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Chapter 3
Log-Based Transactional Memory (LogTM)

LogTM is a strategy for implementing transactional memory a transactional memory system that combines 

software-based version management (with limited hardware support) and conservative hardware conflict 

detection to support arbitrary-sized transactions with limited hardware. LogTM adapts a well-known data-

base algorithm for implementing transactions, Strict 2-Phase Locking and Write Ahead Logging. LogTM 

performs version management using write ahead logging to store old values before new values are written 

in place. LogTM detects conflicts eagerly, in a manner equivalent to Strict 2-Phase Locking. To balance 

implementation cost and performance, LogTM divides the work of providing atomicity and isolation in 

transactions between hardware and software. For speed, hardware detects conflicts; to save complexity, 

transaction updates are rolled back by software. The following sections describe the requirements for 

LogTM’s version management, conflict detection and conflict resolution. The rest of the chapter describes 

the LogTM API and discusses the tradeoffs involved in implementing the various components of transac-

tional memory in hardware or software.

3.1  Eager Version Management

A defining feature of LogTM is its use of eager version management, wherein “new” values are stored in 

place while old values are saved in an alternate location. Specifically, in LogTM, the old values of registers 

are saved in a register checkpoint and old values of memory are stored in the transaction log, a thread-pri-

vate section of the user program’s virtual address space. If the transaction aborts, a software abort handler 

restores old values from the log and register checkpoint.
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3.1.1  The Transaction Log
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FIGURE 3-1. The Transaction Log.

In LogTM, each thread allocates a region of virtual memory, the transaction log, to store a record of the 

updates made by its most recent transaction. The base and bounds of the log are defined by two processor 

registers: Log Base and Log Pointer. The thread sets log base when it allocates space for the log—at 

thread creation, or when the LogTM system is initialized. The LogTM system updates Log Pointer each 

time it adds an entry to the log. Figure 3-1 illustrates the layout of the log in virtual memory. The main 

array is a representation of virtual memory. Virtual addresses are shown on the left. The shaded area (bot-
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tom of Figure 3-1) represents the transaction log for the current thread. The unshaded area represents 

shared memory locations, e.g., part of the heap.

The LogTM system maintains the log at a fixed granularity, logically dividing memory into fixed sized 

blocks. Figure 3-1 shows an active transaction log after three stores using an 8-byte log granularity. The 

three pairs of shaded blocks in Figure 3-1 represent the old and new values of three memory blocks. New 

values are stored in place and old values are stored in the log. The log contains an undo record,which 

includes the virtual address of the modified block and its old value, for each store executed. Because the 

purpose of the log is to restore pre-transaction values, a LogTM system need only log the first update to 

any given memory location.

The log is defined in virtual memory for which physical memory is allocated on demand. If adding a log 

entry exhausts the physical memory in the log, the current thread takes a page fault and uses the exisiting 

virtual memory support to allocate an additional page for the log. Because the transaction log is stored in 

virtual memory, it may grow arbitrarily large. Log pages may be swapped to disk without impacting 

LogTM’s version management.

In database terminology, the transaction log is an undo-only log—i.e., it does not contain sufficient infor-

mation to re-execute a transaction nor to recover the state of memory in the event of a crash [45]. This is in 

contrast to the logging used in most database systems. In a typical database, the log is used for recovery as 

well as transaction rollback. Importantly, because the transaction log is not used for recovery, there is no 

need to store the log on disk or other stable storeage. Furthermore, since the log is not needed after the 

commit of a transaction, unlike the log in most database systems, the transaction log in LogTM is thread 

private and may be discarded after a transaction completes.
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3.1.2  Transaction Commit

To commit a transaction, the executing thread simply clears its transaction log by setting the log pointer 

equal to the log base and discards its register checkpoint. No copying is needed because new values are 

already in place.

3.1.3  Transaction Abort

To maintain atomicity in the event of a transaction abort, LogTM must undo any updates from the aborting 

transaction by restoring the old values maintained in the transaction log and register checkpoint to their 

original locations in memory and processor registers. In order to save hardware complexity, LogTM per-

forms this restoration in software. In LogTM, an abort restores old values by: (1) jumping to the start of the 

abort handler, (2) executing the handler (a load and store for every word in the log and an additional load 

for each address—one per log entry—in the log), and (3) restoring the processor registers to their pre-

transaction states.

3.2  Eager Conflict Detection

LogTM employs eager conflict detection: the system must detect and resolve any conflict triggered by a 

memory request before that request completes. In LogTM, this detection is the responsibility of hardware. 

Implementations of LogTM are expected to leverage the coherence mechanism to implement conflict 

detection efficiently. LogTM implementations must report all true conflicts between concurrent transac-

tions, but to reduce hardware complexity and cost, they are allowed to report false conflicts.

3.2.1  Requirements

LogTM’s eager conflict detection is based on strict two-phase locking. In place of the shared and exclusive 

locks used in database systems, however, LogTM requires read and write isolation. If a block is read iso-
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lated, it cannot be written by any thread without generating a conflict. If a block is write isolated, it cannot 

be read or written by any thread without generating a conflict. Unlike locking, isolation does not prescribe 

any particular conflict resolution mechanism (e.g., blocking).

Requirement 1: Transactions Must be Well Formed. In order for a thread to read a memory loca-

tion in a transaction, that thread must obtain read isolation on that location. In order to write a location, a 

thread must obtain write isolation on that location. If an attempt to acquire read or write isolation fails, or 

results in a transaction conflict, the system must signal a conflict before the offending memory instruction 

is retired.

Requirement 2: Isolation Must be Strict Two Phase. This requires that the locking, or isolation in 

LogTM must be strict two phase. Any memory location that becomes read or write isolated by being read 

or written in a transaction must remain isolated until the commit or abort of that transaction.

Requirement 3: Isolation Must be Released at Transaction End. Conflicts may prevent one or 

more tranasctions from making forward progress. In order to ensure forward progress in the system, a 

thread must release its isolation when it aborts or commits its transaction.

3.2.2  Example Implementation

For small transactions—the expected common case—the entire read and write set of the transaction 

remains in the private cache of the executing processor. In this case, a standard invalidation-based cache 

coherence protocol is well suited to detecting transaction conflicts. As discussed in Chapter 2, cache-

coherent multiprocessors that use invalidation-based coherence protocols typically enforce the invariant 

that every block of memory resides in one of three logical states: (I) the block is invalid in all caches, (S) 

one or more caches hold a valid read-only copy of the block and (M) one cache only has a writable copy of 

the block. Such systems already require that a processor obtain shared (read only) access to a memory 
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location before it may be read and exclusive access (read/write permission) before it may be written. As a 

result, if isolation is provided by the coherence mechanism, these protocols enforce the well formed 

requirement by default. Additionally, these rules ensure that any memory access that hits in the local (pri-

vate) cache will not trigger a transaction conflict. Conflict detection in such a system works as follows: 

each processor tracks the read and write sets of its active transaction with two additional bits per line in its 

private cache. The read (R) bit indicates that the block has been read during the current transaction. The 

write (W) bit indicates that the block has been written during the current transaction and potentially con-

tains data values from an uncommitted transaction. When a processor P executes a load or store, it first 

checks its local cache. If the corresponding block is not present, P issues a request for the block to the 

memory system. That request is sent to one or more other processors (e.g., via a broadcast or forwarded by 

a directory). Those processors check their local state (in the cache or memory controller) to detect conflicts 

with any transactions running there. The presence of a conflict is returned along with the coherence 

response. That response signals the conflict (if any) to P, which resolves the conflict. The states of the con-

tended block in the responding processors’ caches remain the same, as do the R and W bits, until the trans-

actions running on those processors end by committing or aborting. This fulfills the strict two-phase 

requirement. Finally, at the end of a transaction, the processor flash-clears the R and W bits in its cache, 

fulfilling the requirement to release all read and write isolation after the transaction commits or aborts.

3.3  Conflict Resolution

When two transactions conflict, any transactional memory implementation must stall (risking deadlock) or 

abort (risking live-lock) at least one transaction. Recall that when a LogTM processor P makes a coherence 

request, it may get forwarded to processor Q to detect a conflict. Q then responds to P, including the pres-

ence or absence of a conflict in the response. If there is a conflict, processor P resolves it upon receiving the 

response. P may resolve the conflict by either stalling or aborting. To reduce the frequency of aborts (which 
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waste work and power), it might be preferable for P to wait for a short time and then re-issue its request to 

Q in the hope that Q 

FIGURE 3-2. Execution of a Transaction with Two Alternative Endings

   VA  DATA BLK        R W

 1000              

   c0 34 -------       0 0

   40 ------- 23       0 0

   00 12 -------       0 0

 1040              
 1080              

 (a) begin_transaction

  LogBase  1000  

  LogPtr   1000  

  TMcount      1 

    
    

   VA  DATA BLK        R W

 1000 c0 34------  

   c0 56 -------       0 1

   40 ------- 23       0 0

   00 12 -------       1 0

 1040 -           
 1080               

 (c) store r2, (c0)

  LogBase  1000    

  LogPtr   1048   

  TMcount 1 

   /* assume r2=56 */ 
    

   VA  DATA BLK        R W

 1000                 

   c0 34 -------       0 0

   40 ------- 23       0 0

   00 12 -------       1 0

 1040                
 1080                 

 (b) load r1, (00)

  LogBase  1000     

  LogPtr   1000     

  TMcount      1 

     /* r1 gets 12 */ 
    

   VA  DATA BLK        R W

 1000 c0 34------ 

   c0 56 -------       0 1

   40 ------- 24       1 1

   00 12 -------       1 0

 1040 -40 ------    
 1080 -23         

 (d) load r3, (78)

  LogBase  1000   

  LogPtr   1090   

  TMcount      1 

     r3 = r3 + 1 
     store r3, (78) 

   VA  DATA BLK        R W

 1000 c0 34------   

   c0 56 -------       0 0

   40 ------- 24       0 0

   00 12 -------       0 0

 1040 -40 ------   
 1080 -23       

 (e) commit transaction

  LogBase  1000   

  LogPtr   1000   

  TMcount      0 

      
      

   VA  DATA BLK        R W

 1000 c0 34------ 

   30 34 -------       0 0

   40 ------- 23       0 0

   00 12 -------       0 0

 1040 -40  ------   
 1080 -23       

 (f) abort transaction

  LogBase  1000   

  LogPtr   1000    

  TMcount      0 

 /* ALTERNATIVE to (e) */ 
    /* (d) --> (f) */ 

has completed its conflicting transaction. P cannot wait indefinitely for Q, however, 

without risking deadlock (e.g., if Q is waiting on P).
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3.4  Example

Although presented separately in this chapter, conflict detection and version management interact in 

important ways. To better understand the way LogTM’s eager version management and eager conflict 

detection work together, consider the example depicted in Figure 3-2. Figure 3-2 illustrates the logical exe-

cution of a simple transaction. Part (a) displays a logical view of a thread that has just begun a transaction 

by incrementing its TMcount. Assume that the thread’s log begins at virtual address (VA) 1000 (all num-

bers in hexadecimal), but is empty (Log Pointer=Log Base). In this example, values of data blocks 

are given as a two-digit word and seven dashes (for the other eight-byte words of a 64-byte block). The 

conflict detection state for each block is shown to the right. The R and W flags indicate whether a block is 

read or write isolated by the conflict detection mechanism. Circles indicate changes from the previous 

snapshot. Part (b) shows a load from virtual address 00 acquiring read isolation on that block. Part (c) 

depicts a store to virtual address c0 acquiring write isolation on that block and logging the block’s virtual 

address and old data (34 --------). Part (d) shows a read-modify write of address 78 that acquires read and 

write isolation for the encompassing block and writes the log with the block’s virtual address (40) and old 

data (------- 23). Part (e) shows a transaction commit that resets TMcount, LogPtr, and releases all read 

and write isolation. Part (f) shows an alternative where, after part (d), something triggers an abort, which 

must restore values from the log before resetting the TMcount, Log Pointer, and releasing read and 

write isolation.

3.5  LogTM API

Table 3-1 presents LogTM’s interface in three levels. The user interface (top) allows user threads to begin, 

commit and abort transactions. Compilers could translate higher level constructs such as an atomic block 

to LogTM’s begin_transaction and commit_transaction calls like the Java compiler gener-



User Interface

begin_transaction() Requests that subsequent dynamic statements form a transaction. 
Logically saves a copy of user-visible non-memory thread state (i.e., architectural registers, 
condition codes, etc.).

commit_transaction() Ends successful transaction begun by last 
begin_transaction(). Discards any transaction state saved for potential abort.

abort_transaction() Transfers control to a previously-registered abort handler which 
should undo and discard work since last begin_transaction() and (usually) restart the 
transaction.

System/Library Interface

initialize_logtm_transactions(Thread* thread_struct, Address log_base, 

Address log_bound) Initiates a thread’s transactional support, including allocating virtual 
address space for a thread’s log. As for each thread’s stack, page table entries and physical 
memory may be allocated on demand and the thread fails if it exceeds the large, but finite log 
size. (Other options are possible if they prove necessary.) We expect this call to wrapped with a 
user-level thread initiation call (e.g., for P-Threads).

register_abort_handler(void (*) abort_handler) Registers a function to be called 
if a transaction is aborted. Abort handlers are registered on a per-thread basis. The registered 
handler should assume the following pre-conditions and ensure the following post-conditions:

Abort Handler Pre-conditions: Abort has occurred. System may have restored some or all mem-
ory blocks written by the thread to their pre-transaction state. Other memory blocks written by 
the thread (a) have new values in (virtual) memory but these blocks are isolated and (b) have 
their (virtual) address and pre-write values in the log. If a block is logged more than once, its first 
entry pushed on the log must contain its pre-transaction value. Log also contains a record of 
pre-transaction user-visible non-memory thread state.

Abort Handler Post-conditions: Abort handler called undo_log_entry() to pop off every log 
entry. Abort handler then called complete_abort_with_restart() or 
complete_abort_without_restart().

Low-Level Interface

undo_log_entry() Reads a block’s (virtual) address and pre-write data from the last log 
entry, writes the data to the address, and pops the entry off of the log. The system may end iso-
lation on the block if is sure that pre-transaction value is now restored (i.e., there are not earlier 
duplicate log entries for this address).

complete_abort_with_restart() End isolation on all memory blocks, restore thread’s 
non-memory state from last begin_transaction(), and resume execution there.

complete_abort_without_restart() End isolation on all memory blocks, discard 
thread’s non-memory state from begin_transaction(), and return to abort handler. Use to 
handle error conditions.

TABLE 3-1. LogTM Interface

35
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ates monitor enter and exit calls from statically scoped synchronized blocks [JAVA???]. The system/

library interface (middle) lets thread packages initialize per-thread logs and register an abort handler. 

Upon an abort, LogTM lets the abort handler “undo” the log via a sequence of calls using the low-level 

interface (bottom). In the common case, the handler can restart the transaction with user-visible register 

and memory state restored to their pre-transactions values. Rather than just restart, an abort handler can 

also complete an abort and run arbitrary user code to manage aborts.

3.6  Discussion

LogTM is designed to provide robust performance when transactions exceed the size or associativity lim-

its of the hardware. To support such transactions, LogTM must therefore provide both conflict detection 

and version management for data outside processors’ private caches and other dedicated hardware struc-

tures. Conflict detection and version management pose separate challenges to operating outside the 

cache. The distinct characteristics of these challenges lead LogTM to handle each differently, extending 

hardware to provide conflict detection for out-of-cache transactions and deferring version management to 

software.

Version management in unbounded transactions is difficult because the space required to store the sepa-

rate versions is unbounded. Version management is the maintenance of the program’s data values and 

must therefore be performed precisely—i.e., values cannot be altered, lost or associated with the wrong 

version. Because this version information must be maintained precisely, a transactional memory system 

must provide storage for both old and new versions of each object modified in a transaction, requiring 

space equal to the write set (in additional to the program’s space requirements). Memory provides ample 

space to maintain both old and new versions of transactional data, but using memory in such a way 

requires associating separate addresses for each version and implementing a policy to ensure that every 

memory access reaches the proper version. Fortunately, however, versions are switched rarely—on abort 
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if eager version management is used, or on commit otherwise. LogTM employs eager version management 

because aborts should be rarer than commits. LogTM takes advantage of that rarity by passing the respon-

sibility for switching versions to software, in the form of a software abort handler.

Conflict detection for unbounded transactions is challenging because, unlike version management, it must 

be logically performed on every memory access by every processor. Although caches can filter out conflict 

checks for accesses that hit in the cache, conflict detection is still performed frequently. Conflict detection 

is especially challenging to implement in software because it requires remote operations, i.e., the read and 

write set of an overflowing transaction must be checked on every cache miss from every other processor. 

Fortunately, unlike version management, conflict detection need not be performed precisely, but merely 

conservatively. A conflict detection mechanism must report all true conflicts between transactions, but 

reporting a conflict when one does not exist (false conflict) will affect performance, but not correctness. 

LogTM leverages this property by tracking read and write sets conservatively in hardware. By allowing 

false conflicts, LogTM can detect all true conflicts between transactions of any size while using finite 

structures to track read and write sets.

The use of eager version management in LogTM has two primary advantages: (1) commits are fast even 

for large transactions and (2) loads never need to check local write buffers. Although aborting transaac-

tions is more costly with eager version management, aborts often have little effect on execution time in 

general because most transactions commit—more than 98% for many workloads (Chapter 5).

Eager conflict detection has two primary advantages: (1) it detects conflicts sooner and (2) it eliminates the 

need for cascading rollbacks on systems that use eager version management. Detecting conflicts early can 

reduce wasted work in two important ways. First, detecting a conflict early allows a transactional memory 

to abort a transaction early, giving it the opportunity to switch execution to a different thread or transaction. 

Because transactions are atomic, any transaction that does not commit does not contribute to the progress 

of the program. A transactional memory system that can identify unsuccessful transactions early can abort 
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those transactions sooner and potentially run other code that will make progress. Second, detecting con-

flicts early, allows a transactional memory system to resolve many conflicts by stalling one or more trans-

actions. Stalling instead of aborting eliminates wasting work all together.

Strict two-phase locking and write ahead logging has proven to be an effective strategy for implementing 

transactions in database systesm. Eliminating the requirement for durabilty and leveraging hardware sup-

port allows LogTM to adapt this successful algorithm to efficiently implement lightweight memory trans-

actions with little overhead. Eagerly making updates in place allows LogTM to support large transactions 

without copying on commit and makes processing commits, which should be more common, easier than 

processing aborts. Detecting conflicts completely in hardware allows for efficient execution even in pres-

ence of large transactions. This combination allows LogTM systems to balance performance and imple-

mentation cost in transactional memory.
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