
53

Chapter 5
Evaluation

This chapter asseses the assumptions that underly the LogTM system (Chapter 3) and presents an evalua-

tion of the LogTM implementations presented in Chapter 4. Section 5.1 describes the methodology used in

the evaluation, including system model assumptions. Section 5.3 describes the workloads used in this eval-

uation. Section 5.4 presents the overall performance of LogTM. Section 5.5 discusses the performance

impact of various implementation tradeoffs in LogTM.

5.1 Methods

The evaluation of LogTM presented in this chapter was performed using execution-driven full-system sim-

ulation of various LogTM implementations based on two basic system architectures: a symetric multipro-

cessor (SMP) and a chip-multiprocessor (CMP). The rest of this section describes the system model and

simulation tools in detail.

54

5.2 SMP System Model

SMP System Model Settings

Processors 32, 1 GHz, single-issue, in-order, non-memory IPC=1

L1 Cache 16 kB 4-way split, 1-cycle latency

L2 Cache 4 MB 4-way unified, 12-cycle latency

Memory 4 GB 80-cycle latency

Directory
Full-bit vector sharers list;

 Directory cache, 6-cycle latency

Interconnection Network Hierarchical switch topology, 14-cycle link latency

TABLE 5-1. . SMP System Model Parameters

LogTM and the baseline system share the same basic multiprocessor architecture, summarized in Table 5-

1. This setup involves 32 processors, each with two levels of private cache. A MESI directory protocol

maintains coherence over a high-bandwidth switched interconnect. Though single-issue and in-order, the

processor model includes an aggressive, single-cycle non-memory IPC. A detailed model of the memory

system includes most timing intricacies of the transactional memory extensions.

5.2.1 CMP System Model

The LogTM CMP system model also uses 32 processors and two levels of cache. In the CMP model, how-

ever, the processors are all located on the same chip and share a single multi-banked level two cache. The

system parameters for the CMP model are show in Table Table 5-2. Like the SMP model, the processors in

the CMP model are in-order and have a non-memory CPI of 1, but memory system timing is simulated in

detail.

55

5.2.2 Simulation Platform

CMP System Model Settings

Processors 32, 1 GHz, single-issue, in-order, non-memory IPC=1

L1 Cache 16 kB 4-way split, 1-cycle latency

L2 Cache 8 MB 4-way unified, 12-cycle latency

Memory 4 GB 500-cycle latency

Directory
Full-bit vector sharers list;

 Directory cache, 6-cycle latency

Interconnection Network On-chip crossbar, 4-cycle link latency

TABLE 5-2. . CMP System Model Parameters

The simulation framework uses Simics [28] in conjunction with customized memory models built with the

Wisconsin GEMS toolset [51]. Simics, a full-system functional simulator, accurately models the SPARC

architecture but does not support transactional memory. The LogTM interface was instead added using

Simics “magic” instructions: special no-ops that Simics catches and passes to the memory model. To

implement the begin instruction, the memory simulator uses a Simics call to read the thread’s architectural

registers and create a checkpoint. During a transaction, the memory simulator models the log updates.

After an abort rolls back the log, the register checkpoint is written back to Simics, and the thread restarts

the transaction.

The memory system simulator performs the rollback of transactional updates in simulated hardware and

approximates the timing of software rollbacks. The execution time of a rollback is estimated using a fixed

penalty to model the overhead of trapping to the abort handler plus a penalty for each entry in the transac-

tion log to account for execution of the software handler itself. This abort penalty is applied in two ways.

First, when a load or store instruction triggers an abort, execution on that processor is stalled for the abort

penalty before the register state is restored and the transaction reexecuted. Second, the W bits remain set

for the duration of the abort penalty, potentially stalling conflicting transactions. This approximation

allows me to more easily measure the effect of abort latency on performance in LogTM (Section 5.5).

56
5.3 Workloads

LogTM’s design is based on certain assumptions about the behavior of transactions. The wisdom of deci-

sions such as favoring commits over aborts and providing support for large transactions, will depend on the

characteristics of transactions run on such systems. Due to the lack of software written for transactional

memory, however, I can only make rough estimates of the behavior of transactions in future software. In

this evaluation, I use two strategies to select applications on which to test LogTM: (1) using microbench-

marks that execute simple operations on common data structures and (2) converting criticial sections in

today’s lock-based programs into LogTM transactions.

57

5.3.1 Microbenchmarks

TABLE 5-3. Microbenchmarks

Description Settings

Shared Counter
All threads repeatedly increment a

single counter.

2500 cycle average think time

between transactions

B-Tree

Threads alternate between insert and

lookup operations on a single tree.

Each lookup or insert is performed

in a transaaction.

9-ary B-Tree, intially 5-levels deep.

20 % update, 80 % lookup

5.3.2 Benchmarks

This section evaluates LogTM on a subset of the SPLASH-2 benchmarks and a benchmark based on the

lock manager of an open source database.

Benchmark Input Synchronization Methods

Barnes 512 bodies locks on tree nodes

Cholesky 14 task queue locks

BkDB 512 Operations locks

MP3D 128 molecules locks

Radiosity room task queue & buffer locks

Raytrace small image(teapot) work list & counter locks

TABLE 5-4. . Benchmarks and Inputs

 The benchmarks described in Table 5-4 use locks in place of, or

in addition to, barriers. The LogTM version of the SPLASH-2 benchmarks replaces locks with begin and

end transaction calls. Barriers and other synchronization mechanisms were not changed. Our base

SPLASH-2 benchmarks use PARMACS library locks, which use test-and-test-and-set locks but yield the

processor after a pre-determined number of attempts (only one for these experiments). In one case (Ray-

trace), the benchmark has been optimized for transactions, by reorganizing a data structure to reduce false

sharing. Reduced false sharing allows Raytrace to run much faster than the original program (Section 5.5).

58
5.4 LogTM Performance

In this section, I evaluate the performance of LogTM and examine the effectiveness of alternative imple-

mentations and optimizations. First, in order to assess the overall performance of LogTM, I compare the

relative scalability of LogTM transactions to locks. Because the performance of LogTM relative to locks is

dependent on many parameters, I choose one set of parameters for the overall comparison and analyze the

effect of varying those parameters separately in detail.

The promise of transactional memory—in terms of application performance—is to increase the scalability

of parallel programs. I evaluate LogTM’s ability to deliver this promise by comparing the scalability of the

workloads described above using locks and LogTM transactions. The results below demonstrate that

LogTM improves scalability in these workloads, increasing the maximum achievable speedup for all

benchmarks except Cholesky and BkDB, which do not scale with locks or transactions. In one case, Ray-

trace, LogTM also increases the number of processors used to achieve peak throughput.

The LogTM configuration in this experiment assumes the SMP machine model described in Section 5.2

and uses LOAD_PC writeset prediction, buffered logging with a 64-entry log buffer and assumes an abort

handler trap latency of 200 cycles and a 40-cycle per-block overhead for restoring old values. Section 5.5

will evaluate the impact of these parameters in detail.

Figures 5-1 and 5-2 display the speedup of both lock-based and transaction-based benchmarks as the num-

ber of threads is increased from 1 to 31. For all of the benchmarks that scale to multiple processors using

locks (all but Cholesky and BkDB) the LogTM version of the benchmark has a higher peak speedup than

the lock-based version. For Barnes, the improvement is modest, but for Raytrace, Radiosity and MP3D,

LogTM provides a dramatic increase in peak performance.

10 20 30

Threads

0

1

2

3

4

5

Sp
ee

du
p

BARNES-TM-512
BARNES-Lock-512

10 20 30

Threads

0.0

0.5

1.0

Sp
ee

du
p

CHOL-14-TM
CHOL-14-Lock

10 20 30

Threads

0.0

0.5

1.0

Sp
ee

du
p

DB-512-TM
DB-512-Lock

(b) Cholesky

(c) BkDB

(a) Barnes

FIGURE 5-1. Scalability of LogTM vs. Locks

59

10 20 30

Threads

0

1

2

Sp
ee

du
p

MP3D-TM
MP3D-Lock

10 20 30

Threads

0

5

10

15

Sp
ee

du
p

RAD-1024-TM
RAD-1024-Lock

10 20 30

Threads

0

2

4

6

8

Sp
ee

du
p

RT-TM-OPT
RT-Lock-OPT

(a) MP3D

(b) Radiosity

(c) Raytrace

FIGURE 5-2. Scalability of LogTM vs. Locks (part 2)

60

61
For most of the benchmarks, the LogTM program and the lock program reach their peak performance at

the same number of threads—Barnes at 11, MP3D at 21 and Radiosity at 15. Raytrace, on the other hand,

scales much more effectively with LogTM, not reaching peak performance on LogTM until 19 threads,

while lock-based Raytrace reaches its peak at only 3 threads. These benchmarks, particularly those in the

SPLASH-2 suite, have already been carefully tuned using locks.

5.5 Implementation Tradeoffs

As discussed in Section 4.5, LogTM may be implemented in many ways, using varying levels of hardware

support for log creation, log rollback, conflict resolution and write set prediction. In this section, I measure

the performance impact of several of these tradeoffs.

5.5.1 Write Set Prediction

One important factor in the performance of LogTM is the frequency of aborts. LogTM’s eager version

management is optimized for the case that aborts are rare and, as the results below demonstrate, its perfor-

mance suffers when aborts are common. In this section, I explore the effectiveness of write set prediction

(Section 4.5.1) at reducing aborts and improving performance in LogTM.

62

I compare the three schemes for predicting write sets in transactions described in Section 4.5.1: SINGLE-

ENTRY, LOAD-PC and LOADPC-NORESET. Figure 5-3

0.0

0.2

0.4

0.6

0.8

A
bo

rt
s/

A
tte

m
pt

ed
 T

ra
ns

ac
tio

n

N
O

N
E

1_
E

N
T

R
Y

L
D

_P
C

L
D

_P
C

_N
R

RT-OPT

N
O

N
E

1_
E

N
T

R
Y

L
D

_P
C

L
D

_P
C

_N
R

RAD-1024
N

O
N

E

1_
E

N
T

R
Y

L
D

_P
C

L
D

_P
C

_N
R

BkDB-512

N
O

N
E

1_
E

N
T

R
Y

L
D

_P
C

L
D

_P
C

_N
R

BARNES

L
D

_P
C

MP3D

FIGURE 5-3. Abort rates for 3 write set predictors.

displays the relative abort rate—the ratio of

aborts to all attempted transactions. An abort rate of zero means that all transactions commit, whereas an

abort rate of one indicates that all transactions abort (livelock). SINGLE-ENTRY suffices to reduce the

abort rate for several benchmarks, especially Raytrace, which frequently updates shared counters inside

transsactions. LOAD-PC and LOADPC-NORESET dramatically reduce the abort rate for all benchmarks.

With LOAD_PC, only in BkDB do more than half of all transactions abort.

This reduction in abort rate, in most cases, leads to better performance in LogTM. FIGURE displays the

performance of LogTM using each of the write set predictors normalized to the performance of the lock-

based program. As shown in Figure 5-4, writeset prediction provides a substantial performance improve-

ment in several workloads. In particular, writeset prediction speeds up LogTM on the benchmarks on

which it performs the worst. Overall, LOAD-PC provides the most consistent performance improvements.

0

1

2

Sp
ee

du
p

(o
ve

r
lo

ck
s)

Speedup 32p

N
O

N
E

1_
E

N
T

R
Y

L
D

_P
C

L
D

_P
C

_N
R

RAD-1024

N
O

N
E

1_
E

N
T

R
Y

L
D

_P
C

L
D

_P
C

_N
R

BARNES

N
O

N
E

1_
E

N
T

R
Y

L
D

_P
C

L
D

_P
C

_N
R

BkDB-512

FIGURE 5-4. Normalized execution time of LogTM with
write set prediction.

63

Although LOADPC-NORESET reduces aborts more than LOAD-PC, it also introduces more stalls, which

erode the benefits of fewer aborts. BTREE?

5.5.2 Hardware Support for Logging

Section 4.1.4 describes the addition of a small buffer to aid logging in LogTM. The log buffer eliminates

the need to perform a virtual to physical adddress translation on the log pointer for each store. When the

buffer fills, however, software spills the contents of the hardware buffer to the in-memory log. Figure 5-5

examines the effect of the size of the log buffer on LogTM performance. For several benchmarks, the size

of the log buffer has little effect on performance at all. Only Radiosity and BkDB seem particularly sensi-

64

tive to the size of the buffer. Even for those workloads, however, a reasonable size buffer (e.g., 64 entries)

provides performance within 10% of that of an unlimited buffer.

0.0

0.5

1.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

4 16 64 25
6

10
24

10
00

00
0

RT-OPT

4 16 64 25
6

10
24

10
00

00
0

RAD-1024

4 16 64 25
6

10
24

10
00

00
0

BkDB-512

4 16 64 25
6

10
24

10
00

00
0

BARNES

10
00

00
0

MP3D

FIGURE 5-5. Performance impact of buffer-fill stalls.

5.5.3 Log Granularity

Section 4.1 discusses the trade-offs involved in selecting the granularity at which to build the transaction

log in LogTM. The optimal granularity depends on both the size of transactions’ write sets and the degree

of spatial locality in them, both of which are dependent on the workload. For the workloads examined in

this dissertation, the optimal logging granularity is quite small—likely 4 or 8-byte blocks.

Block
Size

Barnes BkDB BTree Cholesky Mp3D Radiosity Raytrace
Blk/T B/Blk Blk/T B/Blk Blk/T B/Blk Blk/T B/Blk Blk/T B/Blk Blk/T B/Blk Blk/T B/Blk

4 19.61 3.917 4.970 3.979 22.37 4.000 2.909 4.000 4.805 4.000 4.259 4.000 2.018 4.000
8 12.72 6.040 4.391 4.503 18.19 4.920 2.773 4.197 2.793 6.883 2.693 6.327 1.978 4.081
16 8.675 8.856 3.876 5.102 11.97 7.466 2.636 4.414 2.030 9.469 2.129 8.000 1.978 4.081
32 6.805 11.29 3.803 5.200 7.514 11.91 2.591 4.491 1.6248 11.83 1.903 8.950 1.978 4.081
64 5.506 13.95 3.317 5.962 4.765 18.78 2.000 5.881 1.468 13.09 1.753 9.718 1.978 4.082

TABLE 5-5. Log size/utilization at varying log granularities

Table 5-5 displays the average number of log entries per transaction (Blk/T) and average number of bytes

used in each logged block (B/Blk) for logging at several different granularies. These results suggest that a

65
small logging block size will be more efficienct for these workloads. For many of the benchmarks, increas-

ing the logging granularity (block size) does not result in a significant reduction of log entries per transac-

tion. Of these benchmarks, only for Barnes and BTree does increasing the block size from 8 B to 64 B (an

8-fold increase) reduces the number of log entries by a factor of two or more. For Raytrace, increasing the

block size beyond 4 B has almost no impact on the number of log entries. Interestingly, the benchmark for

which a large block size results in the greatest reduction of log entries, BTree (22.4 to 4.76), was written

using transactions from the outset rather than converted from a lock-based program. It may be the case that

programs written specifically for transactional memory will use transactions that are longer-running and

that write to more memory locations than the critical sections in programs written using lock-based mutual

exclusion.

5.5.4 Conflict Detection and Resolution--INCOMPLETE

LogTM’s innovation in conflict detection is its ability to maintain hardware detection of conflicts on mem-

ory blocks which are not cached by any processor. To evaluate the success of this mechanism, I consider

two factors: the number of true conflicts that are not detected (false negatives) and the number of reported

conflicts that are not actual conflicts (false positives). Any false negatives can lead to incorrect program

behavior. Eliminating false negatives is necessary for any correct transactional memory implementation.

False positives, on the other hand, impact performance, but not correctness.

TABLE: False positive rates for SMP/CMP design. SPLASH + BkDB.

TABLE: Conflict & Abort rates w/ different policies. Performance?

As mentioned in Chapter 3.4, one possible enhancement to LogTM would be to trap to a software conten-

tion manager [43] to resolve conflicts, possibly after waiting for a short time in hardware. The cumulative

distribution of the length (in cycles) of the stalls in our benchmarks in Figure 5-6 shows that many stalls

are short enough that it would be more efficient to simply wait than to re-schedule another thread on the

66

stalled processor. Furthermore, if the processor is not re-scheduled, (e.g., if there are no idle threads) stall-

ing can waste less work than repeatedly aborting and re-executing until the conflict is resolved. The distri-

bution of stalls, however, has a long tail, so future work should consider trapping to a software contention

manger in these cases.

Benchmark % < 256 % < 1K % < 4K % < 16K % < 64K Total
Stalls

Barnes 33.9 60.1 85.5 96.5 99.6 1,400

Cholesky 17.3 40.2 95.5 99.9 100 1,482

Ocean 36.1 38.5 53.0 96.4 100 83

Radiosity 34.8 60.5 83.7 95.2 99.1 20,829

Raytrace-Base 5.57 6.16 9.04 34.1 93.7 13105

Raytrace-Opt 25.8 30.4 49.5 80.1 96.2 1,481

Water 34.8 40.6 65.2 98.5 100 69

TABLE 5-6. : Stall Duration Distribution in
Cycles

5.5.5 False Sharing

 This evaluation has confirmed the observation of Moore et al. [32] that reducing false sharing with TM is

even more important that reducing it with locks. With TM, false sharing creates (apparent) conflicts that

can stall or abort entire transactions. With locks, false sharing only slows progress with a few extra cache

misses. For example, we created Raytrace-Opt from Raytrace-Base by eliminating false sharing between a

global variable that provides a unique ray identifier and another that points to free blocks. Raytrace’s most

frequent (but short) transaction accesses the former, while a less frequent but long transaction accesses the

later. Placing these variables in different memory blocks eliminated conflicts between the two transactions

and greatly improved transactional execution time. The same action reduced cache misses in the lock-

based version, but had a much smaller impact on execution time. LogTM shares this limitation with other

67
transactional memory implementations [4, 21, 41], except TCC [18], which mitigates this effect by option-

ally tracking transactions’ read and write sets at word or byte granularity.

68

	Chapter 5
	Evaluation
	5.1 Methods
	5.2 SMP System Model
	TABLE 5-1. . SMP System Model Parameters
	5.2.1 CMP System Model
	5.2.2 Simulation Platform
	TABLE 5-2. . CMP System Model Parameters

	5.3 Workloads
	5.3.1 Microbenchmarks
	TABLE 5-3. Microbenchmarks

	5.3.2 Benchmarks
	TABLE 5-4. . Benchmarks and Inputs

	5.4 LogTM Performance
	FIGURE 5-1. Scalability of LogTM vs. Locks
	FIGURE 5-2. Scalability of LogTM vs. Locks (part 2)

	5.5 Implementation Tradeoffs
	5.5.1 Write Set Prediction
	FIGURE 5-3. Abort rates for 3 write set predictors.
	FIGURE 5-4. Normalized execution time of LogTM with write set prediction.

	5.5.2 Hardware Support for Logging
	FIGURE 5-5. Performance impact of buffer-fill stalls.

	5.5.3 Log Granularity
	TABLE 5-5. Log size/utilization at varying log granularities

	5.5.4 Conflict Detection and Resolution--INCOMPLETE
	TABLE 5-6. : Stall Duration Distribution in Cycles

	5.5.5 False Sharing

