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Abstract 
 

Current methods for interpreting oligonucleotide-
based SNP-detection microarrays, SNP chips, are 
based on statistics and require extensive parameter 
tuning as well as extremely high-resolution images of 
the chip being processed.  We present a method, based 
on a simple data-classification technique called 
nearest-neighbors that, on haploid organisms, 
produces results comparable to the published results of 
the leading statistical methods and requires very little 
in the way of parameter tuning.  Furthermore, it can 
interpret SNP chips using lower-resolution scanners of 
the type more typically used in current microarray 
experiments. 

Along with our algorithm, we present the results of 
a SNP-detection experiment where, when 
independently applying this algorithm to six identical 
SARS SNP chips, we correctly identify all 24 SNPs in a 
particular strain of the SARS virus, with between 6 and 
13 false positives across the six experiments.  
 
1. Introduction 
 

To date, the genomes of hundreds of organisms 
have been sequenced.  For each of these organisms, a 
consensus or reference sequence has been deposited 
into a public database.  Though this sequence matches 
the particular individual whose genome was sequenced, 
other individuals of this species will differ slightly from 
this reference sequence.  One way to identify these 
differences is to completely sequence, from scratch, the 
genomes of other individuals of this species and then 
do a comparison.  However, this is very costly and 
generally impractical.  Since most of the genetic 
variation between individuals is in the form of Single 
Nucleotide Polymorphisms (SNPs; Altshuler et al., 
2000), a much more cost-effective approach is to use 
the reference sequence as scaffolding and identify 
variations from this sequence in various individuals. 

This technique is known as resequencing (Saiki et al. 
1989). 

One method of resequencing that has shown 
significant results utilizes oligonucleotide microarray 
technology (Hacia, 1999).  In particular, this type of 
resequencing chip consists of a complete tiling of the 
reference sequence – that is, a chip containing one 
probe corresponding exactly to each 29-mer in the 
reference sequence – plus, for each base in this 
sequence, three mismatch probes: one representing 
each possible SNP at this position (see the next section 
for a more detailed description of this method).  In 
theory, any time a SNP is present, the mismatch probe 
representing this SNP will have a higher intensity 
signal than the corresponding probe that matches the 
reference sequence.  However, due to unpredictability 
in signal strength, varying hybridization efficiency, and 
various other sources of noise, this method typically 
results in many base positions whose identities are 
incorrectly predicted.  In other words, among all the 
cases where a mismatch probe has more signal intensity 
than that of the reference sequence’s probe, we would 
like to accurately separate the true SNPs from the 
noisy, false positives. 

Current approaches to this noise-reduction problem 
(Cutler et al., 2001) require extensive parameter tuning 
involving the analysis of very large amounts of data.  
This tuning needs to be re-run any time experimental 
conditions are changed.  Another limitation of current 
methods is that, in order to have a single probe 
represented by a sufficient number of pixels, a very 
expensive high-resolution scanner must be used.  

We present a technique that uses a simple data-
classification technique to differentiate potential SNPs 
from chip noise.  Unlike other methods, ours does not 
require such a high-resolution scanner and furthermore 
requires very little tuning outside of the single chip 
being analyzed.  For the haploid SARS strain we use to 
evaluate our approach, our algorithm produces results 
similar to the published results in SNP identification 
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rate for the best known of the current statistical 
methods (Cutler et al., 2001).  Our method uses only 
the mean signal intensity of each probe on the chip and 
no data from outside of the chip. 
 
2. Task definition 
 
Our task is to identify SNPs (Single Nucleotide 
Polymorphisms) in the context of oligonucleotide-
microarray-based DNA resequencing (Nuwaysir et al. 
2002; Singh-Gasson et al., 1999).  This type of 
resequencing consists of fully tiling (making probes 
corresponding to every 29-mer in) the reference 
sequence of an organism’s DNA through a region of 
interest.  For each of these probes, another three 
mismatch probes are generated.  Each of these has a 
different base in its center position.  For example, if the 
organism’s reference DNA includes the sequence: 

3’-CTGACATGCAGCTATGCATGCATGAA-5’ 

the corresponding reference probe will be its reverse 
complement and, therefore, be the sequence: 

5’-GACTGTACGTCGATACGTACGTACTT-3’ 
and the corresponding mismatch probes will be the 
sequences: 

5’-GACTGTACGTCGAAACGTACGTACTT-3’ 
5’-GACTGTACGTCGACACGTACGTACTT-3’ 
5’-GACTGTACGTCGAGACGTACGTACTT-3’ 

We call a group of probes such as this that represent all 
possible SNPs at a given position  a quartet. 

Our approach does involve the creation of 4N probes, 
where N is the length of the organism’s DNA sequence.  
Creating this many probes is currently not feasible for 
large genomes, such as human, rat, etc., but it is 
feasible for viruses, bacteria, and for limited regions of 
interest in a large genome. 

We can summarize the task of interpreting such a 
resequencing chip as follows: 

Given: The data from a single resequencing chip, 
representing either the complete genome 
of an organism, or some regions of 
interest in such a genome. 

Do: Identify, from among the positions at 
which the sample sequence seems to 
differ from the reference sequence, which 
of these positions are likely to be real 
SNPs rather than noise and return these 
positions along with a confidence 
measure for each. 

 

3. Our approach 
 
After the chip has been exposed to the sample, each of 
the probes will have a resulting intensity.  We also call 
each quartet’s set of four such intensities an example 
(we use this term taken from machine learning because 
our solution is built upon a technique from machine 
learning).  For most of these examples, the highest of 
the four intensities will be the reference probe, i.e., the 
probe with no mismatch base.  We call examples for 
which this is the case conformers (a table appearing 
later, Table 2, provides an illustration) since they 
conform with what we expect given the reference 
sequence.  When one of the mismatch probes has the 
highest intensity, we call the quartet a non-conformer.  
Some of these non-conformers reflect actual SNPs in 
the DNA of the organism.  However, most of them are 
the results of hybridization failures or other types of 
noise and do not represent an actual SNP in the sample.  
Note that, though the task of separating conformers 
from non-conformers is a trivial data-processing step, 
separation of the non-conformers that truly are SNPs 
from the non-conformers that arise from noise in the 
data is not. 

We posit that one can perform the task of accurately 
separating the non-conformers that truly are SNPs from 
the noisy non-conformers by applying what is called 
the nearest-neighbor method (Mitchell, 1997).  In this 
method one plots examples in an N-dimensional space, 
where the dimensions are features of the examples.  In 
order to interpret an example in this feature space, one 
looks at the K examples nearest to it in this space and 
uses their classifications to interpret the example in 
question.  Described in detail in the next section, the 
feature space for this task is defined by the intensities 
of the four probes in each quartet. 

In the traditional manner for applying the nearest-
neighbors method (which we do not follow in this 
work), one would manually label a “training set” of 
quartets as being either true SNPs – non-conformers 
that arise from a one-base difference between the 
sample sequence and the reference sequence – or false 
SNPs, non-conformers that arise from noise in the 
microarray experiment.  The nearest-neighbors 
algorithm would then use these labeled examples when 
it needed to categorize future non-conformers. 

In this case, however, this approach would not be 
feasible.  It would require that someone laboriously 
collect each of these training examples.  Worse still, 
whenever the chip chemistry or any other laboratory 
condition changed, one would need to collect an 
entirely new set of training examples.  This is because 
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the underlying process that generated the noise would 
probably have changed. 

Instead we apply the nearest-neighbor approach 
without needing human-labeled examples.  Our key 
idea is that examples involving bad microarray 
hybridizations will tend to group together in different 
portions of feature space than examples from good 
hybridizations.  Once we have separated “noisy” 
examples from good examples, we can identify SNPs 
by simply finding examples where the highest-scoring 
base is not the base in the reference sequence.  This is 
possible because of the nature of our particular task.   
Specifically, we rely on the following three 
assumptions, which have held true in all of the data we 
have looked at so far, including the data used in the 
experimental section of this article: 

1) Examples resulting from proper probe-
target hybridizations will be much nearer 
to each other in feature space than to 
examples resulting from hybridization 
failures. 

2) The majority of non-conformers are due 
to noise in the data rather than SNPs. 
(Even if this assumption is false for a 
given data set, one could also include data 
from other chips containing few or no 
SNPs.)  Hence, we can safely ignore, 
when looking for SNPs, those areas in 

feature space dense with non-conformers. 

3) SNPs are relatively rare.  Hence SNPs 
involved in successful hybrizations will 
fall in regions of feature space that are 
surrounded by conformers. 

Figure 1 illustrates these assumptions.  Non-conformers 
falling in areas of feature space dense with conforming 
examples can be predicted to be SNPs (i.e., the 
difference from the expected result that lead to this 
example being called a non-conformer is likely due to a 
base difference from the reference sequence rather than 
from a failed hybridization).  Non-conformers 
surrounded by other non-conformers can be viewed as 
noisy data.  In addition, the likelihood that any given 
example in an area is a hybridization error can be 
roughly estimated by the density of non-conformers in 
that area.  By performing this estimation for each of the 
non-conformers, we find an approximate likelihood 
that it is the result of a hybridization error. 

Note that, though our approach makes use of labeled 
examples, it does not require a human to label any 
examples as being SNPs or not.  Instead, our possible 
labels are conformer and non-conformer, a distinction 
computed simply from the probe intensities in an 
example (i.e., group of four probes).  In other words, 
our task is not to predict if an example is a conformer 
or not – that distinction can be made via a simple 
calculation.  Instead, we use the idea of finding the  

 

 

Figure 1. Interpreting Conformers by Looking at Their Neighbors in Feature Space 

= Non-Conformer 

Feature Space 

= Conformer 

Probably 
Bad Data 

A Likely 
SNP 



Appears in: The Proceedings of the IEEE Conference on Computational Systems Bioinformatics (CSB 2004) 
 

 

nearest neighbors in a feature space to separate (a) non-
conformers produced by SNPs from (b) non-
conformers resulting from hybridization failures.  We 
hypothesize that the former are likely to be surrounded 
by conformers while the later are likely to be 
surrounded by other non-conformers. 

 
4. Our algorithm 
 
Table 1 contains our algorithm for SNP-detection in 
microarrays.  This K-nearest-neighbor algorithm 
involves plotting each example in feature space and 
then, for each of these examples, finding the K other 
examples nearest to it in this space.  The categories of 
these K neighbors determine the prediction.  If greater 
than some threshold of these neighbors are conformers, 
we infer that the example is not the result of a failed 
hybridization.  If such an example is a non-conformer, 
we thus classify it as a SNP.  Otherwise, we infer that 
the sample sequence does match the reference sequence 
at this base position and explicitly classify it as a non-
SNP.  Should an insufficient number of neighbors be 
conformers, we view the example as being noisy and 
classify it as a non-call regardless of whether or not it 
is a conformer. The fraction of conformers among the 
K neighbors can be used as a measure of confidence in 
the prediction. 

The appropriate value for K and threshold and 
appropriate definitions of nearness and feature space 
vary between learning tasks.  The later two choices are 
of particular importance in this case since Assumption 
1 from the previous section will clearly not hold unless 
nearness and feature space are defined properly.  In 

this task, our feature space – see Table 2 – is the 5-
dimensional space of examples, where 4 of the 
dimensions correspond to the intensities of the 4 probes 
in the example and the 5th dimension is the identity of 
the base in the reference sequence. Instead of defining 
nearness, we define its inverse, distance.  We define 
distance between two probes to be infinite in cases 
where the two examples differ in the 5th dimension.  
Otherwise, it is defined as the one-norm distance 
between the examples or: 
  distance(examplej, examplek) =  

�
=

−
4

1

|)()(|
i

kiji examplefeatureexamplefeature  

where examplej and examplek are two quartets, and 
featurei(example) is the intensity of the ith  most intense 
probe in example. 

In addition to the feature space described above, we 
tried two other slight variations that did not work 
nearly as well.  The first unsuccessful variant only used 
the four features that represent the signal intensities; it 
ignored the identity of the reference base.  Our best 
guess as to why this technique was not successful is 
that hybridization characteristics, the affinity between a 
given probe and the sample, vary slightly across the 
different nucleotides.  As a result, the identity of the 
reference base carries with it some information about 
typical patterns of intensity.  The second variant we 
tried did not sort the probe signals by their intensity.  
Rather, it compared neighbors’ intensities on a 
nucleotide-by-nucleotide basis; that is, the two 
examples’ intensities for the probe with an A in the 
middle were compared, then for the two probes with a 
G in the middle, etcetera for C and T. 

 

Table 1.  Our Algorithm 
Given K and threshold  
   (In our experiments, except where otherwise noted, K = 100, threshold = .97) 
For each example 
 Find the K examples closest to this example in feature space 
 These are this example’s K nearest neighbors 
 Let P = the number of these K nearest neighbors that are conformers 
 If  P / K  >  threshold  
  If the actual category of this example = conformer 
   Classify this example as a non-SNP 
  Else 
   Classify this example as a candidate SNP 
 Else 
  Classify this example as a non-call (i.e., possibly bad data) 
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Table 2.  The Features Used to Describe the Quartets 

Reference Sequence:  AGCGCTTTAAGCATATATCCATCCTAGCATACGATCTTTATACTTACATTACCCT… 
 
Resequencing probes (reference probes in bold) 
    …          …         … 
 Quartet 7:       TTTAAGCATATATCAATCCTAGCATACGA � Probe 7A 
         TTTAAGCATATATCCATCCTAGCATACGA ���� Probe 7C 
         TTTAAGCATATATCGATCCTAGCATACGA � Probe 7G 
         TTTAAGCATATATCTATCCTAGCATACGA � Probe 7T 
 
 Quartet 8:        TTAAGCATATATCGATCCTAGCATACGAT ���� Probe 8A 
          TTAAGCATATATCGCTCCTAGCATACGAT � Probe 8C 
          TTAAGCATATATCGGTCCTAGCATACGAT � Probe 8G 
          TTAAGCATATATCGTTCCTAGCATACGAT � Probe 8T 
 
 Quartet 9:         TAAGCATATATCGAACCTAGCATACGATC � Probe 9A 
           TAAGCATATATCGACCCTAGCATACGATC � Probe 9C 
           TAAGCATATATCGAGCCTAGCATACGATC � Probe 9G 
           TAAGCATATATCGATCCTAGCATACGATC ���� Probe 9T 
           …            …               … 

Resulting Intensities (obtained by exposing the chip to the sample) 
 
 
 

� The reference probe for quartet 7 is 7C.  This is also the 
highest-intensity probe in this quartet.  Hence, we call  
quartet 7 a conformer. 

 
� Note that, though the reference probe from quartet 8 is 8A, 
� the highest intensity probe from this quartet is 8C.  We call 

such a quartet a non-conformer. 
 
 
 

Probe Intensity 
… … 

7A 1543 
7C 3354 
7G 342 
7T 737 
8A 1456 
8C 2432 
8G 212 
8T 334 
9A 332 
9C 456 
9G 232 
9T 2443 

… … 

The Feature Set 
Each quartet produces one example.  The features are the reference base and the four sorted intensities 
(note that the feature set contains no information about which actual probe has the highest intensity).   The 
category of the example is either conformer or non-conformer, that is whether or not this quartet’s highest 
intensity probe is the reference base. 

Example Reference 
Base  

Intensity 1 Intensity 2 Intensity 3 Intensity 4 Category 

… … … … … … … 
7 C 3354 1543 737 342 conformer 
8 A 2435 1456 334 212 non-conformer 
9 T 2443 456 332 232 conformer 
… … … … … … … 
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This method seems to suffer from the fact that, on 
average, only one in 4! = 24 training examples will 
have the same order of intensities as a given test 
example.  If the features are not sorted, it is unlikely 
that two examples whose probe intensities are not 
similarly ordered will be close enough to each other in 
feature space to be considered “nearest neighbors”.  If 
the feature space were more densely populated, this 
may not be a problem.  However, in this case, there 
may not be enough training examples to support our 
method under these circumstances. 

We could have used alternative distance measures as 
well, such as Euclidean distance, but the absolute-value 
approach we chose (sometimes called the one-norm), is 
more computationally efficient since a large number of 
calls to the squaring function are eliminated. 

 

5. Evaluation 
For purposes of evaluation, we compare our algorithm 
to a simple alternative, which we call our baseline 
algorithm. Table 3 contains this baseline algorithm, 
which simply compares the highest intensity probe to 
the second highest.  If the ratio is above a threshold 
value, the algorithm assumes that the base represented 
by the highest intensity probe is the base in the 
sequence. If this quartet is a non-conformer, our 
baseline algorithm calls it a candidate SNP.  It should 
be noted that this baseline algorithm is not the state of 
the art in SNP-finding software.  That will be discussed 
later.  Our baseline algorithm is simply a basic 
straightforward interpretation of the results of a 
resequencing chip. 

Before turning to evaluating our approach on some real 
genomic data, we discuss the computational demands 
of our algorithm (Table 1).  It is possible to implement 
clever data structures that support fast determination of 
the k nearest neighbors (Liu et al., 2003), e. g., 
logarithmic in the number of examples.  However, we 

have not implemented such data structures because we 
can process the data from one microarray in a matter of 
minutes with a simple linear-time algorithm (linear per 
example, so overall it is quadratic in the length of the 
DNA sequence).  Our algorithm’s runtime is much less 
than the time it takes to run the “wet lab” phrase of a 
microarray experiment, so the algorithm is fast enough 
for our purposes.  It takes approximately fifteen 
minutes to process a typical two-hundred-thousand-
probe chip using a 1.5-gigahertz Pentium processor and 
512 megabytes of RAM.  Though this is longer than 
typical statistical methods, it is not a significant 
contributor to the time required for preparation and 
analysis of such a chip. 

In order to evaluate our algorithm, we chose a useful, 
realistic task.  One strain of the SARS virus (Ruan, 
2003) has been completely sequenced via standard 
capillary sequencing.  We were supplied with a 
different sample strain.  This sample differed from the 
reference sequence to an unknown degree.  Our task 
was to identify candidate SNPs in this strain.  Our 
predictions would subsequently be evaluated using 
further capillary sequencing and various other “wet” 
laboratory methods (Wong, 2004). 

Using the reference sequence, we designed a 
resequencing chip including both the forward and 
reverse strands of this virus.  We then exposed this chip 
to the sample.  After that we used our algorithm to 
predict the SNPs on this chip.  Once these results were 
obtained, we combined the forward and reverse 
predictions for each possible SNP position by 
averaging the two predictions. 

 

 Table 3. A Baseline Algorithm 
Given threshold 
For each example 
 Let MaxIntensity = intensity of the highest intensity base in this example 
 Let SecondIntensity =  intensity of the 2nd highest intensity base in this example 
 If (MaxIntensity / SecondIntensity) < threshold 
  Classify this example as a non-call 
 Else 
  If the actual category of this example = conformer 
   Classify this example as a non-SNP 
  Else 
   Classify this example as a candidate SNP 
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Materials and Methods 
 Preparation and hybridization of SARS Sample.  A 
detailed description of the methods used to prepare and 
analyze the SARS samples has been previously 
published (Wong, 2004).  Briefly, total RNA is 
extracted from patient lung, sputum or fecal samples, 
or from Vero E cultured cells inoculated with SARS-
CoV RNA.  RNA is reverse-transcribed into double-
stranded cDNA. Tissue samples are amplified using a 
nested-PCR strategy. For each sample, PCR-product 
fragments are pooled at an equimolar ratio, digested 
with DNase I (from Invitrogen, Carlsbad, CA) and end 
labeled with Biotin-N6 ddATP (Perkin Elmer, 
Wellesley, MA) using Terminal Deoxynucleotidyl 
Transferase (Promega, Madison, WI). 
The arrays are synthesized as previously described 
(Nuwaysir 2002; Singh-Gasson 1999).  The re-
sequencing arrays are hybridized with biotinylated 
DNA overnight, then washed and stained with Cy3-
Streptavidin conjugate (Amersham Biosciences, 
Piscataway, NJ). Cy3 signal is amplified by secondary 
labeling of the DNA with biotinylated goat anti-
streptavidin (Vector Laboratories, Burlingame, CA). 
Data extraction and analysis.  Microarrays are scanned 
at 5 µm resolution using the Genepix® 4000b scanner 
(Axon Instruments, Inc., Union City, CA).  The image 

is interpolated and scaled up 2.5x in size using NIH 
Image software (http://rsb.info.nih.gov/nih-image/).  
Each feature on the microarray consists of 49 pixels; 
pixel intensities are extracted using NimbleScan™ 
Software (NimbleGen Systems, Inc. Madison, WI). 
 
6. Results and Discussion 
 Our algorithm performed very well on this task.  Out 
of the 24,900 sequence positions represented by 
quartets on this chip, 442 are non-conformers.  Of these 
442, our algorithm identifies 36 as candidate SNPs.  
Subsequent laboratory experimentation that we 
performed identified 24 actual SNPs, all of which were 
among the 36 identified by our algorithm. 
All 24 actual SNP’s are non-conformers (i.e., quartets 
where the highest-intensity probe was not from the 
reference sequence).  Note, though, that in general it is 
possible for a conformer to truly be a SNP; however, 
our algorithm will not call these as SNPs, at best it will 
label this quartet as suspicious data. Since the SARS 
strain we used did not contain any “conforming” 
SNP’s, we are unable to evaluate how well our 
approach does at labeling such SNPs as non-calls. Of 
the 24,458 conformers, our algorithm (using the same 
parameter settings as used for categorizing the non-
conformers) only marked 3% as bad data. 
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Figure 2: ROC Curve for SARS SNP Detection 
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In order to verify this result, we generated five more 
identical SNP chips and exposed them to the same 
sample using the same values of K and threshold (later 
in this section we discuss how we choose good values 
for K and threshold).  The results varied only slightly.  
Our algorithm found all 24 SNPs in each of the five 
cases.  The number of false positives ranged from 6 to 
13. 

Our algorithm is largely self-tuning, in that examples 
are compared to their neighbors in feature space and 
classifications are made according to the properties of 
the neighbors, as opposed to specific portions of 
feature space being pre-labeled as clean or noisy.  
However, we do have two parameters, K and threshold.  
We next describe some experiments that investigate the 
sensitivity of our algorithm to the particular settings of 
these parameters. 

In order to choose an appropriate value for K, we tried 
various values between 1 and 250 to see how many 
false positives would result if one chose the largest 
threshold that allowed our algorithm to detect all 24 of 
the true SNPs.  The results of this experiment appear in 
Figure 3.  Fortunately our approach is not overly 
sensitive to the particular value of K; we chose K=100 

and hypothesize that this parameter setting will work 
well across a wide variety of organisms and strains.  

Figure 4 presents the impact of varying threshold (for 
K=100). It reports the number of true SNPs detected, as 
well as the number of false positives (non-SNPs 
incorrectly called SNPs). As can be seen, the 
algorithm’s performance is not overly sensitive to the 
setting for threshold. We also anticipate that a single 
setting for threshold (such as the 0.97 that we use) will 
work well across many organisms and strains, and hope 
that neither K nor threshold need to be reset for each 
new dataset. 

Remember, however, that our approach classifies some 
quartets as non-calls, namely those whose neighbors 
are predominantly non-conformers.  The percentage of 
quartets that are called (either SNP or non-SNP) is 
typically known as the call rate.  If this rate is too low, 
the procedure is of much less use since the algorithm 
only interprets a small fraction of the data.  In order to 
increase the call rate, one can lower the threshold 
value.  Using our chosen parameter settings we achieve 
a call rate of over 97%, while still identifying all of the 
SNPs in the samples we tested and misclassifying only 
a small number of non-SNPs. 
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Figure 3.  The Impact of K.  
The Y-axis reports the number of false positives (noisy examples misclassified as SNPs) that 

result for the given value of K for the largest threshold that allows our algorithm to detect all 24 
true SNPs. 

 



Appears in: The Proceedings of the IEEE Conference on Computational Systems Bioinformatics (CSB 2004) 
 

 

We are unable to directly compare against the haploid 
SNP calling accuracy of the current standard algorithm, 
ABACUS, from the Cutler group in conjunction with 
Affymetrix Corp.  However, we believe our results to 
be comparable to those published by Cutler et al. 
(2001), while our approach has much less overhead due 
to tuning and does not require high-resolution 
scanning. Their published results indicate an emphasis 
on high-confidence SNPs, at the cost of having a low 
call rate.  The Cutler group’s reported accuracy is very 
good.  Of the 108 SNPs they predicted in the human X 
chromosome, all 108 were verified to be real.  
However, they report their call rate on the chip as a 
whole to only be approximately 80%.  Though our 
method is currently geared more toward a high 
sensitivity to SNPs, we can change this by increasing 
our threshold from 97% to 99%.  Our call rate drops 
from 97% to 81% and, though we only make 22 SNP 
calls at that level, only 2 of them are false positives 
(hence we only detect 20 of the 24 known SNPs). Of 
course, one should not closely compare results across 
species, but these numbers do at least suggest the 
accuracy of our algorithm is on par with that of the 
Cutler group. 

7. Related Work 
 
Several approaches to this problem have been 
previously tried (Wang et al., 1998, Hirschhorn et al., 
2000, Cutler et al., 2001).  The most successful to date 
has been that of the Cutler group in conjunction with 
Affymetrix.  They use parametric statistical techniques 
that take into account the distribution of pixel 
intensities within each probe’s scanned signal pattern.  
However, this approach presents a number of 
limitations.  Principal among them is the fact that this 
method is very sensitive to changes in chemistry, 
scanner type, and chip layout.  In order to overcome 
some of these problems, extensive parameter tuning is 
required.  This involves the analysis of large amounts 
of data and needs to be re-run any time chemistry, 
light-gathering technology, or virtually any other 
experimental condition is changed.  Another limitation 
is that, in order to have a single probe represented by a 
sufficient number of pixels, a high-resolution scanner 
must be used.  
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Figure 4.  The Impact of the Threshold value. 

The Y-axis reports the number of SNPs found and the number of false positives that result for 
the given threshold with the value of K fixed at 100. 
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8. Future and current work 
 
Efforts are currently underway to apply this method to 
various other genomes.  Evaluation of its performance 
on larger genomes with varying degrees of complexity 
and SNP density are of great interest and will, perhaps, 
lead to further refinement of our algorithm. 

We are also in the process of applying this method to 
the identification of heterozygote SNPs.  These are 
SNPs where two different alleles are present on the 
sample.  Statistical methods for this type of SNP 
identification exist as well (Cutler et al., 2001).  
However, they require comparison between multiple 
individuals of the species and require the same type of 
high-performance hardware and tuning as previously 
mentioned.  Our method simply uses the same mean-
signal intensities and intra-chip self tuning as the 
homozygote or haploid method already mentioned. 

We would also like to decrease the number of probes 
needed to do such an analysis.  Though four probes per 
base position per DNA strand is much more efficient 
than other standard methods, the process will need to 
become still more efficient if it is to handle large 
genomes.  One possible approach would employ a 
resequencing chip which contains only base positions 
deemed to have a high probability of being SNPs. 
Though the resulting chip could be analyzed in the 
manner described here, it may not yield very good 
results.  This is because our SNP-calling algorithm 
relies on there being a large number of non-SNPs in the 
sample along with the SNPs.  We plan to extend this 
method so that it can work with fewer non-SNPs. 

We also plan to experiment with a richer feature set.  It 
is possible, for example, that the intensities of probes in 
quartets representing bases near the genome position 
represented by a given test example could be of use. 

 
9. Conclusion 
 
Identifying SNPs is an important task.  The emerging 
field of microarray technology has provided us with the 
tools to identify SNPs in a straightforward way through 
the use of SNP chips.  We have presented here an 
alternative to the standard method for the interpretation 
of these SNP chips.  Our empirical results on the SARS 
strains are encouraging, as are the prospects for future 
SNP detection via this method.  Besides its effective 
SNP-detection ability, additional strengths of our 
algorithm are (a) that its simplicity means that less 
calibration is needed, (b) it does most of its calibration 
on a single chip due to the use of the nearest-neighbor 

approach to classification, (c) that training examples 
for our nearest-neighbor approach are created via our 
simple-to-implement definitions of conformers and 
non-conformers (see Table 2), avoiding the need for a 
human to laboriously label examples, and (d) it does 
not require the use of high-resolution scanners. 
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