
27

Chapter 3
Log-Based Transactional Memory (LogTM)

LogTM is a strategy for implementing transactional memory a transactional memory system that combines

software-based version management (with limited hardware support) and conservative hardware conflict

detection to support arbitrary-sized transactions with limited hardware. LogTM adapts a well-known data-

base algorithm for implementing transactions, Strict 2-Phase Locking and Write Ahead Logging. LogTM

performs version management using write ahead logging to store old values before new values are written

in place. LogTM detects conflicts eagerly, in a manner equivalent to Strict 2-Phase Locking. To balance

implementation cost and performance, LogTM divides the work of providing atomicity and isolation in

transactions between hardware and software. For speed, hardware detects conflicts; to save complexity,

transaction updates are rolled back by software. The following sections describe the requirements for

LogTM’s version management, conflict detection and conflict resolution. The rest of the chapter describes

the LogTM API and discusses the tradeoffs involved in implementing the various components of transac-

tional memory in hardware or software.

3.1 Eager Version Management

A defining feature of LogTM is its use of eager version management, wherein “new” values are stored in

place while old values are saved in an alternate location. Specifically, in LogTM, the old values of registers

are saved in a register checkpoint and old values of memory are stored in the transaction log, a thread-pri-

vate section of the user program’s virtual address space. If the transaction aborts, a software abort handler

restores old values from the log and register checkpoint.

28

3.1.1 The Transaction Log

C0

00

40

VA Data Block

Log Base

Log Pointer

00

40

C0

New Values

Old Values

FIGURE 3-1. The Transaction Log.

In LogTM, each thread allocates a region of virtual memory, the transaction log, to store a record of the

updates made by its most recent transaction. The base and bounds of the log are defined by two processor

registers: Log Base and Log Pointer. The thread sets log base when it allocates space for the log—at

thread creation, or when the LogTM system is initialized. The LogTM system updates Log Pointer each

time it adds an entry to the log. Figure 3-1 illustrates the layout of the log in virtual memory. The main

array is a representation of virtual memory. Virtual addresses are shown on the left. The shaded area (bot-

29
tom of Figure 3-1) represents the transaction log for the current thread. The unshaded area represents

shared memory locations, e.g., part of the heap.

The LogTM system maintains the log at a fixed granularity, logically dividing memory into fixed sized

blocks. Figure 3-1 shows an active transaction log after three stores using an 8-byte log granularity. The

three pairs of shaded blocks in Figure 3-1 represent the old and new values of three memory blocks. New

values are stored in place and old values are stored in the log. The log contains an undo record,which

includes the virtual address of the modified block and its old value, for each store executed. Because the

purpose of the log is to restore pre-transaction values, a LogTM system need only log the first update to

any given memory location.

The log is defined in virtual memory for which physical memory is allocated on demand. If adding a log

entry exhausts the physical memory in the log, the current thread takes a page fault and uses the exisiting

virtual memory support to allocate an additional page for the log. Because the transaction log is stored in

virtual memory, it may grow arbitrarily large. Log pages may be swapped to disk without impacting

LogTM’s version management.

In database terminology, the transaction log is an undo-only log—i.e., it does not contain sufficient infor-

mation to re-execute a transaction nor to recover the state of memory in the event of a crash [45]. This is in

contrast to the logging used in most database systems. In a typical database, the log is used for recovery as

well as transaction rollback. Importantly, because the transaction log is not used for recovery, there is no

need to store the log on disk or other stable storeage. Furthermore, since the log is not needed after the

commit of a transaction, unlike the log in most database systems, the transaction log in LogTM is thread

private and may be discarded after a transaction completes.

30
3.1.2 Transaction Commit

To commit a transaction, the executing thread simply clears its transaction log by setting the log pointer

equal to the log base and discards its register checkpoint. No copying is needed because new values are

already in place.

3.1.3 Transaction Abort

To maintain atomicity in the event of a transaction abort, LogTM must undo any updates from the aborting

transaction by restoring the old values maintained in the transaction log and register checkpoint to their

original locations in memory and processor registers. In order to save hardware complexity, LogTM per-

forms this restoration in software. In LogTM, an abort restores old values by: (1) jumping to the start of the

abort handler, (2) executing the handler (a load and store for every word in the log and an additional load

for each address—one per log entry—in the log), and (3) restoring the processor registers to their pre-

transaction states.

3.2 Eager Conflict Detection

LogTM employs eager conflict detection: the system must detect and resolve any conflict triggered by a

memory request before that request completes. In LogTM, this detection is the responsibility of hardware.

Implementations of LogTM are expected to leverage the coherence mechanism to implement conflict

detection efficiently. LogTM implementations must report all true conflicts between concurrent transac-

tions, but to reduce hardware complexity and cost, they are allowed to report false conflicts.

3.2.1 Requirements

LogTM’s eager conflict detection is based on strict two-phase locking. In place of the shared and exclusive

locks used in database systems, however, LogTM requires read and write isolation. If a block is read iso-

31
lated, it cannot be written by any thread without generating a conflict. If a block is write isolated, it cannot

be read or written by any thread without generating a conflict. Unlike locking, isolation does not prescribe

any particular conflict resolution mechanism (e.g., blocking).

Requirement 1: Transactions Must be Well Formed. In order for a thread to read a memory loca-

tion in a transaction, that thread must obtain read isolation on that location. In order to write a location, a

thread must obtain write isolation on that location. If an attempt to acquire read or write isolation fails, or

results in a transaction conflict, the system must signal a conflict before the offending memory instruction

is retired.

Requirement 2: Isolation Must be Strict Two Phase. This requires that the locking, or isolation in

LogTM must be strict two phase. Any memory location that becomes read or write isolated by being read

or written in a transaction must remain isolated until the commit or abort of that transaction.

Requirement 3: Isolation Must be Released at Transaction End. Conflicts may prevent one or

more tranasctions from making forward progress. In order to ensure forward progress in the system, a

thread must release its isolation when it aborts or commits its transaction.

3.2.2 Example Implementation

For small transactions—the expected common case—the entire read and write set of the transaction

remains in the private cache of the executing processor. In this case, a standard invalidation-based cache

coherence protocol is well suited to detecting transaction conflicts. As discussed in Chapter 2, cache-

coherent multiprocessors that use invalidation-based coherence protocols typically enforce the invariant

that every block of memory resides in one of three logical states: (I) the block is invalid in all caches, (S)

one or more caches hold a valid read-only copy of the block and (M) one cache only has a writable copy of

the block. Such systems already require that a processor obtain shared (read only) access to a memory

32
location before it may be read and exclusive access (read/write permission) before it may be written. As a

result, if isolation is provided by the coherence mechanism, these protocols enforce the well formed

requirement by default. Additionally, these rules ensure that any memory access that hits in the local (pri-

vate) cache will not trigger a transaction conflict. Conflict detection in such a system works as follows:

each processor tracks the read and write sets of its active transaction with two additional bits per line in its

private cache. The read (R) bit indicates that the block has been read during the current transaction. The

write (W) bit indicates that the block has been written during the current transaction and potentially con-

tains data values from an uncommitted transaction. When a processor P executes a load or store, it first

checks its local cache. If the corresponding block is not present, P issues a request for the block to the

memory system. That request is sent to one or more other processors (e.g., via a broadcast or forwarded by

a directory). Those processors check their local state (in the cache or memory controller) to detect conflicts

with any transactions running there. The presence of a conflict is returned along with the coherence

response. That response signals the conflict (if any) to P, which resolves the conflict. The states of the con-

tended block in the responding processors’ caches remain the same, as do the R and W bits, until the trans-

actions running on those processors end by committing or aborting. This fulfills the strict two-phase

requirement. Finally, at the end of a transaction, the processor flash-clears the R and W bits in its cache,

fulfilling the requirement to release all read and write isolation after the transaction commits or aborts.

3.3 Conflict Resolution

When two transactions conflict, any transactional memory implementation must stall (risking deadlock) or

abort (risking live-lock) at least one transaction. Recall that when a LogTM processor P makes a coherence

request, it may get forwarded to processor Q to detect a conflict. Q then responds to P, including the pres-

ence or absence of a conflict in the response. If there is a conflict, processor P resolves it upon receiving the

response. P may resolve the conflict by either stalling or aborting. To reduce the frequency of aborts (which

33

waste work and power), it might be preferable for P to wait for a short time and then re-issue its request to

Q in the hope that Q

FIGURE 3-2. Execution of a Transaction with Two Alternative Endings

 VA DATA BLK R W

 1000

 c0 34 ------- 0 0

 40 ------- 23 0 0

 00 12 ------- 0 0

 1040
 1080

 (a) begin_transaction

 LogBase 1000

 LogPtr 1000

 TMcount 1

 VA DATA BLK R W

 1000 c0 34------

 c0 56 ------- 0 1

 40 ------- 23 0 0

 00 12 ------- 1 0

 1040 -
 1080

 (c) store r2, (c0)

 LogBase 1000

 LogPtr 1048

 TMcount 1

 /* assume r2=56 */

 VA DATA BLK R W

 1000

 c0 34 ------- 0 0

 40 ------- 23 0 0

 00 12 ------- 1 0

 1040
 1080

 (b) load r1, (00)

 LogBase 1000

 LogPtr 1000

 TMcount 1

 /* r1 gets 12 */

 VA DATA BLK R W

 1000 c0 34------

 c0 56 ------- 0 1

 40 ------- 24 1 1

 00 12 ------- 1 0

 1040 -40 ------
 1080 -23

 (d) load r3, (78)

 LogBase 1000

 LogPtr 1090

 TMcount 1

 r3 = r3 + 1
 store r3, (78)

 VA DATA BLK R W

 1000 c0 34------

 c0 56 ------- 0 0

 40 ------- 24 0 0

 00 12 ------- 0 0

 1040 -40 ------
 1080 -23

 (e) commit transaction

 LogBase 1000

 LogPtr 1000

 TMcount 0

 VA DATA BLK R W

 1000 c0 34------

 30 34 ------- 0 0

 40 ------- 23 0 0

 00 12 ------- 0 0

 1040 -40 ------
 1080 -23

 (f) abort transaction

 LogBase 1000

 LogPtr 1000

 TMcount 0

 /* ALTERNATIVE to (e) */
 /* (d) --> (f) */

has completed its conflicting transaction. P cannot wait indefinitely for Q, however,

without risking deadlock (e.g., if Q is waiting on P).

34
3.4 Example

Although presented separately in this chapter, conflict detection and version management interact in

important ways. To better understand the way LogTM’s eager version management and eager conflict

detection work together, consider the example depicted in Figure 3-2. Figure 3-2 illustrates the logical exe-

cution of a simple transaction. Part (a) displays a logical view of a thread that has just begun a transaction

by incrementing its TMcount. Assume that the thread’s log begins at virtual address (VA) 1000 (all num-

bers in hexadecimal), but is empty (Log Pointer=Log Base). In this example, values of data blocks

are given as a two-digit word and seven dashes (for the other eight-byte words of a 64-byte block). The

conflict detection state for each block is shown to the right. The R and W flags indicate whether a block is

read or write isolated by the conflict detection mechanism. Circles indicate changes from the previous

snapshot. Part (b) shows a load from virtual address 00 acquiring read isolation on that block. Part (c)

depicts a store to virtual address c0 acquiring write isolation on that block and logging the block’s virtual

address and old data (34 --------). Part (d) shows a read-modify write of address 78 that acquires read and

write isolation for the encompassing block and writes the log with the block’s virtual address (40) and old

data (------- 23). Part (e) shows a transaction commit that resets TMcount, LogPtr, and releases all read

and write isolation. Part (f) shows an alternative where, after part (d), something triggers an abort, which

must restore values from the log before resetting the TMcount, Log Pointer, and releasing read and

write isolation.

3.5 LogTM API

Table 3-1 presents LogTM’s interface in three levels. The user interface (top) allows user threads to begin,

commit and abort transactions. Compilers could translate higher level constructs such as an atomic block

to LogTM’s begin_transaction and commit_transaction calls like the Java compiler gener-

User Interface

begin_transaction() Requests that subsequent dynamic statements form a transaction.
Logically saves a copy of user-visible non-memory thread state (i.e., architectural registers,
condition codes, etc.).

commit_transaction() Ends successful transaction begun by last
begin_transaction(). Discards any transaction state saved for potential abort.

abort_transaction() Transfers control to a previously-registered abort handler which
should undo and discard work since last begin_transaction() and (usually) restart the
transaction.

System/Library Interface

initialize_logtm_transactions(Thread* thread_struct, Address log_base,

Address log_bound) Initiates a thread’s transactional support, including allocating virtual
address space for a thread’s log. As for each thread’s stack, page table entries and physical
memory may be allocated on demand and the thread fails if it exceeds the large, but finite log
size. (Other options are possible if they prove necessary.) We expect this call to wrapped with a
user-level thread initiation call (e.g., for P-Threads).

register_abort_handler(void (*) abort_handler) Registers a function to be called
if a transaction is aborted. Abort handlers are registered on a per-thread basis. The registered
handler should assume the following pre-conditions and ensure the following post-conditions:

Abort Handler Pre-conditions: Abort has occurred. System may have restored some or all mem-
ory blocks written by the thread to their pre-transaction state. Other memory blocks written by
the thread (a) have new values in (virtual) memory but these blocks are isolated and (b) have
their (virtual) address and pre-write values in the log. If a block is logged more than once, its first
entry pushed on the log must contain its pre-transaction value. Log also contains a record of
pre-transaction user-visible non-memory thread state.

Abort Handler Post-conditions: Abort handler called undo_log_entry() to pop off every log
entry. Abort handler then called complete_abort_with_restart() or
complete_abort_without_restart().

Low-Level Interface

undo_log_entry() Reads a block’s (virtual) address and pre-write data from the last log
entry, writes the data to the address, and pops the entry off of the log. The system may end iso-
lation on the block if is sure that pre-transaction value is now restored (i.e., there are not earlier
duplicate log entries for this address).

complete_abort_with_restart() End isolation on all memory blocks, restore thread’s
non-memory state from last begin_transaction(), and resume execution there.

complete_abort_without_restart() End isolation on all memory blocks, discard
thread’s non-memory state from begin_transaction(), and return to abort handler. Use to
handle error conditions.

TABLE 3-1. LogTM Interface

35

36
ates monitor enter and exit calls from statically scoped synchronized blocks [JAVA???]. The system/

library interface (middle) lets thread packages initialize per-thread logs and register an abort handler.

Upon an abort, LogTM lets the abort handler “undo” the log via a sequence of calls using the low-level

interface (bottom). In the common case, the handler can restart the transaction with user-visible register

and memory state restored to their pre-transactions values. Rather than just restart, an abort handler can

also complete an abort and run arbitrary user code to manage aborts.

3.6 Discussion

LogTM is designed to provide robust performance when transactions exceed the size or associativity lim-

its of the hardware. To support such transactions, LogTM must therefore provide both conflict detection

and version management for data outside processors’ private caches and other dedicated hardware struc-

tures. Conflict detection and version management pose separate challenges to operating outside the

cache. The distinct characteristics of these challenges lead LogTM to handle each differently, extending

hardware to provide conflict detection for out-of-cache transactions and deferring version management to

software.

Version management in unbounded transactions is difficult because the space required to store the sepa-

rate versions is unbounded. Version management is the maintenance of the program’s data values and

must therefore be performed precisely—i.e., values cannot be altered, lost or associated with the wrong

version. Because this version information must be maintained precisely, a transactional memory system

must provide storage for both old and new versions of each object modified in a transaction, requiring

space equal to the write set (in additional to the program’s space requirements). Memory provides ample

space to maintain both old and new versions of transactional data, but using memory in such a way

requires associating separate addresses for each version and implementing a policy to ensure that every

memory access reaches the proper version. Fortunately, however, versions are switched rarely—on abort

37
if eager version management is used, or on commit otherwise. LogTM employs eager version management

because aborts should be rarer than commits. LogTM takes advantage of that rarity by passing the respon-

sibility for switching versions to software, in the form of a software abort handler.

Conflict detection for unbounded transactions is challenging because, unlike version management, it must

be logically performed on every memory access by every processor. Although caches can filter out conflict

checks for accesses that hit in the cache, conflict detection is still performed frequently. Conflict detection

is especially challenging to implement in software because it requires remote operations, i.e., the read and

write set of an overflowing transaction must be checked on every cache miss from every other processor.

Fortunately, unlike version management, conflict detection need not be performed precisely, but merely

conservatively. A conflict detection mechanism must report all true conflicts between transactions, but

reporting a conflict when one does not exist (false conflict) will affect performance, but not correctness.

LogTM leverages this property by tracking read and write sets conservatively in hardware. By allowing

false conflicts, LogTM can detect all true conflicts between transactions of any size while using finite

structures to track read and write sets.

The use of eager version management in LogTM has two primary advantages: (1) commits are fast even

for large transactions and (2) loads never need to check local write buffers. Although aborting transaac-

tions is more costly with eager version management, aborts often have little effect on execution time in

general because most transactions commit—more than 98% for many workloads (Chapter 5).

Eager conflict detection has two primary advantages: (1) it detects conflicts sooner and (2) it eliminates the

need for cascading rollbacks on systems that use eager version management. Detecting conflicts early can

reduce wasted work in two important ways. First, detecting a conflict early allows a transactional memory

to abort a transaction early, giving it the opportunity to switch execution to a different thread or transaction.

Because transactions are atomic, any transaction that does not commit does not contribute to the progress

of the program. A transactional memory system that can identify unsuccessful transactions early can abort

38
those transactions sooner and potentially run other code that will make progress. Second, detecting con-

flicts early, allows a transactional memory system to resolve many conflicts by stalling one or more trans-

actions. Stalling instead of aborting eliminates wasting work all together.

Strict two-phase locking and write ahead logging has proven to be an effective strategy for implementing

transactions in database systesm. Eliminating the requirement for durabilty and leveraging hardware sup-

port allows LogTM to adapt this successful algorithm to efficiently implement lightweight memory trans-

actions with little overhead. Eagerly making updates in place allows LogTM to support large transactions

without copying on commit and makes processing commits, which should be more common, easier than

processing aborts. Detecting conflicts completely in hardware allows for efficient execution even in pres-

ence of large transactions. This combination allows LogTM systems to balance performance and imple-

mentation cost in transactional memory.

	Log-Based Transactional Memory (LogTM)
	3.1 Eager Version Management
	3.1.1 The Transaction Log
	FIGURE 3-1. The Transaction Log.

	3.1.2 Transaction Commit
	3.1.3 Transaction Abort

	3.2 Eager Conflict Detection
	3.2.1 Requirements
	Requirement 1: Transactions Must be Well Formed
	Requirement 2: Isolation Must be Strict Two Phase
	Requirement 3: Isolation Must be Released at Transaction End

	3.2.2 Example Implementation

	3.3 Conflict Resolution
	FIGURE 3-2. Execution of a Transaction with Two Alternative Endings

	3.4 Example
	3.5 LogTM API
	TABLE 3-1. LogTM Interface

	3.6 Discussion

