<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;">#-------------------------------------------------------------------------------
#
#  Define classes for (uni/multi)-variate kernel density estimation.
#
#  Currently, only Gaussian kernels are implemented.
#
#  Written by: Robert Kern
#
#  Date: 2004-08-09
#
#  Modified: 2005-02-10 by Robert Kern.
#              Contributed to Scipy
#            2005-10-07 by Robert Kern.
#              Some fixes to match the new scipy_core
#
#  Copyright 2004-2005 by Enthought, Inc.
#
#-------------------------------------------------------------------------------

# Standard library imports.
import warnings

# Scipy imports.
from scipy import linalg, special
from numpy import atleast_2d, reshape, zeros, newaxis, dot, exp, pi, sqrt, \
     ravel, power, atleast_1d, squeeze, sum, transpose
import numpy as np
from numpy.random import randint, multivariate_normal

# Local imports.
import stats
import mvn

__all__ = ['gaussian_kde',
]


class gaussian_kde(object):
    """
    Representation of a kernel-density estimate using Gaussian kernels.



    Attributes
    ----------
    d : int
        number of dimensions
    n : int
        number of datapoints

    Methods
    -------
    kde.evaluate(points) : array
        evaluate the estimated pdf on a provided set of points
    kde(points) : array
        same as kde.evaluate(points)
    kde.integrate_gaussian(mean, cov) : float
        multiply pdf with a specified Gaussian and integrate over the whole domain
    kde.integrate_box_1d(low, high) : float
        integrate pdf (1D only) between two bounds
    kde.integrate_box(low_bounds, high_bounds) : float
        integrate pdf over a rectangular space between low_bounds and high_bounds
    kde.integrate_kde(other_kde) : float
        integrate two kernel density estimates multiplied together
    kde.resample(size=None) : array
        randomly sample a dataset from the estimated pdf.

    Internal Methods
    ----------------
    kde.covariance_factor() : float
        computes the coefficient that multiplies the data covariance matrix to
        obtain the kernel covariance matrix. Set this method to
        kde.scotts_factor or kde.silverman_factor (or subclass to provide your
        own). The default is scotts_factor.

    Parameters
    ----------
    dataset : (# of dims, # of data)-array
        datapoints to estimate from

    """

    def __init__(self, dataset):
        self.dataset = atleast_2d(dataset)

        self.d, self.n = self.dataset.shape

        self._compute_covariance()


    def evaluate(self, points):
        """Evaluate the estimated pdf on a set of points.

        Parameters
        ----------
        points : (# of dimensions, # of points)-array
            Alternatively, a (# of dimensions,) vector can be passed in and
            treated as a single point.

        Returns
        -------
        values : (# of points,)-array
            The values at each point.

        Raises
        ------
        ValueError if the dimensionality of the input points is different than
        the dimensionality of the KDE.
        """

        points = atleast_2d(points).astype(self.dataset.dtype)

        d, m = points.shape
        if d != self.d:
            if d == 1 and m == self.d:
                # points was passed in as a row vector
                points = reshape(points, (self.d, 1))
                m = 1
            else:
                msg = "points have dimension %s, dataset has dimension %s" % (d,
                    self.d)
                raise ValueError(msg)

        result = zeros((m,), points.dtype)

        if m &gt;= self.n:
            # there are more points than data, so loop over data
            for i in range(self.n):
                diff = self.dataset[:,i,newaxis] - points
                tdiff = dot(self.inv_cov, diff)
                energy = sum(diff*tdiff,axis=0)/2.0
                result += exp(-energy)
        else:
            # loop over points
            for i in range(m):
                diff = self.dataset - points[:,i,newaxis]
                tdiff = dot(self.inv_cov, diff)
                energy = sum(diff*tdiff,axis=0)/2.0
                result[i] = sum(exp(-energy),axis=0)

        result /= self._norm_factor

        return result

    __call__ = evaluate

    def integrate_gaussian(self, mean, cov):
        """Multiply estimated density by a multivariate Gaussian and integrate
        over the wholespace.

        Parameters
        ----------
        mean : vector
            the mean of the Gaussian
        cov : matrix
            the covariance matrix of the Gaussian

        Returns
        -------
        result : scalar
            the value of the integral

        Raises
        ------
        ValueError if the mean or covariance of the input Gaussian differs from
        the KDE's dimensionality.
        """

        mean = atleast_1d(squeeze(mean))
        cov = atleast_2d(cov)

        if mean.shape != (self.d,):
            raise ValueError("mean does not have dimension %s" % self.d)
        if cov.shape != (self.d, self.d):
            raise ValueError("covariance does not have dimension %s" % self.d)

        # make mean a column vector
        mean = mean[:,newaxis]

        sum_cov = self.covariance + cov

        diff = self.dataset - mean
        tdiff = dot(linalg.inv(sum_cov), diff)

        energies = sum(diff*tdiff,axis=0)/2.0
        result = sum(exp(-energies),axis=0)/sqrt(linalg.det(2*pi*sum_cov))/self.n

        return result

    def integrate_box_1d(self, low, high):
        """Computes the integral of a 1D pdf between two bounds.

        Parameters
        ----------
        low : scalar
            lower bound of integration
        high : scalar
            upper bound of integration

        Returns
        -------
        value : scalar
            the result of the integral

        Raises
        ------
        ValueError if the KDE is over more than one dimension.
        """
        if self.d != 1:
            raise ValueError("integrate_box_1d() only handles 1D pdfs")

        stdev = ravel(sqrt(self.covariance))[0]

        normalized_low = ravel((low - self.dataset)/stdev)
        normalized_high = ravel((high - self.dataset)/stdev)

        value = np.mean(special.ndtr(normalized_high) -
                     special.ndtr(normalized_low))
        return value


    def integrate_box(self, low_bounds, high_bounds, maxpts=None):
        """Computes the integral of a pdf over a rectangular interval.

        Parameters
        ----------
        low_bounds : vector
            lower bounds of integration
        high_bounds : vector
            upper bounds of integration
        maxpts=None : int
            maximum number of points to use for integration

        Returns
        -------
        value : scalar
            the result of the integral
        """
        if maxpts is not None:
            extra_kwds = {'maxpts': maxpts}
        else:
            extra_kwds = {}

        value, inform = mvn.mvnun(low_bounds, high_bounds, self.dataset,
            self.covariance, **extra_kwds)
        if inform:
            msg = ('an integral in mvn.mvnun requires more points than %s' %
                (self.d*1000))
            warnings.warn(msg)

        return value

    def integrate_kde(self, other):
        """Computes the integral of the product of this  kernel density estimate
        with another.

        Parameters
        ----------
        other : gaussian_kde instance
            the other kde

        Returns
        -------
        value : scalar
            the result of the integral

        Raises
        ------
        ValueError if the KDEs have different dimensionality.
        """

        if other.d != self.d:
            raise ValueError("KDEs are not the same dimensionality")

        # we want to iterate over the smallest number of points
        if other.n &lt; self.n:
            small = other
            large = self
        else:
            small = self
            large = other

        sum_cov = small.covariance + large.covariance
        result = 0.0
        for i in range(small.n):
            mean = small.dataset[:,i,newaxis]
            diff = large.dataset - mean
            tdiff = dot(linalg.inv(sum_cov), diff)

            energies = sum(diff*tdiff,axis=0)/2.0
            result += sum(exp(-energies),axis=0)

        result /= sqrt(linalg.det(2*pi*sum_cov))*large.n*small.n

        return result

    def resample(self, size=None):
        """Randomly sample a dataset from the estimated pdf.

        Parameters
        ----------
        size : int, optional
            The number of samples to draw.
            If not provided, then the size is the same as the underlying
            dataset.

        Returns
        -------
        dataset : (self.d, size)-array
            sampled dataset
        """

        if size is None:
            size = self.n

        norm = transpose(multivariate_normal(zeros((self.d,), float),
            self.covariance, size=size))
        indices = randint(0, self.n, size=size)
        means = self.dataset[:,indices]

        return means + norm


    def scotts_factor(self):
        return power(self.n, -1./(self.d+4))

    def silverman_factor(self):
        return power(self.n*(self.d+2.0)/4.0, -1./(self.d+4))

    # This can be replaced with silverman_factor if one wants to use Silverman's
    # rule for choosing the bandwidth of the kernels.
    covariance_factor = scotts_factor

    def _compute_covariance(self):
        """Computes the covariance matrix for each Gaussian kernel using
        covariance_factor
        """
        self.factor = self.covariance_factor()
        self.covariance = atleast_2d(np.cov(self.dataset, rowvar=1, bias=False) *
            self.factor * self.factor)
        self.inv_cov = linalg.inv(self.covariance)
        self._norm_factor = sqrt(linalg.det(2*pi*self.covariance)) * self.n
</pre></body></html>