedings of the 34th Annual IEEE/ACM International Symposium on

Microarchitecture, December 2001.

[65] Ravi Rajwar and James R. Goodman. Transactional Lock-Free Execution of Lock-Based Pro-

grams. InProceedings of the Tenth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, October 2002.

[66] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing Transactional Memory. InProceed-

ings of the 32nd Annual International Symposium on Computer Architecture, June 2005.

[67] Hany E. Ramadan, Christopher J. Rossbach, Donald E. Porter, Owen S. Hofmann, Aditya Bhan-

dari, and Emmet Witchel. MetaTM/TxLinux: Transactional Memory for an Operating System. In

Proceedings of the 32nd Annual International Symposium on Computer Architecture, June 2005.

[68] Raghu Ramakrishnan and Johannes Gehrke.Database Management Systems. McGraw Hill, 2000.

[69] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin

Hertzberg. McRT-STM: a High Performance Software Transactional Memory System for a Multi-

Core Runtime. InProceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming (PPoPP), March 2006.

[70] M. Satyanarayanan and Dileep Bhandarkar. Design Trade-Offs in VAX-11 Translation Buffer

Organization.Computer, 14(12):103– 111, December 1981.

[71] W. N. Scherer III and M. L. Scott. Advanced Contention Management for Dynamic Software

Transactional Memory. InTwenty-Fourth ACM Symposium on Principles of Distributed Comput-

ing, July 2005.

[72] Nir Shavit and Dan Touitou. Software Transactional Memory. InFourteenth ACM Symposium on

Principles of Distributed Computing, Ottawa, Ontario, Canada, pages 204–213, August 1995.

[73] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven Balensiefer, Dan Grossman,

Richard L. Hudson, Katherine F. Moore, and Bratin Saha. Enforcing Isolation and Ordering in

STM. InProceedings of the SIGPLAN 2007 Conference on Programming Language Design and

Implementation, June 2007.



107
[74] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel Appli-

cations for Shared Memory.Computer Architecture News, 20(1):5–44, March 1992.

[75] Richard L. Sites, editor.Alpha Architecture Reference Manual. Digital Press, 1992.

[76] G.S. Sohi, S. Breach, and T.N. Vijaykumar. Multiscalar Processors. InProceedings of the 22nd

Annual International Symposium on Computer Architecture, pages 414–425, June 1995.

[77] Janice M. Stone, Harold S. Stone, Philip Heidelberger, and John Turek. Multiple Reservations and

the Oklahoma Update.IEEE Parallel and Distributed Technology, Systems, & Applications,

1(4):58–71, November 1993.

[78] Paul Sweazey and Alan Jay Smith. A Class of Compatible Cache Consistency Protocols and their

Support by the IEEE Futurebus. InProceedings of the 13th Annual International Symposium on

Computer Architecture, pages 414–423, June 1986.

[79] Jean-Yuan Tsai and Pen-Chung Yew. The Superthreaded Architecture: Thread Pipelining with

Run-Time Data Dependence Checking and Control Speculation. InProceedings of the Interna-

tional Conference on Parallel Architectures and Compilation Techniques, pages 35–46, October

1996.

[80] Andrew Tucker, Bart Smaalders, Dave Singleton, and Nicolai Kosche. Method and apparatus for

execution and preemption control of computer process entities, August 1999. U.S. Patent

5,937,187.

[81] T.N. Vijaykumar, Sridar Gopal, James E. Smith, and Gurindar Sohi. Speculative Versioning

Cache.IEEE Transactions on Parallel and Distributed Systems, 12(12):1305–1317, December

2001.

[82] David L. Weaver and Tom Germond, editors.SPARC Architecture Manual (Version 9). PTR Pren-

tice Hall, 1994.

[83] Gerhard Weikum and Hans-Jorg Schek.Concepts and Applications of Multilevel Transactions and

Open Nested Transactions. Morgan Kaufmann, 1992.

[84] Wisconsin Multifacet GEMS Simulator. http://www.cs.wisc.edu/gems/.

[85] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. The

SPLASH-2 Programs: Characterization and Methodological Considerations. InProceedings of the

22nd Annual International Symposium on Computer Architecture, pages 24–37, June 1995.

[86] Kenneth C. Yeager. The MIPS R10000 Superscalar Microprocessor.IEEE Micro, 16(2):28–40,

April 1996.

[87] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris Volos, Mark D. Hill,

Michael M. Swift, and David A. Wood. LogTM-SE: Decoupling Hardware Transactional Memory



108
from Caches. InProceedings of the Thirteenth IEEE Symposium on High-Performance Computer

Architecture, pages 261–272, February 2007.

[88] Ye Zhang, Lawrence Rauchwerger, and Josep Torrellas. Hardware for Speculative Run-Time Par-

allelization in Distributed Shared-Memory Multiprocessors. InProceedings of the Fourth IEEE

Symposium on High-Performance Computer Architecture, February 1998.

[89] Ye Zhang, Lawrence Rauchwerger, and Josep Torrellas. Hardware for Speculative Parallelization

of Partially-Parallel Loops in DSM Multiprocessors,. InProceedings of the Fifth IEEE Symposium

on High-Performance Computer Architecture, January 1999.

[90] Craig Zilles and David H. Flint. Challenges to Providing Performance Isolation in Transactional

Memories. InWorkshop on Duplicating, Deconstructing, and Debunking (WDDD), June 2005.


