Lecture 1 - Sep 5,2006|

Questions to Start With i

e Why are you here?
e What is Computer Graphics?

* What do you want to get out of it?
* What do you expect?
* What have you heard?

¢ Mechanics — 75 minute lecture too long
— TRY for a break

¢ Do not want to blow a lecture on mechanics

Topics du Jour (77

* What is Computer Graphics — the topic

* What is Computer Graphics — the class

« Some basic things to get started

What is Computer Graphics?

« How computers create things we see

What kinds of “things we see” .: 7

e What? e Why?
¢ Computer Displays « Computer Displays
¢ Movies / Video ¢ Entertainment
e Print » Design
¢ Interactive Media e Communication
— Games « Simulation

— Virtual Reality
Other devices (mobile)

* Medicine / Science

A

What is computer graphics? ’

(almost) Any picture we see!
and a lot more than “computer pictures.”

Computers touch everything ...

« All movies

« Photography (even film is printed digitally)
* Print

What do we see? ap

What is an Image?

e Basics of Light
— Electromagnetic radiation
« Waves, frequencies (later)
— Particle model
« Travels from source to receiver
* Source to Viewer?
— Not known until around 1000
« Euclid and Ptolemy PROVED otherwise
— Ibn Al-Haythan (Al-hazen) around 985
« Triumph of the scientific method
— Proof by observation — not authority
« Experiment — stare at sun, burns eyes, ...
« Also figured out light travels in straight lines
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Depth and Distance

« Light travels in straight lines

— Except in weird cases that only occur in
theoretical physics

« Doesn’'t matter how far away
— Can't tell where photon comes from

— Photons leaving source might not all make it to

eye
— Photons might bounce around on stuff

« Longer distance, more chance of hitting something

Looking at things g

¢ Light leaves source

¢ Light bounces off object

« Light goes to receiver
— Eye, Camera vz

* Receiver is 2D, process is :f),? ae ",
3D <
* Mathematics later ) N

¢ Could be a picture (per
eye)

What is Computer Graphics?
* Images - Visual Computing

« Geometry - Geometric Computing
— Probably turned into an image at some point

« Not just pictures of world (text, painting, ..

)

Images W

« Dictionary: a reproduction of the form of a

person or object, especially a sculptured
likeness

< Math: the range of a function

* A picture (2D)
» A sampled representation of a spatial thing

How to make images?

» Represent 3D World & Make a picture

— Rendering (act of making a picture from a
model)

— Either simulate physics or other ways

» Capture measurements of the real world
» Make up 2D stuff (like painting text, ...)

Kinds of Image Representations ’

* Old: Raster vs. Vector

* New: Sampled vs. Geometric

 Raster: regular measurements (independent
of content)

« Geometric: mathematical description of
content

« Display: vector vs. raster




Pixels i/

* A little square?
— Bad model — but right idea
« A measurement (at a point)

—In theory a point — in practice could be average
over a region, ...

— Limited precision...

e Grid? (or any pattern)
— Key point: independent of content

What is the field of Graphics?

(as far as we're concerned as a part of CS)

* Not content
« Not how to use graphics tools (***)

Related Fields / Courses [

o Art

* Image Processing

« Computational Geometry

» Geometric Modeling

» Computer Vision

* Human Perception

« Human-Computer Interaction

« Advanced Graphics

What do you need to know?

About images
About geometry
About 3D

Importance of images in graphics classes
— A new thing
— Not well reflected in texts

What will we try to teach you? (7

» Eyes and Cameras — where images go
* Images (sampling, color, image processing)
» Drawing and representing things in 2D

— Raster algorithms, transformations, curves, ...
» Drawing and representing things in 3D

— Viewing 3D in 2D, surfaces, lighting

— Making realistic looking pictures
» Miscellaneous topics

How will we teach this to you?

e CS559 — Computer Graphics

» Basic course info — its all on the web
WWW.CS.wisc.edu/~cs559-1

* Web for announcements — issues with
mailing lists




Who ! 7

¢ Prof: Mike Gleicher
* 6385CS

« Office Hours:
— Tuesday: after class
(11:00-11:45)
— Wednesday 9:45-10:30
— NOT Thursday

e gleicher@cs.wisc.edu

» TA: Yu-Chi Lai
Mohamed Eldawy

¢ See the website

Books )

+ Fundamentals of Computer Graphics, 2" ed

— By Peter Shirley (and others)
— NOT the 15t edition
— Referred to as Shirley
— or Tiger Book
* OpenGL Programming Guide
— By Woo et al.
— “red book” — common reference

— Any version is OK for class
« Old version is on the web

Collaboration

» Collaboration vs. Academic Misconduct

* We encourage collaboration (to a point)
— Not on exams
— You must do your own project work

Parts of the Course W

¢ Exams

* Projects

« Assignments
— Programming
— Written

* Something due every Tuesday (start next
week)

Software Infrastructure L7

* Visual Studio (C++ on Windows)

— Your program must compile and run on
machines in B240!

* FITk
¢ OpenGL

« Class is not about tools, but we will help you
with them

Other Administrative Questions? "'

o C++

* Workload

¢ Extra Credit

« Grading and Late Policies

!




CS559 — Lecture 2
Lights, Cameras, Eyes

Last time:
what is an image
idea of “image-based” (raster representation)
Today:
image capture/acquisition, focus
cameras and eyes
displays and intensities ~ Corrected Notes

Not used as slides in class

© 2006 Michael L. Gleicher

Getting light to “imager”

« Light generally bounces off
things in all directions
— See from any direction
— Not the same! (mirror)
— Deal with this in detail later

emitter (source) or reflector
— Same to receiver

« Generally doesn't matter if SR

Depth and Distance

« Light travels in straight lines
— Except in weird cases that only occur in theoretical
physics
« Doesn’t matter how far away
— Can't tell where photon comes from
— Photons leaving source might not all make it to eye

— Photons might bounce around on stuff
< Longer distance, more chance of hitting something

Capturing Images

« Measure light at all places
on the “imaging plane”?

« Not quite...
« Potentially all paths
between world and imager

— Need to be picky about
which rays we look at

“Ildeal Imaging”

« Each point in world maps
to a single point in image
— Image appears sharp
— Image is “in focus”

« Otherwise image is “blurry”
— Image is out of focus

* How to do this?
¢ Pinhole Camera

— Infinitessimal hole in blocking
surface — just a point

— Only 1 path from world point
to image

— Focal Point

Why is pinhole imaging not so ideal in
practice?

« Finite aperature

— Always will be some
blurryness

« Too selective about light
— Lets very little light

* Smaller aperature
— Less blurry
— Less light

* Want bigger aperature, but
keep sharpness

7
|




A “virtual pinhole” - Lenses Il

« Lens bends light

» convex lenses — take bundles of
light and make them converge

(pass through a point) Kk— {—
« Parallel rays converge = |
« Avirtual pinhole! | —— ==
. e
« Light rays from “far away” are = —
(effectively) parallel — ’
* What about non-parallel rays?

« Infinitessimal aperature = infinite
sharpness

“Thin” Lenses

« All points at one distance
get to another place

« Different distances map to
different distances

« If we fix the distance to the
image plane, then only
objects at a single distance
will be in focus

- UD+1N=1F
— Farther objects image closer

Picture is wrong — inverse
relationship between | and D

Focusing with a lens !

« Objects at “focussed
distance” — sharp (in focus)

« Objects at other distances
are not sharp

* Some blurryness is OK \g
— Circle of Confusion —
« Depth of Field \ S

— Range of distances that
things are “close enough” to
being in focus

Controlling the image 2,

« Smaller aperature = less blurry = larger depth of
field

— But less light

* Lens determines
— What gets to the imaging surface
— What is in focus

. . |
Measuring on the image plane W/

« Want to measure / record the light that hits the
image plane

» At every position on the image plane (in the image)
we can measure the amount of light
— Continuous phenomenon (move a little bit, and it can be
different)
— Can think of an image as a function that given a position
(x,y) tells us the “amount” of light at that position
i =f(x.y)
— For now, simplify “amount” as just a quantity, ignoring
that light can be different colors

Measuring on the image plane /

 i=f(xy)
« Continuous quantities
— Continuous in space
— Continuous in value
« Computers (and measuring in general) is difficult
with continuous things
* Major issue
— Limits to how much we can gather

— Reconstruct continuous thing based on discrete set of
observations

— Manipulate discrete representations




Measuring on the image It

* Water/rain analogy
« Put a set of buckets to catch water

« Wait over a duration of time
— Use a shutter to control the amount of time

* Measurement depends on
— Amount of light

— Size of aperature (how much of the light we let through)
— Duration

Types of “buckets” It

e Film
— silver halide crystals change when exposed to light
¢ Electronic

— Old analog ways — vidicon tubes
« Store the charge on a plate, scan the plate to read
« http://www.answers.com/topic/video-camera-tube

— New ways: use an MOS transistor as a bucket
« Biological
— Chemicals (photo-pigments) store the photon and
release it as electricity
— Isn’t really a shutter

Similarities oy

* Low light levels are hard
— Need to get enough photons to measure

— Small counting errors (noise) — are big relative to small
measurements

» Tradeoffs on bucket sizes
— Big buckets are good (lower noise in low light)
— Lots of buckets are good (sense more places)

— For afixed area, there is a tradeoff
« Especially in digital cameras/videocameras

MOS Transistors Not really discussed e

* Metal Oxide
Semiconductors

« Semiconductor acts as a
“bucket” for electrons

* Metal at top is a “gate” —
creates electric field that
can connect/disconnect the
two sides

CCD sensors L7

e CCD = Charge Coupled

ccb= —L D14
— “Bucket Brigade” of MOS uuuuuuuu

transistors
— Use gates to move charge

along I R N A TN N N
— Read out “at edge” UL@L]LL'IL.QL]LL]LI_?’
— Shift register to transfer out
images I A I |
« Advantage:
— Cheap / easy to make large I Y A A |
numbers of buckets I :h (_bI h j-[ %_T
— Uniform uu

* Blooming

Juawiainses|\

CMOS sensors Not really discussed L7

« Disadvantage of CCDs
— Have to shift things out (slow, lose info)
— Different than computer chips
* CMOS (complimentary Metal Oxide Semiconductor)
— Just like computer chips
— Put more circuitry around each sensor transistor
« Amplify / switch signals as needed
— Use normal “wires” to carry info to where it needs to go

« Downside: space for circuit means less space for sensors

(smaller buckets = more noise), not uniform

« Upside: same “technology curve” as computers, so will get

better, faster, cheaper, lower power, ...




Digital Camera Il

* Megapixels = number of buckets
— 7 or 8 million buckets in a consumer camera

e But...

— How big are the sensors?
« Same size / more megapixels = smaller buckets = more noise
« (unless the sensor technology gets better)

— How good is the lens?

« Smaller buckets don't do you any good if the lens can’t aim it
into the right bucket

Eye 177

Pupil — hole in the eye

¢ Lens

Iris

— round muscle — size of pupil

« Cornea
— Clear protective coating

« Fluid filled spaces — acts as lens
— Agqueous humor
— Vitreous humor

* Rectus Muscles

— Change shape of eyeball to
focus

« Optic Nerve

— Carries information away
« Blind Spot

— Where the optic nerve is
« Central Fovea

Retina — the “image plane” of the eye fiy

A

Only place on body to see blood vessels directly
» Has photoreceptors
— Cells sensitive to light
« Photopigments
— chemicals that change when exposed to light
— Different photoreceptors have different pigments

— Different pigments behave differently
< Sensitivity, color selectivity, regeneration speed

» Types of photoreceptors

Types of photoreceptors: T
Rods )

« Photopigment: Rhodopsin

— Breaks into retinene + protein

— Must be reassembled before can work again
* Very sensitive

— Bright light means that it breaks down faster than it is
regenerated

— Less useful in bright light

« Blinded by bright light at night

Cones ity

» Photopigments reform quickly

« Different types of cones sensitive to different kinds
of light (color sensitivity)
— Humans — 3 types of cones
« Except for color blindness
— Dogs — 1 type of cone
— Many mammals (horses, cows, deer, ...) — 2 types
— Ducks, Pigeons - 5 types (?)
« Birds range in number — European Starling 4
« http://people.eku.edu/ritchisong/birdbrain2.html
« We'll talk about this more later

Persistence of Vision ikl

* Photopigments take some time to regenerate

« If you see a flash, you sense it for a while
afterwards

e This is NOT how you fuse movie frames together
in order for it to seem continuous

— This is actually hard psychological science that is not
well understood

— Integration happens as a higher level process in the
brain

— Many other effects




« If something flashes fast enough, it seems to be
continuous
— Flicker frequency — approx 40-45 hz in a dim/dark room
— Sensitivity varies with age and ambient brightness

Used to create different types of displays
- CRT

— Movies

“Flicker-based Displays” [

How many megapixels is the eye? "Lj'_.

Density of photorecptors varies (see book)

Dense area of cones = fovea

— Eye moves the scene around, fovea looks at a little piece and over
time gets the whole picture

— Saccade — movement of the eye to see different piece
— Fixation —

Wide angle view means “resolution” hard to talk about —
easiest to talk about in terms of angle

Discriminate about %2 minute of arc (for 20/20 vision)
— At.5 meters, this is .1mm

* Amazing range!
— Night vision — when eyes adjusted, camping
— Bright daylight
« Sunlight 10000.
e Twilight 10.
- Starlight 0.001
» Catch: at any given time, can'’t see this range
— Adaptation — bright light, iris closes, lets in less light, ...
» At any given time, about 100:1 contrast ratio
— This is a lot more than most displays

— Better displays = more constrast
« Often by blacker blacks

- . TiF
How sensitive is the eye’? ik

High Dynamic Range Imagery 17

* Most sensors/displays have less range than eye
— Certainly less range than scenes do
* What happens?
— Bright areas — all white (no details)
— Dark (shadow) areas — all black (no details)
* What to do?
— Adjust exposure (time, aperature, sensitivity) to get the most
important stuff
— Acquire “High Dynamic Range” Imagery
« Special sensors
« Multiple exposures (at different settings) — cool thing to do
— Tone Map -> display on device with less range
« A chapter in the book we won't get to

Perception of intensity Ley

» Eye senses relative differences
— Equivalent differences 50:100 20:40

— Hard to tell absolute differences directly
« Adaptation to current setting

¢ Can sense 1% differences
At any given time 100:1 contrast ratio

How many levels can you see in an image?
—1.01 7463 =100.2 (e.g. 463 1% differences = 100:1)
— This is about 8 bits of precision (less than 9)

— Butits VERY non linear 1, 1.01, ...., 99.2, 100.2
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CS559 — Lecture 3 Part 1 )
Intensity, Quantization, Sampling i
- [ ',/
Gamma correction Al

« |dea: put a non-linear function between intensity
and output

— Done as the last step (usually) — after all computations

» Could create arbitrary functions for mapping
— Too cumbersome

« Exponential is a good approximate model
— Exponential non-linearity of perception
— Exponential power laws in CRTs

Linearizing the display (1

» Define a function g that corrects for non-linearity

* L=M(g())Y (ignoring ¢)
-G=1y

* Where do we get y from?
— Pick it so things look right

* Note: 15t order approximation (very simple)
— Only 1 parameter to specify (y), many factors

Non-linearity of intensity s

» Non-linear mapping from “amount of light” to
perceived brightness

« Want uniform mapping of intensities -> perception
- Level 1, 2,3, ....255 -> 1,1.01, 1.02, ... 99, 100

» Worse: displays are non-linear too
— Voltage -> amount of light is non-linear
— Different displays are different

« Want to linearize the system
— Intensity levels map nicely to perceived levels

Modeling a display device (17

« 5/2 power law (five-halves)
— Models physics of a CRT
— Real CRTs are close, LCDs designed to be similar

e L=M (i+e)y
— i = input intensity value
— L = amount of light
— ¢ = since zero isn’t really black
— M = maximum intensity
— v = specific property of display

. [ ',/
Gamma correction Al

* Want value 0 = minimum intensity
* Want value max (1 or 255) = maximum intensity
--- those 2 are easy to get
¢ Pick one more point
— Midpoint should be 50%
— Easy — show 50% black white + 50% gray
— Adjust gamma until it looks the same

« All this happens “behind the scenes”
« Everything gets harder when we deal with color




What to store in the frame buffer?

» Frame Buffer = rectangular chunk of memory
* Intensity measurements
— Deal with color later, basically store multiple
monochrome
» Continuous range of intensities
— 8-9 bits of precision ideally
« More since can't get exactly right (10-12 bits)
« More since want more dynamic range (12-14 bits)
« More since want linear space to make math easy (16-32 bits)
« Discrete set of choices — QUANTIZATION
— Inks, palettes, color tables, ...
— Less storage cost + Color table animation

13F
LA

Faking more “colors” than you have

« Eye tends to average stuff together
— Trade spatial resolution for intensity resolution

117}
B

* What happens when we want smaller numbers of
values?

— Black and white for printing
— Limited color pallete
» Old problem
— Printing
— Artists (pen and ink drawing)

Quantization k7

Thresholding [

« Threshold — pick value / above or below

e Each pixel picks nearest value
— 49% looks the same as 1%
— 49% looks very different than 51%

« Better: trade spatial resolution for value resolution
— Brain blurs stuff together anyway

— Art example: hatching to show “gray”

Dithering [

* Add some random noise

* 50% + noise -> half black, half white
» Values at extreme less likely to get changed

» Eye doesn’t mind noise as much as it does blocky
edges

Patterns f

* Make display resolution greater than image
resolution

» Each pixel gives a block w/appropriate number of
pixels on

» For example: 3x3 blocks give 10 levels

]l e ol EleatlEaS




Ordered Halftoning 74

» Do patterns, but apply for each pixel seperately (no
scaling images)
« Divide image into nxn blocks (repeated pattern)
— Each pixel decides if it would be turned on if its value
was used to pick the pattern
« Easy implementation: Threshold Matrix or Mask
— Used in traditional printing (a halftone screen)
— Each pixel has a different threshold
— Example: 4 values

0f2
13

More on Halftone screens )

¢ Other factors can go into designs

 Cluster things together (since you know that ink
tends to clump)

* Or make artistic effects

« Can be used with dithering (adding randomness)

Error Minimization aly

» For each pixel, compute error (how different from
result)

— Try to pick result to minimize error

» Global minimization: each pixel should equal
average of destination image

— Too hard to solve efficiently since it's a combinatorial
problem

» Local minimization: each pixel should be as close
as possible (thresholding) — but spread error
around evenly

Error Diffusion g

* Many ways to do this
« Old standby: Floyd-Steinberg

« Start at upper left
* Pick value for pixel
« Push error into neighbors (that haven’t been visited yet)

« Problem: directional artifacts (fix by alternating directions)
« Good news: generalizes (colors, multiple levels, ...)
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CS559 — Lecture 3 Part 2 [
Intensity, Quantization, Sampling i
. . [ ',/
What is a pixel? k)

» Raster means regular, or uniform “grid”

» Two views of a pixel
— A pixel is a POINT SAMPLE
« Measurement at an infinitessimally small place
— A pixel is finite region with constant value
« Assumes image is collection of piecewise constant regions

» Point sample is better model

— Constant regions are a special case of sampling filter
— More correct, better mathematics, can model the other

Point Sampling Has Problems L7

* Miss small things

» Problem: discretization throws away information
« Don't know what happens between samples

» Sampling loses information — you cannot get back
the information once its lost!

Continuous vs. Discrete

¢ Image is a continuous thing
« Can measure anywhere
- F(xy)
« Only really have a discrete set of points
— Number of places to measure
— Number of measurements to store
— Number of “dots” to draw
* We are throwing away information

— No choice — unless take infinite number of
measurements, infinite storage, ...

Little squares lose differently

e Are squares better than point samples?

» Average over a little square

* But:

— Don't know what really happened
— Was it really constant, or was it a spike?

e Good intuition for what is coming up

A

Dealing with discretization

e Sampling

— Understand what information we are throwing away

Reconstruction

— Recreate as well as possible from the samples
Re-Sampling
— Transform the image

Signal Processing / Image Processing

Consider the 1D case first since its easier




Get really weird results

* Sample a checkerboard

¢ Too few samples
— Get all black
— Get all white
— Get weird patterns
« Aliasing
« Moire’

— Arbitrary algorithm decision
gives very different answers!

* Imagine resampling Demonstration ratios: 4/6 (here) = 2/3

. . 12
Bad sampling is bad { {_’;"
* Miss small things between s 8 8 8 8 8 8 &
samples -I. " s 8 @ oo @
(7
Ugly v
« Imagine line drawing .
« Jaggies
« Crawlies
— Small change causes jump
— Smooth motion becomes
jumpy .
. 127
Intuition 7

* Too few samples = BAD

« Sampling rate depends on
the thing you're sampling

o

b
)

@

* Need to sample close
enough to get smallest
object

* Need to limit small objects
to be big enough that they
aren’t missed

Dealing with discretization @
e Sampling

— Understand what information we are throwing away
» Reconstruction

— Recreate as well as possible from the samples
¢ Re-Sampling

— Transform the image
« Signal Processing / Image Processing
» Consider the 1D case first since its easier

. . . 7

A different intuition VAl

oy

» Not really point sampling

— Mesurements average over a finite range

— Displays make finite dots
* Need to model these

— Sampling filters, reconstruction filters

— Averages over regions -> Convolution (generalized)
* Need to be realistic about what they mean

— Can't see everything (too small, ...)

« Sampling theory gives a nice mathematics for this!




Point sampling in 1D It

* Only record samples

« Don't know what happens ./ BT

in between samples M

* Given the samples, don't
know what really (R

happened!

Sampling Intuitions It

» Reconstruct the “smoothest” signal that makes
sense from samples

« If signal is “smooth enough”, sampling will give
something we can reconstruct

« If signal is not “smooth”, sampling will give
something that will reconstruct to something else
— Aliasing

* But how do we define “smooth”

Reconstruction from Sampling L7

« Can't localize events
— Bigger problems than that

« No idea! Signal could be
anything

» Without additional
information, we're M M
guessing as to what the ‘

signal is HHH‘H

* But what additional info?

Signal processing (17

« Need better “language” for talking about signals

« |dea: represent signals in a different way
« Up till now: time domain (graph against time)
— Good for asking “what does signal do at time X"
» New idea: frequency domain
— Good for talking about how smooth signals are

Different view of the same thing

Frequency Domain taf

* Fourier Theorem:

— Any periodic signal can be represented as a sum of sine
and cosine waves with harmonic frequencies

— If one function has frequency f, then its harmonics are
function with frequency nf for integer n

— Extensions to non-periodic signals later
— Also works in any dimension (e.g. 2 for images, 3, ...)
» Example: box

Example: Box (Square Wave) [

¢ 1 cosine — bad

* More cosines, better W
approx
1 X< }/
00 = X< 7
Suun() = 3 23 (s BT

1.2 1 1
== +—| COS@X —-C0S3X + = COS5aX — -+
2z 3 5




Intuitions it

* Low frequencies are smooth
— High frequencies change fast, are not smooth

« If a signal can be made of only low frequencies, it
is smooth

« If a signal has sharp changes, it will require high
frequencies to represent

General Functions it

» A non-periodic function can be represented as a

sum of sin’s and cos’s of (possibly) all frequencies:

1 (= )
f(x)=— j F(w)e”dw
) 27 o=
e'™ = coswx + i sin wx
* F(w) is the spectrum of the function f(x)
— The spectrum is how much of each frequency is present
in the function
— We're talking about functions, not colors, but the idea is
the same

Fourier Transform iaf

* F(w) is the Fourier Transform of f(t)
— A different representation of the same signal

e To get f(t) back you use the Inverse Fourier
Transform

¢ You don’t need to know how to compute them

F(w) = jz f (x)e " dx

Cosine and Its Transform iaf

If f(x) is even, so is F(w)

Sine and Its Transform it

If f(x) is odd, so is F(w)

[
Constant Function and Its Transform )

The constant function only contains the 0 frequency
— it has no wiggles




Box Function and Its Transform

Delta Function and Its Transform "L'__.-

Fourier transform and inverse Fourier transform are
qualitatively the same, so knowing one direction
gives you the other

Shah (Spikes) and Its Transform

Gaussian and Its Transform )

They are the same

Qualitative Properties

» The spectrum of a functions tells us the relative
amounts of high and low frequencies
— Sharp edges give high frequencies
— Smooth variations give low frequencies

¢ A function is bandlimited if its spectrum has no
frequencies above a maximum limit
— sin, cos are band limited
— Box, Gaussian, etc are not

» To band-limit a signal we low-pass filter it

Sampling Theorem (intuition) )

« High frequencies get lost
— Can only sample band
limited signals
¢ Sampling rate must be 2

times higher than signal

« Signal must be half
frequency of sample rate /M .
— Otherwise, signal can “turn
around” between samples

« Nyquist rate

— 2x highest frequency in
signal




Sampling Theorem

« If your signal is bandlimited

¢ And you know what the band limit is

« And you sample at (at least) twice that frequency
— Above the Nyquist rate

* Then - you can reconstruct your signal EXACTLY!

» Caveat
— Ideal reconstruction requires perfect band limiting in both
sampling and reconstruction

Sampling Theorem

« If your signal is bandlimited

¢ And you know what the band limit is

« And you sample at (at least) twice that frequency
— Above the Nyquist rate

* Then - you can reconstruct your signal EXACTLY!

« Caveat
— ldeal reconstruction requires perfect band limiting in both
sampling and reconstruction

I
LR Ay g

Need to know about convolutions

* We need to have band limited signals
— Need low pass filters
— Which are implemented as convolutions
» Reconstruction requires low-pass filtering
— Which is implemented as convolution
* Need to see Sampling theory in Fourier domain
— Need convolution

e Convolution is the mathematical generalization
of averaging

Filtering: Convolutions

« A general filter is a function on an image that
produces another image

« Many common filters are simpler in the Fourier
domain

» Choice:
— Transform image, filter, inverse transform image
— Inverse transform operator, apply in spatial domain

— Transform (or inverse) of multiplication is convolution

Filters

« A filter is something that attenuates or enhances
particular frequencies

 Easiest to visualize in the frequency domain,
where filtering is defined as multiplication:

H(®) = F(®) xG(w)

* Here, F is the spectrum of the function, G is the
spectrum of the filter, and H is the filtered function.
Multiplication is point-wise

Quialitative Filters

G

AV s BRIV I
m « [ - Q__D High-pass
Va1 RN EET




I
Can you transform an operator? It
« Many filters are multiplication in frequency domain

 Fourier transform of multiplication is convolution
* Fourier transform of convolution is multiplication

Filtering in the Spatial Domain

« Filtering the spatial domain is achieved by

convolution
h)=f@g=[ f(wg(x-u)du

« Qualitatively: Slide the filter to each position, X,
then sum up the function multiplied by the filter at
that position
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Convolution Theorem oy

« Convolution in the spatial domain is the same as
multiplication in the frequency domain
— Take a function, f, and compute its Fourier transform, F
— Take a filter, g, and compute its Fourier transform, G
— Compute H=FxG
— Take the inverse Fourier transform of H, to get h
— Then h=f&yg

» Multiplication in the spatial domain is the same as
convolution in the frequency domain

Filtering Images k)

* Work in the discrete spatial domain

* Convert the filter into a matrix, the filter mask

* Move the matrix over each point in the image,
multiply the entries by the pixels below, then sum
— eg 3x3 box filter
— Effect is averaging
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Box Filter e

* Box filters smooth by averaging neighbors

« In frequency domain, keeps low frequencies and attenuates
(reduces) high frequencies, so clearly a low-pass filter

©|=

Spatial: Box 11 Frequency: sinc
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Filter Widths iy

e Fourier Transform of a Time scaling:
— f(kt) -> F( 1/k omega)
— As time gets scaled, frequency gets scaled by the
inverse
 Box filter: wider box in frequency domain =
narrower filter in time domain

 To filter higher frequencies use a narrow (in
time/space) filter

» Lower Frequency cutoff (in a High-pass filter), you
use a bigger (in time/space) filter

Handling Boundaries It

k2

Vo [XIIY]= D7 Kzlz‘ﬂmpm[XJri][y+ IM[i+k/2][§+k/2]

i=k/2 j= kI

« At (0,0) for instance, you might need pixel data for

(-1,-1), which doesn't exist

* Option 1: Make the output image smaller — don’t

evaluate pixels you don’t have all the input for

« Option 2: Replicate the edge pixels

— Equivalent to: posn = x + i; if (posn < 0) posn = 0; and
so on for other indices
« Option 3: Reflect image about edge
— Equivalent to: posn = x +i; if (posn < 0) posn = -posn;
and similar for others

Seperable Filters

» Some 2D filters can be implemented as 2 1D filters
» Each dimension at a time

¢ Much easier
— Don't need to build 2D filter kernel
— Much faster (O(mn) not O(m”2 n))

» Box filters are seperable
Other 2D filters are designed by seperated pieces

Constructing Masks: 2D It

e Multiply 2 1D masks together using outer product
ML 1= mli]m[j]

* Mis 2D mask, mis 1D mask

Bartlett Filter W/

» Triangle shaped filter in spatial domain

* In frequency domain, product of two box filters, so
attenuates high frequencies more than a box
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Spatial: Triangle (Box®Box) Frequency: sinc?

Constructing Masks: 1D 1t

« Sample the filter function at matrix “pixels”, then normalize

* eg 2D Bartlett
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« Attenuates high frequencies even further
 In 2d, rotationally symmetric, so fewer artifacts

1,3
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Constructing Gaussian Mask It

« Use the binomial coefficients
— Central Limit Theorem (probability) says that with more

samplef, binomial converges to Gaussian
[2]z]1]
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Sampling Theory (17

« Sampling is multiply by $ il
spike chain in time domain i ‘ i
— Fourier transform of spike 4‘4\‘7 I_J_ A

chain is spike chain

— Fourier transform of multiply ; Ly
is convolution A ‘ | N A
« Sampling is convolution by I

spike chain in frequency
* Makes infinite copies of

signal
« Reconstruction low-pass hond b
filters to remove all but one L LA
+ Non-band limited, things -l'. 2T }\5(\(\

“spill” |

Sampling / Reconstruction It

« Both sampling and reconstruction require
Low Pass Filtering

e Sampling:
— Low pass filter signal to make sure is band-limited
« Reconstruction:

— Low pass filter spike chain to figure out what happens
between samples

* Resampling:
— Reconstruction followed by sampling

Resizing = Resampling ity

* Same image — different number of samples

* Issues:
— New samples are in between old samples
— Too few new samples to capture all the frequency

 Basic idea (in theory)
— Reconstruct original signal (LPF the samples)
— Low-pass filter (so sampling works)
— Sample at new sampling rate

Resampling — Little Square Model ;

» Region of source = Region of Dst

¢ Pixel is a region
— Dest region might be bigger than pixel in source

— Average over the region (convolution gives us the
weights)

* In-between pixels is piecewise constant

— Chunky look is what the model says is right




Pre-Filtering It

 If SRC is bigger than DST it may have HF

— If its close, might need it anyway because of imperfect
reconstruction

* Need to LPF

* LPF before sampling?
— Requires you to do a complete reconstruction
— Only really need to do it at points you will sample
 Pre-Filtering
— Do LPF before reconstruction / as part of reconstruction
— Order is OK (convolutions commute)

Reconstruction in Practice it

e Sample a sample — no problem!
¢ Issue is samples between samples

» Theory: LPF a spike chain
— Convolve “resonstruction kernel” with samples

— Only really need to evaluate at places where you'll
sample

< Another view: interpolation
— Different interpolations are different filters

Some reconstruction kernels iaf

= | ! /I*
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5 o .8 & o
Constant Triangle Interpolating
(Bartlet) Cubic

(Catmull-Rom)
Spacing (1 unit = sample distance)
Scaling issues
Interpolating (non-interpolating kernels exist as well)
Approx to Ideal LPF

Reconstruction Example It

| I I | I I | I Could do this as linear
interpolation
— Generalizes nicely this way

* Need to evaluate filter for

. -
Sample at sample various values

¢ Sample between samples
« Convolve reconstruction

kernel with sampling kernel
(LPF for frequency limit)

* Bartlett filter
— Width correct for sample
spacing
* See how we get linear

; h « Easier ways to implement
interpolation

nearest neighbor

. . I'r
Functional Form for Filters Iaf
» Consider the Bartlett in 1D:

H,(9=2[1- 2
w w
+ Toapply it at a paint x,,, and find the -w/2 0 w/2

contribution from point x where the
image has value I(x)

£(x) =%[1772‘Xv;x°‘]|(x)

« Extends naturally to 2D:

fey) :ﬁ[l——z‘xv‘v“‘][1——2‘y‘y°‘]l(x, )

w

General Resampling W/

e Could be any transformation on x,y
© Xy =1H(xy)

e Scale, translate, rotate, something weird

« Kernel should get warped too
— Little square -> some weird shape
— Little circle/square (of kernel) -> some weird shape
— In practice, stick with squares

10



Reverse Warping It

* Note we generally need the INVERSE:

- X,y =f(x,y) (X =dst, x =src)

— Know X', need to find X is inverse

Reverse warping is easier (scan over each pixel in
the dst, figure out where it comes from)

Forward warping is tricker

— Usually can invert function, but if you can’t

— Need to worry about holes
Lots of fun warps to do!

11
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CS559 — Lecture 6 (part b) [
Raster Algorithms

These are course notes (not used as slides)
Written by Mike Gleicher, Sept. 2005

With some slides adapted from the notes of Stephen Chenney

© 2006 Michael L. Gleicher

Drawing Points L7

* What is a point?

— Position — without any extent

— Can't see it — since it has no extent, need to give it some
 Position requires co-ordinate system

— Consider these in more depth later

* How does a point relate to a sampled world?
— Points at samples?
— Pick closest sample?
— Give points finite extent and use little square model?
— Use proper sampling

Geometric Graphics s

« Mathematical descriptions of sets of points
— Rather than sampled representations

« Ultimately, need sampled representations for
display

* Rasterization

e Usually done by low-level
— OS / Graphics Library / Hardware
— Hardware implementations counter-intuitive
« Modern hardware doesn’'t work anything like what you'd expect

Anti-Aliasing L7

 Anti-Aliasing is about avoiding aliasing
— once you've aliased, you've lost

» Draw in a way that is more precise
— E.g. points spread out over regions

* Not always better

— Lose contrast, might not look even if gamma is wrong,
might need to go to binary display, ...

Sampling a point (17

« Point is a spike — need to LPF
— Gives a circle w/roll-off
¢ Point sample this

e Or...
— Samples look in circular (kernel shaped) regions around
their position

¢ But, we can actually record a unique “splat” for any
individual point

¢ Modern hardware does it differently

« Historically significant algorithms

Line drawing L7

* Was really important, now, not so important

Let us replace expensive vector displays with
cheap raster ones

— Actually, doesn’t draw lines, draws small, filled polygons




Line Drawing (2)

» Consider the integer version

- (x1,y1) -> (x2,y2) are integers

— Not anti-aliased (binary decision on pixels)
* Naive strawman version:

-Y=mx+b

For x = x1 to x2
y=mx+b
set(x,y)
» Problems:
— Too much math (floating point)
—gaps

Brezenham'’s algorithm 2
(and variants) aa

« Consider only 1 octant (get others by symmetry)
—0>=m>=1
* Loop over x pixels
— Guaruntees 1 per column
» For each pixel, either move up 1 or not
— If you plotted x,y then choose either x+1,y or x+1,y+1
— Trick: how to decide which one easily
— Same method works for circles (just need different test)
« Decision variable
— Implicit equation for line (d=0 means on the line)

Midpoint method

If d, < d, pick y,
X otherwise pick y,+1
If d,-d, < 0 pick y,

An Ad

Derivation iaf

Ad= (Y- - (ict1-y)

y=m(x+1)+b
Ad=2(m (x+1)+b)-2y, -1

m=Ay/AX
Multiply both sides by Ax (since we know its positive)
AdAX = 2Ay X, +2Ay + 2DAX — 2AX Y, — AX
P, = AdAX = 2A Yy X, + 2AX Y+ C

¢ =2Ay + Ax(2b-1)
(all the stuff that doesn’t depend on k)

Incremental Algorithm

» Suppose we know p, — what is py,; ?
* Prer = Pet 28y — 28X (Yier — Vi)
— Since Xy, = X +1
* Andy,,; — Yiis either 1 or 0, depending on p,

Brezenham’s Algorithm 1t

e P_k=2\Deltay +x
. Y:y:L
* For X =x; to X,
- Set X,Y
- 1fP, <0
- Y+=1
- P +=2Ay—-2AX
— Else: P, +=2AYy




Why is this cool?

No division!
No floating point!
No gaps!

Extends to circles

But...

— Jaggies

— Lines get thinner as they approach 45 degrees
— Can'’t do thick primitives




CS559 — Lecture 7

These are course notes (not used as slides)
Written by Mike Gleicher, Sept. 2005

With some slides adapted from the notes of Stephen
Chenney

© 2006 Michael L. Gleicher

I
Color

Shift Gears: Color (7

» Color

* Quality of Light

— Has a wavelength — not just an amount

« Can measure the spectrum of light

— Graph wavelength vs. amount at the measurement

« Different spectra give different “color impressions”

] 4
Colors f

* One dominant wavelength = pure color

* No dominant wavelength = “white” (or black/gray)

* What do we perceive?
— Luminence (amount of light)
— Color (dominant)
— Purity of Color
e Complications
— Differences in perception
— Artist notions vs. physics vs. psychology

Sensing Color

« Different sensors have different sensitivities
— Spectrum of sensor

— Convolution with spectrum gives response

« |deal photo sensor / real photo sensor

e Cameras — wide range sensor
— Put filters in front of each CCD element
— Different parts of spectra (R,G,B)

— Bayer Mosaic (need to interpolate)
— Foveon

Color Vision in Animals

* Rods = all the same
— No color vision

« Cones = have different kinds
— 1-chromat (can’t see color) -> Dogs
— bi-chromat (2 different types) -> large mamals
— Tri-chromat -> humans ***
« Color blindness = lack of 1 type
« Rare genetics condition gives a 4t type
— Some birds have 4 or 5 types of cones
« Ducks&Pigeons have 5, European starlings have 4

Distinguishing colors

* 1 sensor

— All colors look the same

— Combination of colors looks like any color
« Metamers — perceptually indistinguishable
e 2 sensors

— Non-overlap case (what differences?)
— Overlap case
« Middle vs. combination of sides




Faking Colors L7

* Metamers allow for faking » 2 cones = 2 frequencies

« Two different overlapping * Get either cone, or
cones respond anything in overlap
— Some of each color?

— Some of the in-between color ,  ~qqrs outside of overlap

can't be faked
» Can fake responses using

N “point” colors

N

Different Sensitivities it

e Convert to gray requires scaling for sensitivities
« R=0.212671*Y
« G=0.715160* Y
« B=0.072169 * Y.

Gamut il

» The range of colors that a device can represent
— Perceptual range

Perceptual Color Space L7

« Choose 3 primaries that do span human vision
— Complete Gamut — can recreate any color
— Not physically realizable (since has negative energies)

« CIE XYz
— Y is “lightness” — intensity w/o color
— XZ are color directions

(normal) Human Vision k)

« 3types of Cones
— S (short wavelength) cones
— M (mid wavelength) cones
— L (long wavelength) cones

|
« Sortof RGB, but not quite ) ’/_\\M
5 /l \..l hY
- Lots of overlap | 2=z - \_\

« Far fewer S cones than L
and M

Determining Gamuts L7

XYZ Gamut * Gamut: The range of colors that

y can be represented or

RGB Gamut reproduced

« Plot the matching coordinates
for each primary. eg R, G, B

* Region contained in triangle (3
primaries) is gamut

¢ Really, it's a 3D thing, with the
color cube distorted and
embedded in the XYZ gamut




Gamut Analysis

* Space of colors a device
can reproduce depends on
primaries

« Device reproduce linear
combinations of primaries
= space inside of points

« Different devices have
different ranges
— Print with more inks

— Films with different
formulations

XYZ Gamut




CS559 — Lecture 8

These are course notes (not used as slides)
Written by Mike Gleicher, Sept. 2005

With some slides adapted from the notes of Stephen
Chenney

© 2006 Michael L. Gleicher

Color — Image Representation o

Other Color Systems: YCC (17

e Y = Luminence

— Could be R+G+B

— Better to be .3R + .6G + .1B
Redundant — so send just 2 colors
— Or send color differences: Y-R, Y-G

e Why?

— Video: luminance is most important, subsample chroma
— Perceptually more uniform since corrected for sensitivity
— Start to separate color (direction in 2D)

Is RGB good enough?

¢ Sortof — gets close to all colors
— Need better gamut

* No

— Inconvenient for talking about color
— Perceptually non-linear
— Can't get really vivid colors

« Purples are particularly bad

« Can't be RGV - since violet sensitivity isn't good
« Old film had different gamuts
— Robin hood in technicolor

Artist — Centric Systems L7

¢ Hue =“name” of color
— Red, orange, yellow, ...
— Color wheel
« Complements add up to white
» Saturation = purity
* Value = luminence

* HSV (hexcone) vs. HLS (double hexcone)
— RGB Color Cube viewed from the end

* Cone shape
— Value is zero, hard to talk about color

* More convenient way to talk about color (for artists)

Subtractive Color

« Printers combine inks that filter light
— Remove colors

So far additive
— Black + red + green = yellow
¢ Ink is subtractive

— White — red = cyan, White-green=magenta, white-
blue=yellow

« Use “subtractive primaries”
— Cyan, Magenta, Yellow

Where color gets messy...

« Color reproduction is hard

¢ When you see something on a monitor, does it
look like the real thing? (shopping)
— When you buy a real object?
— When you print it?




Representing Color Il

Image File Formats b
* RGB * Need to store all of the samples
~ Store brightness for each channel - At whatever the necessary bits per pixel
— 8 bits argument (1% difference, 100:1 ~~ 400)

¢ Color Tables

— A small table of integers->color

— Store small integers for each pixel

— Used a lot in old days (24 bits of frame buffer was a lot . Uncompressed = big

of memory!)

— Still useful in some settings
« Animate color tables, restrict pallete, ... *

— Lots of algorithms for picking sets of colors
« Median Cut is the most famous

Lots of data

Compress to take less space
— Lossless (get same thing out)
— Lossy (lose some information)

. TiF . o
Lossless Coding 1 Iy Lossless Coding 2 )
. Run.Length Encoding (R LE) « Intelligent coding — give short
A codes to more common strings
» Send pairs of values/run lengths — Example: letters — rather than
- each getting 8 bits, let E=10,
— Only a win if (on average) your runs are long AZ00, T=00L, ...
— If you know the frequency
. distribution, you can distribute
* Look ahead: things optimally — Huffman
— Small change can mean big difference in coding e““"d":g N .
. — Opti Distributi
— What if the changes were small enough that no one unpiflomr:ﬂ ISibuion may be
notices? — Entropy: the amount of
distribution in the data
I [ (T [ [T
« Some things can’'t be made
smaller by lossless encoding
. I . I
Entropy Coding W/ Lossless Image Compression W/

» Fixed / Variable sized strings for codes

» Use entropy coding (like LZ) on the actual pixels
» Standard Codebook vs. per-corpus (file/image)

¢ File formats

« Many algorithms for doing this — GIF — patented, only for small color paletes

— Huffman coding is just one classic one - PNG

+ Lempel-Ziv (or Ziv-Lempel) » Uncompressed (or optionally compressed)
— Variable length strings — TGA (targa)
— Fixed code sizes (all the same) - TIFF

- BMP




Lossy Image Compression

» What if we limit our codebook?
— Some data cannot be represented exactly

¢ Vector Quantization
— Fixed length strings (and fixed codebook size)

— Pick a set of codes that are as good as possible

— Encode data by picking closest codes
— Other than picking codes, encoding/decoding is really

easy!

Lossy Coding 2

* Suppose we can only send a fraction of the image
— Which part?

» Send half an image:
— Send the top half (not too good)
— Halve the image in size (send the low frequency half)

* |dea: re-order (transform) the image so the
important stuff is first

* Suppose we can only send a fraction of the image
— Which part?

* Send half an image:
— Send the top half (not too good)
— Halve the image in size (send the low frequency half)

Idea: re-order (transform) the image so the
important stuff is first

Lossy Coding 2

Perceptual Image Coding

« |dea: lose stuff in images that is least important

perceptually
— Stuff least likely to notice
— Stuff most likely to convey image

* Who knows about this stuff: The experts!
— Joint Picture Experts Group
— Idea of perceptual image coding




559 Course Notes
Lossy Compression

Mike Gleicher
Fall 2006 (taken from Fall 2005)
Notes for lecture — not shown in class

JPEG b

e Multi-stage process viavuw
intended to get =
very high DIJ
compression with ¥x
controllable quality p—
degradation b (e
e Start with YIQ color Bl
— Why? Recall, it's
the color standard
for TV

i Fre,v) LR

Coding Ly

JPEG [

« Key Ideas

— Frequency Domain (small details are less important)
— Block Transforms (works on 8x8 blocks)

« Discrete Cosine Transform (DCT)
— Control Quantization of frequency components

« More quality = use more bits

« Generally, use less bits for HF

« ..\2005\2005-09.ppt

Discrete Cosine Transform oy

« A transformation to convert from the spatial to
frequency domain — done on 8x8 blocks

« Why? Humans have varying sensitivity to different
frequencies, so it is safe to throw some of them
away

¢ Basis functions:

I NI AP EREATAIT
-r ()

[T
i L]

Quantization It

* Reduce the number of bits used to store each
coefficient by dividing by a given value
— If you have an 8 bit number (0-255) and divide it by 8,

you get a number between 0-31 (5 bits = 8 bits — 3 bits)

— Different coefficients are divided by different amounts
— Perceptual issues come in here

« Achieves the greatest compression, but also
quality loss

e “Quality” knob controls how much quantization is
done

Entropy Coding 7

» Standard lossless compression on quantized
coefficients
— Delta encode the DC components
— Run length encode the AC components
« Lots of zeros, so store number of zeros then next value
— Huffman code the encodings




Lossless JPEG With Prediction 7

« Predict what the value of the pixel will be based on
neighbors

* Record error from prediction
— Mostly error will be near zero

¢ Huffman encode the error stream

« Variation works really well for fax messages

Video Compression W
¢ Much bigger problem (many images per second)

e Could code each image seperately
— Motion JPEG
— DV (need to make each image a fixed size for tape)

» Need to take advantage that different images are
similar
— Encode the Changes ?

MPEG (7

» Motion Picture Experts Group
— Standards organization

* MPEG-1 simple format for videos (fixed size)

« MPEG-2 general, scalable format for video

« MPEG-4 computer format (complicated, flexible)
* MPEG-7 future format

* What about MPEG-3? — it doesn'’t exist (?)
— MPEG-1 Layer 3 = audio format

MPEG Concepts dy

* Keyframe
— Need something to start from
— “Reset” when differences get too far
« Difference encoding
— Differences are smaller/easier to encode than images
* Motion
— Some differences are groups of pixels moving around
— Block motion
— Object motion (models)

MPEG iy

Find motion vectors

AN

lossy Encode  Encode
Jpeg-like vectors Difference
compression (lossy)

e

Frame 1 (comp)
+ motion




559 General Polygons

Mike Gleicher
Fall 2006 (taken from Fall 2005)
Notes for lecture — not shown in class

* Inside / Outside not obvious for general polygons
« Usually require simple polygons

— Convex (easy to break into triangles)
For general case, three common rules:

— Non-exterior rule: A point is inside if every ray to infinity
intersects the polygon

— Non-zero winding number rule: trace around the
polygon, count the number of times the point is circled
(+1 for clockwise, -1 for counter clockwise). Odd winding
counts = inside (note: | got this wrong in class)

— Parity rule: Draw a ray to infinity and count the number
or edges that cross it. If even, the point is outside, if odd,
it's inside (ray can’t go through a vertex)

-
General Polygons? It

Triangles?

¢ Old way: Scan conversion
— Start at top

— Brezenham's algorithm gives left/right sides
— Draw horizontal scans

« New Way: point in triangle tests

— Generate sets of points that might be in triangle
— Do half-plane tests to see if inside

 Tricky part: edges
— Need to decide which triangle draws shared edges

Parity '

< Any point, take any ray (that doesn’t go through a
vertex)

e Odd number of crossings = inside
« Even number of crossings = outside

Power Point uses this rule!

Winding Numbers (17

RER AR (S

» Count the number of times a point is circled
counter clockwise

— Clockwise counts negative
Can pick any ray from point and count left/right

— Right (relative to away direction) = CCW = +1
— Left=CW=-1

Non-Zero Winding Rule 4

* Any non-zero winding is “inside”
* What Adobe lllustrator does
¢ Odd Winding Rule / Positive Winding Rule / ....

A
A
A

Y
< 52
Y




Inside/Outside Rules

Polygon Non-exterior
Non-zero Winding No. Parity

= 4




559 Course Notes
Transforms (lecture 10+11)

Mike Gleicher
Fall 2006 (taken from Fall 2005)
Notes for lecture — not shown in class

 Position of the zero point
» Directions for each axis

— Represent points as a linear combination of vectors

— Vectors (basis) are axes

— Scale of vectors matter (what is “1 unit”)

— Directions matter (which way is up)

— Doesn'’t need to be perpindicular (just can’t be parallel)

What is a coordinate system Li7

Coordinate Systems s

¢ Tells us how to interpret positions (coordinates)

 In graphics we deal with many coordinate systems
and move between them

— Use what is convenient for what we’re doing

* Examples

— Chalkboard as coordinate system

— One panel of chalkboard as coordinate system
— Monitor as coordinate system

Describing Coordinate systems hi7

* Need to have some “reference”
— Where we will measure from
¢ Give origin, vectors

¢ Once we have 1 system, can define others

« Can move points by changing their coordinate
system

— Piece of paper is a coordinate system
— Move piece of paper around
— If it were a rubber sheet could stretch it as well

Changing Coordinate Systems (17

» Changing coordinate systems allows us to change
large numbers of points all at once

* Need to move points between coordinate systems

— A coordinate system transforms points to a more
canonical coordinate system

— Can define coordinate systems by transformations
between coordinate systems

. | I’/
Transformations iaf

* Something that changes points
-yy =f(xy) feR?—R?

» Coordinate systems are a special case

e Other examples
— F(X,y) = x+2, y+3
- Fxy) =-y, x
— F(xy) =x"2,y
» Easy way to effect large numbers of points




Interpreting Transformations It

« Can be viewed as a change of coordinates
— What happens to a piece of graph paper?
— Just sometimes to a stretchy piece of paper

» View as a function applied to points

» Function composition
— F(g(h(x))) (note order)

< - - -

Linear Transformations iy

¢ Important special case — linear functions
e Can be written as a matrix X’ =M x (X is a vector)

« Good points
— Many useful transformations are of this form
— Composition by matrix multiply
— Easy analysis
— Straight lines stay straight lines
— Inverses by inverting the matrix

Note: linear operators preserve zero!

Example Linear Operators ]

» Uniform Scale _|s O ]

scale(s) = [ 0 s

¢ Non-Uniform Scale [s 0]
nuscale(s,t) = 0 i

« Reflect reflect(s,t) = {51 (”

» Skew
skew(a) =

More linear operators Wty

» Rotate _ | cos(8) —sin(6)
rotate(0) = sin(8) cos(6)

* Note: all of this keeps zero
¢ All linear operations are around the origin (?)

» This is POST-Multiply (vector on the right)
— Pre-multiply convention works too
— All the matrices get transposed
* What does each element do?
— Left column — where does X axis go (put in unit X vector)
— Right column — where does Y axis go
» Can’t do anything about origin!

Post-Multiply vs. Pre-Multiply b7

A

» Post multiply — column vector on the left

FGHXx

« Pre-multiply — row vector on the right
— Older convention, not used as often
XT HT GT |:T

| will (almost always) use the post-multiply
convention




Affine Transformations it

« Translation = move all points the same (vector +)
« Affine = Linear operations plus translation

« Cannot be encoded in a 2x2 matrix (for 2d)
— Need six numbers for 2d
— Could be a 3x2 matrix — but then no more multiplies

» Rather than treat as a special case, improve our
coordinates a bit

Homogeneous Coordinates

« Big idea for graphics — really important
— Will be used for several things — translation is just 1
» Basic idea: add an extra coordinate
— 2D becomes 3D (3x3 matrices)
— 3D becomes 4D (4x4 matrices)
« Convert “back” from homogeneous coordinates by division
- (xy) > (xy.1)
— (Xy,w) -> (x/w, y/w)
* Projection
— Many points in higher dim space = 1 point in lower dim space
« For now, just make w=1

. . I
Translation in Homogeneous Coords A

* Translate in 2D = Skew in 3D
— Deck of cards

N

trans(z,y) =

ol o)
SRS

| — |
(NN

What about other linear ops

« Just add an extra coordinate

« Don't change w (unless you know what you're

doing) ) -
S

scale(s) =10 s O
|10 01

[ cos(§) —sin(8) O
rotate(9) = | sin(9) cos(f) O
0 0 1

Matrices as Coordinate Systems /

* Where does X axis go?
* Where does Y axis go?
¢ Where does origin go?

e Assumes that bottom row is [0 0 1]

» Can you scale by changing w?
— Yes, but often we prefer to renormalize so bottom right
number is 1

Homogeneous Coordinates k]

« Big idea for graphics — really important
— Will be used for several things — translation is just 1
* Basic idea: add an extra coordinate
— 2D becomes 3D (3x3 matrices)
— 3D becomes 4D (4x4 matrices)
« Convert “back” from homogeneous coordinates by division
- (xy) > (xy.1)
- (Xy,w) -> (x/w, y/w)
* Projection
— Many points in higher dim space = 1 point in lower dim space
* For now, just make w=1




Homogeneous Coordinates

« “Normal” space is a subspace

-w=1
* Think about 1D case (so embed into 2D x,w)
* Many equivalent points (projection)

Only 1D Linear
operation is scale

(about origin)

Translation in Homogeneous Coords )

¢ 1D Translation = 2D Skew

Translation in Homogeneous Coords

* Translate in 2D = Skew in 3D
— Deck of cards

N

trans(z,y) =

ol o)
SRS

| — |
(NN

What about other linear ops

« Just add an extra coordinate

« Don't change w (unless you know what you're

doing) ) -
S

scale(s) =10 s O
|10 01

[ cos(§) —sin(8) O
rotate(9) = | sin(9) cos(f) O
0 0 1

Homogeneous Coordinates

» Makes translation (affine transforms) linear
* Need to work in higher dimensional space

« Useful for lots of other things
— Viewing (perspective)

Matrices as Coordinate Systems &

* Where does X axis go?
* Where does Y axis go?
* Where does origin go?

e Assumes that bottom row is [0 0 1]

« Can you scale by changing w?
— Yes, but often we prefer to renormalize so bottom right
number is 1




Composing Transformations v

e Order matters!
— Scale / rotate vs. rotate/scale

» Can implement by multiplying matrices
—TiToTex =(Ty T, Ty x

Hierarchical coordinate Systems ' ; J,

e Car
— Wheel
— Wheel

¢ Person
— Head / Neck
— Arm / forearm / hand

Matrix Stack Example W
e Draw Car = .... Push trans wheel pop ...

¢ Push trans — draw car — pop push trans — draw car

Why Compose?

« Rotate about a point

—~T.RT.x
» Scale along an axis

— Move point to origin

— Align axis w/major axis

— Scale

— Put things back

- T.RySR,T X

Matrix Stack

« Multiply things onto the top

« Top is “current” coordinate system

« Push (copy the top) if you’ll come back
* Pop to go back

¢ Think about it as moving the coordinate system
« Top of stack is “current coordinate system”
— Where we will draw
¢ Transformations change current coord system
— Or change the objects that we are going to draw

3D
« 3D coordinate system & handedness

¢ Prefer right-handed coordinate systems
¢ Right-hand rule




¢ 4D Homogeneous Points
— 4x4 matrices
* Basic transforms are the same
— Translate
— Scale
— Skew
« Rotation is different
— Rotation in 3D is more complicated?

What happens in 3D? [

» Rotations are Linear Transformations

— 2x2 matrix in 2D

— 3x3 matrix in 3D
The set of rotations = set of OrthoNormal Matrices

Inconvenient way to deal with them
— Can't work with them directly

— Not stable (small change makes it not a rotation)

« Is there an easier way to parameterize the set?

Parameterizing Rotations L7

Much harder in 3D (17

* Any point can go to a sphere
» That one point doesn’t uniquely determine things

« No vector in R"n can compactly represent rotations
— Singularities
« nearby rotations / far away numbers
« Nearby numbers / far away rotations
» Hairy-Ball Theorem

— Any parameterization of 3D rotations in R”n will have
singularities

What is a rotation? I3

« A transformation that:

— Preserves distances between points

— Preserves the zero

— Preserves “handedness” (in 2D clockwiseness)
» A subset of linear transformations

« Some things that come out of these:
— Axes remain perpindicular
— Axes remain unit length
— Cross product holds

Measuring rotation in 2D Liy

e Pick 1 point (1,0)
< Any rotation must put this on a circle

« If you know where this point goes, can figure out
any other point

— Distances (w/point & origin) + handedness says where
things go

« Parameterize rotations by distance around circle
— Angle

* |Issues with wrap around
— Many different angles = same rotation

Representation of 3D Rotations L7

» Two Theorems of Euler
— Any rotation can be represented by a single rotation
about an arbitrary axis (axis-angle form)

— Any rotation can be represented by 3 rotations about
fixed axes (Euler Angle form)

« XYZ, XZX, any non-repeating set works
« Each set is different (gets different singularities)

« Building rotations
— Pick a vector (for an axis)

— Pick another perpindicular vector (or make one w/cross
product)

— Get third vector by cross product




Euler Angles

¢ Pick convention

— Are axes local or global?
— Local: roll, pitch, yaw
— What order?
Apply 3 rotations
Good news: 3 numbers
Bad news:
— Can't add, can’t compose

— Many representations for any rotation
— Singularities
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Transformations, Viewing o

These are course notes (not used as slides)
Written by Mike Gleicher, Oct. 2005
With some slides adapted from the notes of Stephen Chenney

Final version

© 2005 Michael L. Gleicher

Viewing Transformations It

* How do we transform the 3D world to the 2D

window?
« Concepts:
— World Coordinates

— View (or window) VOLUME
« Need 3 dimension later to get occlusions right

— Viewing Coordinates
« 3D Viewing coordinates
* Separate Issues
— Visibility (what's in front)
— Clipping (what is outside of the view volume)

Orthographic Projection It

 Projection = transformation that reduces dimension

» Orthographic = flatten the world onto the film plane

View Volumes / Transformations J

« Viewing transformation puts the world into the
viewing volume

« A box aligned with the screen/image plane

i

Canonical View Volume iaf

* -1to 1 (zero centered)

» XY is screen (y-up)

Z is towards viewer (right handed coordinates)
— Negative Z is into screen

 For this reason, some people like left-handed

2 Views of Viewing Transform Ly

Put world into viewing volume
» Position camera in world (view volume into world)

Clip stuff that is outside of the volume

* Somehow get closer stuff to show up instead of
farther things (if we want solid objects)




Orthographic Projection

« Rotate / Translate / Scale View volume
— Can map any volume to view volume
* Sometimes pick skews

» Things far away are just as big
— No perspective

» Easy — and we can make measurements
— Useful for technical drawings

— Looks weird for real stuff
« Far away objects too big

Perspective Projection Wy

Farther objects get smaller

Eye (or focal) point
* Image plane
View frustum (truncated pyramid)

* Two ways to look at it:
— Project world onto image plane

— Transform world into rectangular view volume (that is
then orthographically projected)

Perspective

« Eye point
e Film plane
* Frustum

« Simplification
— Film plane centered with
respect to eye
— Site down negative Z
axis
« Can transform world to fit

_%ﬁ

Basic Perspective 2,

« Similar Triangles

« Warning = using d for focal length (like book)
— F will be “far plane”

NS

D = focal length
z

Use Homogeneous coordinates!
» Use divide by w to get perspective divide

* Issues with simple version:
— Font / back of viewing volume
— Need to keep some of Z in Z (not flatten)

x/ 1000 x x x/z
Y | _ |01 00| |y|_|y|_| v
1710010 2| | 2| T | z/z=1
w’ 0010 1 z 1

The real perspective matrix Wt

« N = near distance, F = far distance

¢ Z=n put on front plane, z=f put on far plane

1 0 O 0

01 O 0
P =

I

OO0 —n O




Shirley’s Perspective Matrix It

« After we do the divide, we get an unusual thing for
z — it does preserve the order and keeps n&f

n
xZ

Yy

Px=P
= n+f—f7"
1

RN 8

Camera Model it

¢ The “window coordinate” system is all the we really

know
¢ In a sense, it is the camera coordinate system

« Easiest to think about it as a camera taking a
picture of the work

* Transform world coordinates into camera
coordinates
— Or, think about it the other way...

How to describe cameras? iaf

» Rotate and translate (and scale) the world to be in
view

* The camera is a physical object (that can be
rotated and translated in the world)

« Easier ways to specify cameras
— Lookfrom/at/vup
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OpenGL Survival i

These are course notes (not used as slides)
Written by Mike Gleicher, Oct. 2006

© 2005 Michael L. Gleicher

The Basics of doing 3D Graphics :Lf_-

¢ Stuff you need to know to write programs

Toolkit details best done by looking at code
— And trying it yourself!

« See online tutorials (e.g. Survival Guide)
See the red book

* Try to refresh the concepts behind using library

¢ Goal: get you to know enough to do Project

List of stuff you need to know /

* Basics of Toolkits

» Dealing with a window

» Double buffering

» Drawing context

» Transformations / Coordinate Systems / Cameras
« 3D Viewing / Visibility (Z-Buffer)

» Polygon drawing

* Lighting

* Picking and Ul

Basics of a toolkit i

* OpenGL is for drawing graphics in a window

« Doesn't care where the window comes from
— Need something to deal with Operating system

« Less good for text and widgets

* Use some toolkit to do windowing and Ul support
— FITk — supports OpenGL well
— Glut — simple, designed for doing OpenGL demos
— Native windows — um, | can’'t comment

The Drawing Context W/

* OpenGL is stateful
— Draw in the current window, current color, ...
— Contrast with stateless systems
draw(x1,y1,x2,y2)
draw(window, coordsys, x1, y1, x2, y2, color, pattern, ...)
Where is all that state kept?
— Drawing Context
» Each window has its own state
— Need mechanisms for keeping track of it
— Making it the current state
— FITk does this for you (in draw, or with make_current)
* Beware! You can only draw with a current context

When does drawing happen 1t

» Two different types of graphics toolkits

— Immediate mode — stuff goes right to frame buffer

— Retained mode — keep 3D objects on list, system draws
all at once

* OpenGL supports both (usually immediate mode)
* What happens with a triangle




Double Buffering ¢

¢ Double Buffering — independent of
immediate/retained!

« Prevent from seeing partially drawn results
« (potentially) keep synced with screen refresh

» Draw into back buffer
» Swap-buffers

* FITk will take care of this for you

When do | draw? J

¢ When the window is “damaged”

¢ Periodically (animation / interaction)

» With FITk:

« |t calls the draw function when needed
— NEVER call it yourself

« If you want to force a redraw, damage your window
— It will be redrawn when appropriate

Where do | draw A

» Screen coordinates — the main place everyone can
agree

* OpenGL uses unit coordinates
— Depthis -1to 1 as well

* The Viewport

— GL lets you limit things to a rectangular area of the
screen

— This is the only thing measured in pixels!

» Need to correct for aspect ration of screen

Getting my own coordinate system e

« OpenGL only knows 1 coordinate system
— The “Normalize Device Coordinates” - NDC
— Viewport mapped to unit cube

— There is actually 1 other coord system, but that's a detail
for lighting

« If you're transformation is the identity, you get NDC

« All points transformed by the “current
transformation”

OpenGL coordinate transforms A

OpenGL has 2 “current” transforms
n=PMx

n = point in NDC X = point in your coordinate system
P = projection matrix M = Model View matrix
P and M are both stacks (although P is a short stack

e Why 2 matrices?
— Esoteric detail of lighting

« Only the perspective transform goes into P
— Unless you're doing something wierd

* M gives “camera coordinates”
— Only lighting happens there in GL

Is OpenGL Post-Multiply? at/

* An internal detail — unless you look at the matrices

¢ Think of it as Post-Multiply
— And if everything is being transposed, no big deal

e Only “load” is to load the transpose

— OpenGL used to be pre-multiply, but since everyone
else is post-multiply




How do | set the transform? iy Getting your coordinate systems s

* Need to pick which matrix “stack” + Need things in camera
— Projection, ModelView coordinates
» Can either load, or post-multiply
— Almost everything does a post-multiply
— Except for the load operations
— BEWARE: make sure to do a load identity first!

* Rotate and translate the
world coordinates (and
possibly scale)

« Think of placing and

 Most matrix operations build a matrix and post- pointing the camera -' &
multiply it onto the “current” stack S
. ) . . I
Getting the camera scale? Moving coordinate systems
* Projection does some » Multiplying matrix means changing the coordinate
scaling (by Z) . g system
|
+ Projection puts eye at z? 4+ | . . . .
! P Y v X ~QH « Or think about it as things closest to the object go
P e O G +
* Projection puts near ‘\\ Tow Y first
clipping plane at -1, far P
plane at 1 _—
* Use OpenGL's projection Xer 2=
matrix
« Field of view/aspect ratio
. [ II/ ) 13F
Your own coordinate system Ak Convenient ways to make transforms Il
« Draw your triangle... * Projection
— Ona piece of paper — gluFrustum, glPerspective
— Inyour hand . .
— When you're on a platform I 7 * Matrix handllng
— Onacrane g — Load, get, pushmatrix, popmatrix
¢ Build transforms! — Rarely load anything but the identity

— Camera->world
— World->crane

— Crane->top of crane EI
— Crane->platform : ;
— Platform->person
— Person->arm =
— Arm->paper. ..




Actually drawing It

* Begin / end blocks of points
« Send each point by itself (or as an array)

 Uniformity in how you draw different things
— Lines

— Triangles

— Strips of triangles

— Quads

Things are drawn in the “current” state

* Color, line style, ...

Normal Vectors it

« Assign per-vertex or per-triangle
¢ Unit vector towards the “outside”
« Not done automatically for you

« Will be very useful for lighting, so get in the habit

What color are things? L7

« Turn off lighting — and say colors directly
» Turn on lighting — and let the games begin!

« |ldea: color of object is affected by lights
— Need some light to see things
— Direction of light affects how things look
— Say where the lights are, how strong they are
— What the reflectance of the surfaces are

* A whole topic for days in this class

What happens to stuff off the screen? Wiy

e Clipping
— Things get chopped by a plane
— Each side of the viewing volume
— Other planes as well — if you want

« Important to do correctly and efficiently
« Alot of work into the methods — but really boring

Visibility 7

 Atopic for later in the class:
How to get objects to occlude each other

» Give polygons in any order (even back ones last)
« Use a Z-Buffer to store depth at each pixel

* Things that can go wrong:
— Near and far planes DO matter
— Backface culling and other tricks can be problematic
— You may need to turn the Z-buffer on
— Don't forget to clear the Z-Buffer!

So, | got a black screen... Ly

« Celebrate — you've gotten a window, and that's step 1!

* Are you drawing at the right time?

« Do you have a drawing context?

« Are you drawing objects?

« Is the camera pointing at them?

« Are they getting mapped to the screen?

¢ Is something occluding them?

« Are they in the view volume?

« Are they lit correctly?

« And a zillion other things that can go wrong...
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Basic Perspective It

¢ Similar Triangles

« Warning = using d for focal length (like book)
— F will be “far plane”

/
y_ vy
y ==
: z d
/ d
D = focal length v = Zy
z

Use Homogeneous coordinates!

« Use divide by w to get perspective divide

* Issues with simple version:
— Font / back of viewing volume
— Need to keep some of Z in Z (not flatten)

z/ 1000 T x x/z
vy | _|0100||y|_|y|_| uw-
1710010 2| T |z | T | 2/z=
w’ 0010 1 z 1

The real perspective matrix ]

* N = near distance, F = far distance
* Z=n put on front plane, z=f put on far plane

10 0 0
01 0 O
P= +
0 0 =5 —f
00 -n O

Shirley’s Perspective Matrix 1t

» After we do the divide, we get an unusual thing for
z — it does preserve the order and keeps n&f

n
a’:Z

Yy

Px=P
= n+f—f7n
1

RN 8
|

Camera Model oy

* The “window coordinate” system is all the we really

know
* In a sense, it is the camera coordinate system

« Easiest to think about it as a camera taking a
picture of the work

* Transform world coordinates into camera
coordinates
— Or, think about it the other way...




How to describe cameras? it

* Rotate and translate (and scale) the world to be in
view

e The camera is a physical object (that can be
rotated and translated in the world)

« Easier ways to specify cameras

A Hack: Painted Shadows /

« Use projection to squash objects onto floor
¢ Paint a copy of them in black on the floor
« Useful for Ul

» Drop Straight onto floor = set Y to zero

00
00
01
00

~ oo o

1
0
0
0

* Beware — might want to have things float above
floor

— Lookfrom/at/vup
. s )
Projective Shadows — point light
* Position of light L,, L, L, X-ly . Sx-k
« Position of point x,y,z fy- ly -0
 Position of Shadow S,,0, S, tos e B2l

— Assume ground (y) =0

Visibility [

» Atopic for later in the class:
How to get objects to occlude each other

« Give polygons in any order (even back ones last)
« Use a Z-Buffer to store depth at each pixel

* Things that can go wrong:
— Near and far planes DO matter
— Backface culling and other tricks can be problematic
— You may need to turn the Z-buffer on
— Don't forget to clear the Z-Buffer!

How to make objects solid taf

» So far, just curves (outlines of things)
 Can fill regions (polygons)
— But how to get stuff in front to occlude stuff in back

» General categories
— Re-think drawing
« From eye (pixels) not objects
— Analytically compute what can be seen
« Hidden line drawing (hard)
— Hidden Surface Removal

Painter’s Algorithm taf

¢ Simplest hidden surface algorithm
« Draw farthest objects first
— Nearer object cover further ones

* Problems
— Cycles / intersections (no order possible)
« Fix by splitting triangles
— Need all triangles ahead of time
— O(n log n) sort
— Must resort for every view direction

* Depth Complexity (amount of time each pixels is drawn)




Binary Space Partitions It

* Fancy data structure to t1 t t3
help painters algorithm . 12
¢ Stores order from any
viewpoint
o

* A plane (one of the ;
triangles) divides other eye
triangles

« Things on same side as

eye get drawn last T2 divides into groups

T3 is on same side of eye

Using a BSP tree )

¢ Recursively divide up triangles

« Traverse entire tree
— Draw farther from eye subtree
— Draw root
— Draw closer to eye subtree
* Always O(n) to traverse
— (since we explore all nodes)
— No need to worry about it being balanced

Building a BSP tree iy

« Each triangle must divide other triangles
— Cut triangles if need be (like painters alg)

* Goal in building tree: minimize cuts

Z-Buffer )

« Throw memory at the problem

¢ A hardware visibility solution
— Useful in software, but a real win for hardware

« For every pixel, store depth that pixel came from
* No object? Store «

* When you draw a pixel, only write the pixel if you
pass the “z-test”

Things to notice about Z-Buffer i

 Pretty much order independent
— Same Z-values
— Transparent objects
» Z-fighting
— Objects have same Z-value, ordering is “random”

— Bucketing (finite resolution) causes more things to be
same

— As things move, they may flip order
* Anti-Aliasing
— Things done per-pixel, so sampling issues

Resolution of Z-Buffer W)

« Old days: big deal

— Integer Z-buffers, limited resolution
 Future: floating point z-buffer

— Still have resolution issues, not as bad

« Need to bucket things from near to far
— Don't set near too near or far to far

¢ Non-linear nature of post-divide Z
— Remember that perspective divide gives fn/z
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What is a Shape

» Mathematical definition is elusive

» Set of Points
— Potentially (usually) infinite

» “Lives” in some bigger space (e.g. 2D or 3D)

* Many ways to describe sets
— Set inclusion test (implicit representation)
— Procedural for generating elements of the set
— Explicit mapping from a known set

Shape Modeling il

« Creating Mathematical Descriptions of Shape
« Why?

— Drawing, Sample, Analyze

¢ Why is this hard
— Shapes can be arbitrary and complex — hard to describe
— Conflicting goals
« Concise
* Intuitive
* Expressive
« Analyzable

...

Some kinds of Shapes [/

e Curves

— 1D Objects, like what you draw with a pen
e Surfaces / Areas

— 2D Objects — the insides of 2D things

— Bounded by a Curve
¢ Solids / Volumes

— 3D Objects — the insides of things that take up volume

— Different definition: set with the same dimension as the
embedded space (an area of 2D)

Curves

* Intuitively, something you can draw with a pen
— Not filled areas

— Mathematical oddity: space filling curves
* Requires infinite lengths, ...
« Almost every point has 2 “neighbors”
 Locally equivalent to a line

Defining Curves 17

Two different mathematical definitions
1. The continuous image of some interval

2. A continuous map from a one-dimensional space to an
n-dimensional space

Both definitions imply a mapping
— From a line segment (which is a curve)
#1 is a set of points, #2 is the mapping




Describing Curves

¢ Some curves have names

— Line, line segment, ellipse, parabola, circular arc
* Some set of parameters to specify

— Radius of an arc, endpoints of a line, ...

¢ Other curves do not have distinct names
— Need a Free Form representation

Curve Represenations

* Implicit
— Function to test set membership
- F(xy)=0
» Explicit / Parametric
-Y =1(x)
— (x,y) = f(t) — where t is a free parameter
* Need to define a range for the parameter
* Procedural
— Some other process for generating points in the set

» By definition, a curve has at least 1 parametric
representation

Parameterizations

« For any curve (set of points) there may be many
mappings from a segment of the reals

» Consider: line from 0,0 -> 1,1
- (xy)=(tY te[0,1]
— (xy) = (.5t, .5t) t € [0,2]
- (xy) = (t"2,t"2) t € [0,1]

« Many ways to represent a curve

Free Parameters

* Not really a property of the curve
— Many different parameterizations
e Think of it as time in the pen analogy
— Parameterization says “where is pen at time T”
— Many different ways to trace out the same curve have
different timings

» Can “reparameterize” a curve

— Same curve, different parameterization
— Add a function f(t) -> f(g(t)) g € R->R

Some nice Parameterizations

» Unit Parameterization
— Parameter goes from O to 1
— No need to remember what the range is!
» Arc-Length Parameterization
— Constant magnitude of 1t derivative
— Constant rate of free parameter change = constant
velocity

— Arc-length parameterizations are tricky

How do we define functions?

* Simple shapes: easy

« Complex shapes, divide and conquer
— Break into small pieces, each an easy piece
— Approximate if needed
« Add more pieces to get better approximations
— Need to make sure pieces connect
e Typically, pick simple, uniform pieces
— Line segments, polynomials, ...




Could reparameterize however we want
One parameter space for all pieces
Switching at various points

KNOTS are the switching points

— (0, .5, 1) in the case below

i (2%u) if0<u<3
fw) = fp(2xu—1) ifl<u<l

. I
Parametric Values for Compound Curves | '~

’

e C(n) continuity
— Derivatives up to (and including N) match

— May have less meaning since parameterizations don’t
mean anything

* G(n) continuity
- C(0)
— Higher derivatives may differ by a scale factor

— Technically — ¢(n) in arc-length parameters
* How smooth?

— C(2) = smooth in graphics
— Higher continuity in design (boat hulls, ...)

Types of Continuity 17

What to control R

« Control points

— Where a curve goes (at a particular parameter value)
— Derivaive (at a particular parameter value)

« Specify values at a site

Specify line segment

— End points

— Center and one end

— Center and offset to end

— Center, length, orientation (non-linear change)

Connecting Pieces '

« Only concerned about the knots
— Assume the pieces are smooth

« Connection & Smoothness

— Connection is a type of smoothness

¢ Derivative continuity
— 0™ derivative = position
— 1st derivative = direction
— 2nd derivative = curvature

What kinds of pieces? [17

e Line segments

Low-order polynomials
— Quadrics (degree 2)

— Cubics (degree 3)

— Quartics, quintics, ...

» Cubics are most popular in graphics
— Best balance

. 13F
Line segments '

» Endpoints p, and p,
- p=(-uptup,
 Blending functions
= p=by(u) py+by(u)p,

— Convenient way to describe functions (including
polynomials)

— Basis functions (scalar functions)




Line Segment Bases

* Could choose different controls for line segment
— Whatever was convenient
» Find conversions between different representations

Cubics

« Different than book: explain cubic forms first,

derive them second

¢ Canonical form for polynomial
- fuy=Xau
— Vector a of coefficients

» Polynomial coefficients not very convenient
— agud+ta,u?+a, u+a,

Different ways to describe a cubic

 Positions of 4 points
- u=0,1/3,2/3,1
— Easy for 1 segment, hard to make connections
 Position & derivative at beginning and end
— Hermite form

More ways to describe cubics

¢ Natural Cubics
— “smoothest” curve
-C(2)
« Each piece:
— u=0: position, 1st derivative, 2" derivative
— u=1: position
« Piece 2 looks at values of previous piece (at end)
— Propagation

Non-local control (change at beginning changes
everything)

Catmull-Rom Splines

* Interpolate points

» Each segment interpolates p_1 and p_2
— u=0, p_1 — derivative is k (p_2 — p_0)
— u=1, p_2 —derivative isk (p_3-p_1)
— K =% for Catmull-Rom

p2 pa

Cardinal Cubics {7

Cardinal Interpolation

e k=% (1-t) t=tension (O for Catmull-Rom)




« Canonical form: X a; U’
— General — but not convenient for control

« Blending function form: X by(u) p;
— Canonical functions are a special case u°, u?, ...
— Blending functions give easier to use points

» Example: line segment
— Center, offset: ag+a, u
— Endpoints: by(u) py + by (u) p;

Polynomial Segments i

Matrix form it

« Can write canonical form
as au u=[u®utu?..]

« Given definitions of p,
solve for a in terms of p
— Line segment example

* The matrix C is called the constraint matrix

* The inverse of C is called B, the Basis Matrix
— a=B p
e Sincef(u)=u-a

— f(uy=uBp -uB are the blending functions

e Inthe example, C=[10\01] B=C1!

Basis Matrices iaf

70 =P Matrix form

W= b=ca

Plug in canonical equations Where

Po =2 0°+a, O C= 1

P=a10+a 1t e

More complicated example: [
Catmull Rom Splines o
« f(0)=p, * Remember...

« f(1) =p, f(u) =ay +a, ut +a, u? + az ud
 £(0) = %2 (p, — Po) * So

¢« F(1) =% (p3 - py) fuy=a,+2a,u+3a;u

po = f(1) -2 (0)
« p3=f(0) +21(1)

-B=11 o
a1 bo(u) = 1-u
by(u) =u
. . [
Catmull Rom Blending Function Iaf
e« B=Ct by(u) = - Yeu + u? - Y2u8

by(U)=1-2%u2+1% U3

0 1 0 0 by(u)=%u-2u?2-1%ud

by(u) = - Y% u?+ % ud
-% |0 Y2 0

1 2% |2 -Y%

Y (1% (1% |%

1 1-2 1 1
1
1 1 1 1
1 2 (1) 2(2) 2(3)
. Ir
Natural Cubics It

¢ Can get C(2) interpolating cubics — just not local

» Define each segment such that:
- p_0=f(0)
- p_1=1(1)
- p_2=f(0)
- p_3=1"(0)

« Figure out beginning derivatives of piece n+1 from the end

of piece n

* Changes propagate (change beginning, effects end)
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Approximating Curves It

« Interpolation isn’t the only way to describe a curve

¢ Give points that “influence” a curve

e Why?
— Better control of what happens in between points

¢ 2 important cases for computer graphics
— Bezier
— B-Spline

Bezier Segments I

e Curve is made of many segments
— Nomenclature issue
« Each segment is a polynomial
— Of any degree
— 3 is most common in computer graphics

Bezier Segments It

« A segment of degree d has (d+1) control points

« A segment interpolates its first and last controls
— With u= 0, 1 respectively

« The first derivative at the beginning (end) is
proportional to the vector between the first 2 (last
2) points — scaled by the dearee of the curve

Can we do Beziers this way? Lt

* Yes — set up constraints
and solve
- f(0)=p, bpn(u) = C(n, k) uk (1 - '11,)("’4"’)
- f(1)=ps
= (0) =3 (py— Po) C(n, k) = nil
- £(1)=3 (ps - py) K (n =k
« Doesn’t generalize well
(OK for 2,3,4)
« General form for Bezier
blending functions
— Bernstein Basis Polynomials

Bezier Segments (2) taf

* The nth derivative depends on the first (or last) n
points

* Cubics are similar to Hermites
— All points in space (not derivative amounts)
— Scaling factors
« Pieces connected by placing points correctly
— C(0) by matching endpoints
— C(1) by aligning end vectors
— G(1) by end-vectors being co-linear




Properties of Bezier Curves It

« Simple mathematical form for basis functions

¢ Good algorithms for computation
— Subdivision procedure
— De Casteljau algorithm
— Divide and conquer because...

» Convex Hull Properties
Variation Diminishing
e Symmetric
* Affine invariant
— NOT perspective invariant

De Casteljau Algorithm

« Evaluate curve at u s
— Divide line segments
— U of the way o
¢ Can use to subdivide
curves

* Repeated linear
interpolation for ANY .
degree! -

Decastlejau to Bernstein ]

« Apply geometric construction to derive equations
« Different groups came at this differently
* Algebraic vs. Subdivision

How do we make Smooth Curves?

« Will be approximating

« Want flexibility
— Any number of points
— Any degree of continuity
¢ Want good properties
— Locality
— Convex Hull
— Variation Diminishing
— Shift Invariant (sum of blending functions = 1)

pt iz = 1 vl ﬁ‘, PR ptaa s (1 B, » o Py
pt 123z (1-6) P2 + v Pys
C (o) :"' LY {C1-m f iow [ [1-v) P _.; + v P
\ i=v P f [V ] P +
I I ! T
by b L
. . I
An example of blending functions o,
* Lines
« Blending functions are
“bumps”

« Each piece is a spline
— Two polynomials, degree 1
e Locality
— Non-Zero over small range
— Between 3 knots (d+2)
* Smoothness
— D-1 continuity
 Shift invariant
¢ Convex Hull Property
« Shiftable (periodic)

Consider B-Splines

« N points ®
— General —any N P,
- Py... Py )
*« WARNING: not same P,
notation as book
°
I:’0

* Consider linear

interpolation
- Fte0..n1

+ FO =2 b(t) P()




B-Splines It

» General scheme for generating blending functions
— Any number of points (need more points than degree)
— Any degree of polynomial (higher degree = smoother)
— Any knot vector

 Blending function of degree D are B-Splines
— Made of D+1 segments (span D+2 knots)
— Each segment is a degree D polynomial
— Only D+1 of them are non-zero at any time
— Sum to one
— Zero outside of the range
— D-1 continuous

* Note: usually talk about “order” (degree+1)

Linear B-Spline

« Each blending function is a

bump
¢ All the same (different 1
ones are shifts)
0
« Active fromi-1to i+1 -1 01
— Over 2 spans, 3 integers . .
« In between 2 pts are active w10 i+l
— One in each “phase”
« “pefore” t=0 and “after” n-1 ~_ Warning:
— Not enough points This B—Spllpe is centered
Other notations start at 0

Creating B-Splines [

» Cox-de Boor recurrance
» Convolutions of the unit box

* When d>1, the functions do not interpolate
— They never reach the value of 1

Cubic Blending Functions

« Active over 4 regions (d=3,

k=d+1=4)
« At any time, one point in
each phase T T
i-2 i1 0 i+l i+2
* Example t=4.5 4
) o e
— Eval point3@ 1.5
— Eval point4 @ .5 @ ®
— Eval point 5 @ -.5 m
— Eval point 6 @ -1.5 ®
[S)

— Each in a different part

Quadratic, Uniform B-Splines

%“’2 ifi<t<i+1 u=t-—1i
bat)y = U FuF S it 1<i<it2 u=t-(i+1)
b3t %(1*@2 ifidt2<t<i+3 u=t—(i+2)

0 otherwise.

Even More General?

» B-Splines cannot represent conic sections
— Can’t make an exact circle

» Express curves / surfaces as the RATIO

¢ Non-Uniform Rational B-Spline Surfaces
— (NURBS)

* Extensions to surfaces later in the class




Knot vectors I

« Allow us to assign parameter values to points

* Makes it possible to alter the set of points but keep
parameter values fixed

« Allows us to alter the spacing
« Allows us to create discontinuities

 (picture with lines)

¢ Uniform vs. Non-Uniform

Using B-Splines

¢ Figure out closed form basis functions

— Rather than using Cox-de Boor
¢ Can encode into a Basis matrix
— But cannot derive the same way

¢ Periodic basis functions are nice
— Implement once

« Gives a nice way to get very smooth curves
— Cubics (usually) in graphics to provide C(2)
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CS559 — Lecture 20 Iy

Texture Mapping

These are course notes (not used as slides)
Written by Mike Gleicher, Nov 2006

© 2006 Michael L. Gleicher

Goal: Complexity /

¢ How to make something complex?

e Given what we have: lots of small triangles
— To now, Gouraud shading — color per vertex
e Why not?
— Hard to model / author / design
— Hard to draw fast
— Hard to sample (triangles get smaller than a pixel)
— Hard to maintain the models
— Hard to store the models

Alternative Approach to Complexity: [
“Texture” Mapping (and its variants) o

« Use simple geometry (big polygons)
 Vary color (and other things) over its surface

* Analogy: paint a picture on something

» Basic case: change color at each point
— Advanced cases later

Why just paint objects? i

« Why paint rather than model?
— Easier (can use 2D tools, photographs)
— Less to store

— Less to model Faster to draw requires special
1
— Faster to draw (¥) hardware!
— Easier to sample Only recently has this become
1
¢ Why not? common!

— Things really aren't flat
— Parallax / self-shadowing / illumination effects
— More advanced “texturing” to get these later

Texture Mapping taf

» For every point on the object, have a “map”
(function) to color
— Later extend to other properties

* Big pieces here:
— Need ways to “name” points on object
Texture Coordinates
— Need ways to describe the mappings
* Procedural
« Use images

How to assign points to objects "Lf_-

» Use world space positions?

— No - properties usually move with objects

— Might be OK for things like lights that effect objects
e Use local 3D positions?

— 3D Textures

— Problem: harder to define functions that give colors for
all points in a volume

— Don't care about points off the surface anyway

— Use 3D textures when its easy to make 3D functions
« Procedural wood, stone, ...




2D Texture Mapping It

e So common, its almost synonymous with Texture

« For every point, give a 2D coordinate
— Texture coordinate
— U,V for every vertex

* Interpolate across triangles
— (same as across quads)

Interpolating Coordinates /

(%31 Ya), (S5, 1)

(13w ) [y S:(l,vfyi]sﬁ(yfyl}
s =[1-—Z%1s,+ s, R - — 3
- ( vazjz (yfyzjz / VoV Yoo ¥
. (1, Q}L . (i]s
XﬁixL XﬁixL

(X2 Y2), (521 1) (X1 Y1), (51, ty)

Barycentric Coordinates It

« An alternate way of describing points in triangles

» These can be used to interpolate texture
coordinates
— Gives the same result as previous slide %o
— Method in textbook (Shirley)
X = 0%y + Xy + Xy
Area(x,X,,X;)
- Area(x,,X,,X;)
_ Area(x;, X, X;)
Area(x,,X,,X;)
S=1-a-p

X3

X1

How to represent the function ]

e C(u,v)
— Write code (needs programmable graphics system)
* Programmable shaders (later in course)
— Use an image and sample

« Sampling is an issue even for procedural texture
— Its just harder!

« One pixel can be a large part of a triangle

Image Based Texture Maps Iaf

¢ So common its
synonymous

* U,V coords at vertices T
« Specify where in texture to e ""=—,L_’|.|:~;~?
get colors [

.
——

— — [Terves | u}_;l-i%'
| /
- /

Perspective Correction /

« Linear interpolation wrong Equal size
if polygon isn’t screen Tip it back’
aligned

« Stuff farther away needs to

be smaller Linear

* Need to interpolate in Reserve size ratio
world space, then do
perspective

* Need to interpolate w, and

divide (per-pixel) Perspective
ivi i Correct
« Divide per pixel used to be
expensive




. . [
Perspective Correct Texture Mapping )
« Don't worry — the graphics hardware does it

e 1/Z (or 1/W) is linear in screen space
— This is a little tricky to prove

3 1/2 in screen line
% Interpolate 1/3->1/6
2 — halfway = 1.5/ 6

1 4/ Z of halfway point=4
o 7 173 of line

To do perspective correct It

« Interpolate 1/Z (or 1/W)

e Compute Z (from 1/Z) — requires divide

e Compute fraction of way from begin to end in Z
* Use this fraction to get how far in U/V

e Can combine steps

« Big picture — need to do a divide for every
conversion (pixel)

« See Shirley for details

Sampling It

« Have U,V for the pixel — what color is it?
e Look it up in the texure map

» Point sample

Bilinear interpolation (if between pixels)
— Always will be between pixels
« Filtering — pixel maps to a region of texture

Fast Sampling ]

5 _ Tewhir imue

_C(!cr_\“ o £= _/-‘ _II"J' rﬂa&'}r shold Lo

i ?.77’ > | L—J w.z.&s ;wz
i hapte |

« Screen pixel is funny shape in Texture Space
« Perespective transform of circle (skewed ellipse)

* Use a simpler shape for sampling

i [
Average over rectangular regions A

y “Vmc,,%:,-u
As B=C-D+E

r_"/,&rri% Mﬂuu(
M&—éw%.—m

M%MW

Square Region Centered at Point k)

» Pretend pixels are squares

« If region is 1 pixel big, this is easy!
— Use bilinear interpolation to get position right

« If the region is bigger, halve both region and image

— 2x2 region — halve the image (each pixel is average of a
2x2 block)

— 4x4 region — halve the image twice




MIP Map (17

* Repeatedly halve the image to make a “pyramid”
— Until there’s 1 pixel (which is average of whole)

» Given a position and square size
— Use square size to pick pyramid level
— Use bilinear interpolation to get position

e But only have pyramid for 1,2,4,8... pixel squares
— Linear interpolate between levels!

— E.g. 5 = ¥ way between 4 and 8, so compute 4 and 8
and interpolate

— Tri-Linear Interpolation! - looks at 8 texels (4 per level)

Making Textures Work It

* Need to load textures into FAST memory
— Multiple lookups per pixel
« Need to build MipMaps
* Need to give triangles UV values
* Need to decide how to filter
« How is texture color used
— Replace existing color?
— Blend with it?
— Before or after specular highlight?
« Need to decide what happens to “out of bounds” texture
coordinates
— Clamp, repeat, border

More stuff with textures aly

» Lots of extensions and uses!

» Multi-Texturing (combine several textures)
* Bump Mapping — lookup normal values

« Displacement Mapping

» Textures for lighting and shadows

« Can fake many complex effects by using texturing
in interesting ways
— Draw many times — each with another texture
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Modeling 3D Shapes W

* Modeling = process of describing an object
— Representation
« Can model shape, physical properties, behvaior, ...

* Many uses of (geometric) models
— Graphics — make a picture
— CAD - represent for manufacture

Types of Shape Models in 3D

* Points
e Curves

» Surfaces and Solids

¢ Volumes

Surface vs. Volume Y

* Cube
— Volume = space inside 0<=x,y,z<1
— Surface = 6 squares (0,0,0)(0,0,1)(0,1,1)...

« Surface can be a boundary
— But might not be

« Graphics (often) only need surfaces

When might we care about
Volumes?

« Engineering / Manufacturing / Design
— Can't be non-physical

* Some kinds of data has “insides”
— Medical data (scanned)

* Some operations make sense
— Constructive solid geometry

— Cut/ Join / Subtract / Union
« Makes less sense on surfaces

How to do volumes? Iy

* Hard: need to insure that you always have a volume!
« Operations on primitives
— Make solid pieces (spheres, cylinders, polyhedra, ...)
— Combine with sensible operators (union, intersection, difference)
— Construction Solid Geometry
* Boundary Representations
— Store the surface
— Represent what's inside
— Be careful that there always is an inside — no holes!
« Implicit Representations
— F(x) <0 - for some fancy F
— Distance fields, union of blobs, ...
— Tend to be special purpose
¢ Sampled Volumes (like medical data)




Surface Basics

Locally flat

At any point
— Normal
— Tangent Plane
— Tangent vectors in plane

7

VA

Surfaces f f?

* Generally what we use in graphics
— Hard enough!

« Similar issues to curves, but worse
« Named vs. Free-Form

« Build out of little pieces
 Linear pieces (polygons) — analogy to lines

Basic Strategy

Break complicated surfaces into
pieces

Need to choose good pieces
Need to make sure that the pieces

connect

Connections are more complicated

qr

Polygon Soup

* Random Assortment

e Unstructured
— At least get ordering right

« Tells little about how polygons connect
 Lots of redundancy

7

Polygons fj 7
¢ Or triangles

* Need to have a front/back

« Qutward facing normal

* Be consistent in orientation (e.g. CCW)

Cube Soup IE/

struct Triangle Cube[12] =
{{{1,1,1},{1,0,01.{1,1,0}},
{{1,1,1},{1,0,1},{1,0,0}},
{{0,1,1},{1,1,1},{0,1,0}},
{{1,1,1},{1,1,0},{0,1,0}},

b

(0,0,0)




Polygon Soup

« Advantages
— Easy
* Problems
— Redundancy
— No global info
— No open/closed info
— Hard to edit
— Hard to prevent degeneracies
— No non-local information
Is it closed?
Is it connected?
Is this an edge or internal?

Cracks / Cracking

« Gaps in the surface
« Prevents from being solid
« Can be ugly
« Airtight / Watertight
— No cracks

« Beware edge/vertex
— Numerical errors cause cracks

Mesh 7

» Share vertices
— Indirection to vertex table
— Prevents cracking
— More efficient (lots of info at vertex)

« Store Polygons as vertex lists

» Store Edges — Faces are lists of edges
— Every edge borders 2 faces

e Simplicial Complex
— Mathematically deep term
— Fancy way to say “nice mesh” — all faces meet at an edge, ...

Vertex Indirection

« List of vertices
« Everything is an index into this table

« Good points:
— Sharing prevents some cracking
— Transform/Light each vertex once
— Data reduction

More complex Mesh Structures "'’

J

« Store Edges
— Can be handy to have
» Each edge only 2 faces — one CW one CCW (pass through
edge in opposite ways)
— Store “next” edge for each direction
— Winged Edge Data Structure

—_F % E2 El: A->B
., Forw:next=ES,
& E prev=E7
) Back: next=E2,
o S ” prev=E4

[17

(7

y

Getting Meshes to Hardware Fast

v

« Minimize number of vertices sent down pipe
— Old days — definitely bottleneck
— Now — maybe not, since lots of per-pixel computation

* Vertex Buffers
— Send small number of vertices
— Index into this small array (since memory << model size)
— Group into small sets (like 8 or 16) of vertices, draw all triangles
between them
* Vertex Cache
— Automatically buffer, use LIFO




Vertex Arrays W

» Hardware caches vertices (after transform)

» Give vertex list and connectivity

* Do in an order to get cache performance
— Groups of n vertices

« Hardware specific trick

« Best way to draw triangles in opengl|

» Send blocks of data at once (avoid function call overhead)
— Can be high since function call means call to low-level driver

» Possibly: store array in fast memory specific for graphics
— On graphics card or in driver address space

* Issues with data formats

Regular Meshes

* Reduce number of vertices
needed

* Reduce amount of connectivity
info needed (which can be
sizable!)

« Often have meshes with uniform
patterns
« Grids, fans, strips

« Connectivity is implicit

« Very efficient

« Processing is easy

« Avoid redundant transforms
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Normals

¢ Per Face
— Can be computed (assume polygon, order)
* Per Vertex
— Assumes we’re approximated smooth surface

* Per Face/Vertex
— If you want discontinuous normals

Smooth Surfaces (7

* Approximate with polygons

* Consider Cylinder
— Number of faces
— Better looking with smooth shading
— Even better with Phong Shading

» Tradeoff: more polygons = smoother

» Better: use pieces that are really curved
— Will (almost always) draw them by tesselating
— But — easier to model with fewer pieces,more accurate, adaptive, ...

Surface Representations

« Very similar to curves

o Implicit  f(x,y,z) =0

« Parametricf(u,v) =0

* Procedural f(?) -> points, polygons, ...

« Subdivision

¢ Old days: parametric surfaces were kind
* Now: Subdivision!

Surface Patches (1

e Asquare (u,v) in (0->1, 0->1) that gets mapping into space

» Put squares together
— Continuity Issues at edges
* Cut holes in patches
— Trim curves defined in parameter space
« Stitch together at seams
— Like sewing — cut pieces and sew them together

» Making things fit together requires dealing with the
complicated math of the curve boundaries

Parametric Surfaces

« Define points on the surface in terms of two parameters

« Simplest case: bilinear interpolation

X(5,0) = (1-8)Py o +5P,,
X(s1)=(1-s)R, +sR;
X(s.t) = (L—1)X(5,0) +tx(s,1)

Fos=1-s, F =5
F.=1-t, F, =t

x(s,t):zl:i F,S(S)F“(t\

i=0 =0

s X(s.1)




Bilinear Patches Wi

» Edges are lines (so its easy)

» Patches are not flat (actually are curved)

» For a specific u, line in v

« For a diagonal line in u,v, a curve (quadratic actually)

* How do | cut a circular hole in the patch?

* (and bilinear is the easiest!)

Tensor Product Surfaces 4t

2. v’

i<d j<d

* Polynomial in uand v

« Just like with curves, coefficients
aren't the easiest — so switch
bases

« Just a lot more control points

— D72 (16 for cubics!)
« A nightmare to derive...

* Note for fixed u or v, its just a
polynomial in the other variable

— Patch edges are polynomial
curves

Tensor Product Cubics A

» Each patch needs a 4x4 grid of control points

* Need to be very careful to make sure that there is continuity
across edges

« B-Splines, Beziers, Cardinals, ...

s o *Must be a regular grid
B O e I «Every point is in 16 patches
o b «Can’t insert detail locally (need to add

an entire row/column)

NURBS )

« Each patch is a B-Spline (often cubic)
« Need Rational B-Splines to make spheres and conics
— And projective invariance

« If you thought B-Spline curves were hard...

¢ Issues in trimming

¢ Issues in stitching (without cracking)
 Issues in adding detail

* Issues in tesselating it well

« We won't bother teaching you about these anymore

Subdivision Basics Wy

« Works for curves (as well as surfaces and volumes)
» Becoming more popular (for reasons we will see)

* ldea:
— More polygons (or linear elements) = smoother
— Define rules to make more polygons “smoothing” a simple shape
— Given a shape: smooth “enough” to get desired result
— Define rules so that in the limit the surface is really smooth
— Exact evaluation lets us determine limit surface directly

. e e Il
A simple subdivision curve scheme '

« Corner cutting
— Corners are too sharp?
— Cut them off!
« Break edges into pieces
— To make the corners
« Each corner is defined by 3
points
— Two points are stationary
— One point gets cut off

halfway points

4//

4




Gets smoother each time [

* Repeat
+ Keeps Getting Smoother
« Do this until its really smooth

« Infinitely many times?
Notice: this is the DeCasteljau Algorithm! (quadratic, u=.25)

Limit Surface

* The surface we get if we subdivide infinitely many times
¢ MAY be smooth (someone has to prove this)
* MAY be a way to determine without doing infinite steps

¢ Corner cutting:
— We know where stationary points go
— We know what the tangent is (in the limit)
« Use Bezier rules

Other Schemes (17

* Interpolating
— All points are stationary
— Insert new points in between existing points
* Approximating
— All points are moved
— In general: insert new points, then move old ones

5 c Catmull-Clark Edges

//f\‘\ * insert midpoints of edges
\%
D

*old points = 1/8 ¥, 1/8
V =-1/16a +9/16 b + 9/16 ¢ — 1/16 d

Schemes for Triangles "

e Ordinary vs. Extra-Ordinary Points
— Regular triangle grid
« 6 neighbors per vertex
« 8 vertex neighbors per edge
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Last time

* Representing Smooth Surfaces

* Piecewise parametric surfaces (tensor products)
* B-Splines, NURBS

« General, mathematically elegant

* Problematic

* Subdivision
— Basic ideas
— Schemes for curves

Subdivision Concepts W

« Start with initial, discrete representation
— Control points, line segments (for curves), polygons (for surfaces)

 Subdivision rules to make finer resolution
— Siill get a discrete approximation to smooth thing
e Limit Surface (or Curve)
— The “mathematical” result is what happens after infinite steps

« Exact Evaluation — tells about points on Limit Surface

« Stationary Points / Schemes — stay put (interpolate)
* Non-Stationary Points — move (approximate original)

Regular Meshes

« Triangle “Grids” (regular hex patterns)
e Quad Grids (squares)

« Semi-Regular Meshes (few “extraordinary” points)

W AR

How to divide triangles A

* Need to do all triangles the same way
— Can't break edges on one side, not the other
» Break edges at midpoint
— Common way each triangle -> 4 triangles
— All new points are ordinary (or edges)
« Don't break edges (Uncommon triangle->3 triangle)

Unconmmon 3-scheme

Midpoint (4) scheme
Does exist

very common

How to divide other polygons

« Middle of Edges + Center of Face
— Face point connects to edge points
« After 1 subdivision, everything is a quad
« All new points are ordinary points (or edges)
« 2 kinds of new points (edges and faces)




What does a Subdivision Scheme [
Need? =

* Rules for ordinary points
¢ Rules for extra-ordinary points

* Rules for edges/corners
— Treat them specially
— Edges only depend on edges (so shared edges connect)

* Proof that the limit surface is continuous
» Exact evaluation methods

* Methods to introduce creases, provide texture coords, ...

Butterfly Scheme (17

« Stationary (interpolating) scheme

« Only rule inserts new points between existing ones
* Regular mesh -> regular mesh

e C(1) at ordinary points

What about extra-ordinary points? ;

* They do happen!
— Edges, corners
— Holes
— Places where things are stitched together
* Tensor product surfaces can’t handle them well either

» Easy Method: do “nothing” — leave midpoint at midpoint
* Problem gets smaller on each iteration
— Only edges adjacent to extraordinary point
— And these get cut in half each time
 Inlimit: “problem” is very localized
— Surface is C(1) “almost everywhere” (except extra-ordinary points)

a a v=12a+1/8b-1/16¢c
. T .’/
Modified Butterfly Y

 Introduce tension parameter, use 10 points
* New rules for extraordinary points

v=(U2-w)a+ (1/8+2w)b - (1/16-w)c+wd

tension parameter w
sum over al 10 neighbors

Modified Butterfly 9

« Edge with 1 extra-ordinary point
— Two extraordinary points? Do both as if 1, and average
— Only happens on first pass

» For a K vertex — only use points around it (weight V=3/4)
— S0 = point on edge we're dividing

— K=3 S0=5/12, s1,s2=-1/12
- K=4 S0=3/8,s1,s3=0, s2=-1/8
— K>=5 (.25+cos(2pij/K) +.5*cos (4 pij/K)) /K
« Jfrom 0->K-1
* Use 4 point curves around edges
— -1/16, 9/16, 9/16, -1/16

Why not Butterfly? i

¢ Is C(1) and Interpolating
« Sensitive to noise in data (since it will interpolate)
« Not “Fair” (we get little wigglies)

. NotC(2)

* Alot like interpolating cubics




* Named for Charles Loop (not because of loops in the rules)

* Approximating Scheme
— New Points from close neighborhood of edge
— Old points are then moved based on their neighbors (including new

ones) s

116 116
38 38 116 AA 16
116 116

8

Loop Subdivision R

Catmull-Clark Subdivision (77

* Regular Case is quads
* Same rules apply to non-quads
Only have non-quads at first iteration

Generalization of cubic B-Splines
— On uniform mesh, gives same things
— But works on non-uniform meshes

Making Creases [0

« Hard edge subdivision
— Don't displace points
— Put edge points at midpoint
* Semi-hard edge subdivision
— Use hard edge rules for 1t few iterations
— Then use the regular rules

Loop Subdivision L

« Extra Ordinary Points

— Center=1-kB

— Each connected point =B

— B =1/n (5/8 — ((3+2cos(2pi / n))"2) / 64)

— Note: this gives the same answer as the ordinary case

— B =3/(n(n+2)) (simpler version, really close, but not exact)
* Use special edge rules

— Edge points at midpoints

— Old points = 1/8 %, 1/8

Catmull-Clark Rules (7

» Face point = center of polygon
« Edge points = average of 4 neighbors
— (2 old points, 2 adjacent face points)
« Move old points
— (n-2)/n times itself
— 1/n"2 average of N adjacent edges
— 1/n"2 average of N adjacent faces

. I
Exact Evaluation Ly

¢ For regular points on Catmull-Clark — its just a B-Spline!
* There are methods for extraordinary points (1998)

« For all types, “Masks” exist

— Final answer depends on points in the neighborhood
— Look them up in a book




Modeling with subdivision

* Any mesh can be subdivided

« Cut holes, create unusual topology, stitch pieces together

* No matter how complicated the mesh, it will lead to a
smooth surface!

Why Subdivision

« B-Splines are Smooth

« B-Splines must be Tesselated
— Sampling issues
— How to decide triangle size
— Need to worry about cracking

« B-Splines have uniform
resolution

« Detail must be global

Limit surfaces are smooth

Subdivision gives meshes

— Subdivide as needed

— Always gives connected mesh
— Get as many polys as you need

Subdivision — put detail where
you want it

Detail is multi-resolution

Why Subdivision (2) W/

* B-Splines require regular grid « Subdivision of any mesh
* Complex Topology is hard « Any topology can be handled
— No corners, holes, ... — Easy to make corners, holes, ...

¢ Trimming is hard « Trimming is easy
« Stitching is hard « Stitching is easy
* Get a (u,v) parameterization * (u,v) parameterization by
— Not controllable subdivision of points
— Controllable

« Hard to make creases and sharp * Easy to make creases and sharp
edges edges
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Last Time

« Triangle Subdivision Schemes

* Today: Quad subdivision schemes
* And move on to next topic (rendering)

Catmull-Clark Subdivision

* Regular Case is quads
* Same rules apply to non-quads
» Only have non-quads at first iteration

* Generalization of cubic B-Splines
— On uniform mesh, gives same things
— But works on non-uniform meshes

Catmull-Clark Rules

» Face point = center of polygon (1/n times each)
« Edge points = average of 4 neighbors

— (2 old points, 2 adjacent face points)
« Move old points

— (n-2)/n times itself

— 1/n"2 average of N adjacent edges

— 1/n"2 average of N adjacent faces

« Edges

— New point = midpoint

— Old point = 1/8 % 1/8
Corners — stationary points

Making Creases

« Hard edge subdivision
— Pretend that it is an edge of the surface
— Put edge points at midpoint

* Semi-hard edge subdivision
— Use hard edge rules for 1t few iterations
— Then use the regular rules

Exact Evaluation 27

¢ For regular points on Catmull-Clark — its just a B-Spline!
* There are methods for extraordinary points (1998)

« For all types, “Masks” exist

— Final answer depends on points in the neighborhood
— Look them up in a book




Modeling with subdivision

* Any mesh can be subdivided

« Cut holes, create unusual topology, stitch pieces together

* No matter how complicated the mesh, it will lead to a
smooth surface!

Why Subdivision

« B-Splines are Smooth

« B-Splines must be Tesselated
— Sampling issues
— How to decide triangle size
— Need to worry about cracking

« B-Splines have uniform
resolution

« Detail must be global

Limit surfaces are smooth

Subdivision gives meshes

— Subdivide as needed

— Always gives connected mesh
— Get as many polys as you need

Subdivision — put detail where
you want it

Detail is multi-resolution

Why Subdivision (2) W/

* B-Splines require regular grid « Subdivision of any mesh
* Complex Topology is hard « Any topology can be handled
— No corners, holes, ... — Easy to make corners, holes, ...

¢ Trimming is hard « Trimming is easy
« Stitching is hard « Stitching is easy
* Get a (u,v) parameterization * (u,v) parameterization by
— Not controllable subdivision of points
— Controllable

« Hard to make creases and sharp * Easy to make creases and sharp
edges edges
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Rendering A

* How to make an image (from a model)
« How we “draw” with computers

« Generally, term implies trying to make high-quality images

* Two main categories of approaches
— Object-Based
— Light-Based

« Distinction is a little fuzzier than that

Object-Based Rendering

* What we've been doing so far
» Draw each object independently

* Primitives and abstractions provided by hardware

— Triangles, texture mapping, multi-pass, local shading, ...

» Hacks to make better and better visual effects

« Pros: abstractions efficient on hardware

» Cons: it's a hack!
— Can't achieve all effects (without more hacks)
— Not accurate model of real world

Light-Based Rendering W

* Model what happens with light in scene

« Assume that we have a model of the scene
« Figure out how light interacts with it

« Allows for global effects
— Or at least non-local ones

¢ Simulate what really happens
— To varying degrees of realism in the model

How the real world “renders”

« Photons (Rays) from source
* Bounce paths
» Some lucky photons make it to the eye (very few)

* Not a practical strategy — too inefficient

Ray Tracing Il

¢ Technically “Backward Ray Tracing”
— From eye to light
— There are cases where we actually do forward tracing
— Terminology is confusing — | prefer “from the eye”

e ldea:
— For each pixel (image space algorithm)
— Figure out where the photon would have come from

— Note: get projective transform from ray fan out
— Note: could use real model of lens to determine ray directions
— Note: Sampling Issue




Ray Tracing Pieces

» 1. Figure out what ray is

« 2. Figure out what ray hits (ray-object intersection)
« 3. Figure out where it could have come from

— Recursive — since outgoing ray must have come from someplace

* Ray/ Object Intersection

— Straightforward mathematical calculation (root finding)
— Tricky part: making it go fast
— Accelleration structures:

« Simplified models (bounding spheres/boxes)

« Hierarchical models (check rough stuff first)
« Spatial Data structures

Where did the ray come from? (Y

* We know: outgoing direction, local surface geometry

Specular bounce
— Good for mirror reflection

Real surfaces are diffuse — could come from any direction
— Distribution of likelihoods

— Different surfaces distribute light differently

— Really requires an integral over incoming ray directions
— Bi-directional Reflectance Distribution Function

— Ideal case: sample all incoming directions

Hack ray-tracing [/

* Try to model the rays most likely to be important

« Mirror reflection bounce (or refraction bounce)
 Direction towards light sources
— Probably important since they are bright

— Check to see if path is clear (hit something = shadow)
— Use local lighting model

* What does this give us?

— Everything from local lighting
— Shadows

— Reflections and Refractions
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Hack ray-tracing

* Try to model the rays most likely to be important

« Mirror reflection bounce (or refraction bounce)
« Direction towards light sources
— Probably important since they are bright

— Check to see if path is clear (hit something = shadow)
— Use local lighting model

* What does this give us?
— Everything from local lighting
— Shadows
— Reflections and Refractions

Shadows

» Shadows of point lights give hard edges
— Even in the real world!
— Quite ugly

» Soft shadows are nicer

« Come from area light sources
— Umbra / penumbra

* How to achieve?
— More than one ray towards the light source
— Sampling of directions

Distributed Ray Tracing

* Need to sample a distribution of ray directions

* Some uses:
— Soft shadows (distribution of directions towards area light)
— Anti-Aliasing (distribution of rays within the pixel)
— Imperfect reflections (distribution of outgoing rays)
— Motion Blur (distribution of times)
— Depth of Field

— All indirect light directions (for diffuse surfaces)
« Get inter-object color transfer

— Notice how quickly this becomes impractical

What can we do with Ray-Tracing?

« Given infinite rays, just about anything
* Realistically:
— Can be clever about how to sample

— But ultimately, limited in number of rays

» To understand limits, need to talk about light paths

Light Path Calculus

¢ Lights

« Diffuse Reflections
« Specular Reflections
* Eyes

e Alpaths L(D|S)*E

— Regular expressions

« (Backward) Ray tracing can do:
- L(DIS)S*E

* What ray tracing can't do
— Anything else




Examples of other things

Diffuse inter-reflections
- LD+E

— Indirect lighting very important in the real world

— Special case: all diffuse surfaces
— Model energy transport

— Radiosity methods for solution
Caustics

— Light bounces off mirror (or through lens) to light a diffuse object
- LS*DE

Advanced “Physically-Based”
Rendering

* Smart Sampling — of all possible paths
« Bi-Directional Ray Tracing
— Do some “from the light” and store energy on surfaces
— Photon Maps
« Complex reflection distribution functions
— Require complex sampling mechanisms to express
— Integration over incoming (or outgoing) ray directions
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Graphics Hardware A

*« Why?
— Need lots of computation to do graphics
— Lots of pixels, lots of polygons, lots of texels, ...
« A few standard things done very often
— Pipeline provides a standard set of abstractions
— Break everything into triangles
* Regular computations + pipelineable

* Moving target — changing faster than processors!

History

» 1980s — first workstation 3D hardware (SGI)
» 1990s — extension of abstraction set
— Texture mapping, compositing, multi-buffering
» 1990s — first PC graphics hardware
— Low end (Apple’s white magic project)
— High end (3D solutions — expensive)
2000s — consumer graphics hardware
— Driven by gaming market
— Extensive use of the abstractions
2002++ - programmable graphics hardware
— Better abstractions, generality, use as GP processor

Graphics Pipeline W

« Fixed set of abstractions | Primitives (Triangles) I
— Doesn't really change
— Can optimize

— Fits a programming model

Transform
Lighting (per-vertéx)

« Early Graphics Hardware
— 4x4 transform engines
— Fill Engines

— Scanline hardware (Apple)

Working with the Pipeline L

* Where is your bottleneck? I Primitives (Triangles) |

Transform
Lighting (per-vestéx)

Clipping & Setup
Z-T
!

« Get your triangles fast
— Vertex sharing schemes
— Display lists / v-buffers

¢ Filling pixels
— Lots of z tests (read/write)
— Texture accesses per pixel

e Limitations
— Set operations for each
phase

I Frame Buffer

Draw Pixels
Z-Te
'
I Frame Buffer I
. . . I
Early Extensions to Pipeline

* Texture Mapping

« Accumulation Buffer
— More light sources
— Compositing
— Anti-Aliasing / Motion Blur

« Stencil Buffer




Pipelining in conventional
processors
« Start step 2 before step 1 * Unless step 2 depends on
completes step 1
¢ Pipe Stall
C=A*B C=A*B
E=D*E F=D*C =
*B
J=G*H J=G*H
F=
D*C}

Pipelines in graphics processors

¢ Conventional processors — stalls are bad
— Need shorter pipelines

« Pixels and vertices are independent
« Pipes can be long
e Parallelism is easy

— Start as many at a time as you want

-

J

Programming the Pipeline

* Vertex programs

¢ Given the info about a vertex
— Local coords, transform matrices, colors
— Lights
« Figure out the color and position
— Typical: standard lighting model
— Give a little program

Parallel — all vertices happen at once
Deeply pipelined (not intervention till end)

Fragment Shaders

« Fragment = Pixel (?)
— Multiple fragments = 1 pixel if anti-aliasing
¢ Given “context” figure out color to write

— Pixel (fragment) position already known
— Gets control over z-test, ...

« Highly parallel

« All pixels run the same program
— SIMD - single instruction multiple data

Why is graphics hardware fast?

 Highly parallel

— Simple parallel model

— Lots of little processors
» Deeply pipelined

— Results are independent

» Multiple processors on a chip is way of future
— Speeds can't get faster

— Chips can't get bigger (cross chip latencies)

13F
i

.
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Computer Animation

* Worth its own course (at least)
— We only get an hour (or less, since need to do evals)

* Go over some of the ideas / concepts
« See how some graphics concepts come into play

* A whole art form
« A wide range of technical challenges

What is Computer Animation?

* Making moving images with a computer
— 3D movies and games
— Web browser animations (annoying and useful)
— Scientific Visualization and Design
— Desktop animations — paper clip, windows moving

e Why is this hard/different
— Need to consider how things move / what is their motion
— Need things to be easier to control (so we can move them)
— Lots of images, coherence issues

Principles of Animation

« Why animate the moving windows?
— Looks cool
— Easier to understand what’s going on
 Ideas from animation help everywhere
— Animation was (historically) hard to produce
— Need to be economical about drawing
— Needed to learn how to communicate in moving images

« Early animators
— Anything can happen in animation
« Atalking and dancing mouse?
— How to make it understandable
— Control suprise

Principles of Animation

» Developed in the late 20s early 30s
» Disney was a key player

» Exageration

* Anticipation

* Follow Through and Overlap

* Secondary Action

¢ Squash and Stretch

» Staging

* Timing

* Slow in/slow out

» Straight ahead vs. pose to pose, Arcs, Appeal

How was this done historically

* Cel animation
— Transparent sheets of celuloid
— Allows characters drawn independent of background
— Layers

¢ Character Animation
— Needs a good artists
— Lots of drawings to make

« Keyframing
— Master artists draws a few poses
— “Tweener” draws “in-betweens”




Keyframing by Computer

Still how the best character animation is done
Good artists can be extremely creative

* Set a small number of “key poses”
¢ Use interpolation to get in-betweens

Big application of interpolating splines
— Catmull-Rom Splines
— TCB (tension continuity bias splines)
« Cardinals with more control (still interpolate)
« Change tension — per control point
« Tension on each side of control point (bias)
« Deviate from C(1) (continuity)

* Humans and animals (vertibrate) modeled as rigid bones
— Gets the main effect

Bones are rigid (don't really change size)
« Connected by joints (rotation)

Configuration = position of “root” + orientations

» Can pick any point to be root
— Center or pelvis
— Foot for convenience

Articulated Figure Animation A

Parametric Models

* What do you interpolate?

« Controls or parameters
— Need enough to be expressive
— Few enough to be convenient

¢ Use position of every point on a mesh?
— Lots of data to move around on every frame
* Use rigid transform?

— Might not be enough to just move things around
— OK for levels of detail

¢ Use deformations?

— Need to have a vector of numbers — point in pose space

Why is hierarchical good?

* Fewer parameters

» Enforce essential constraints
— Keep from stretching
— Keep limbs from falling off

« Keep constraints when posing or interpolating

* Why is it bad?
— Hard to position end points

— Hard to enforce constraints on end points (footskate)
— Parameters are coupled

Controlling Hierarchical Models ;Lf'_-

e Forward Kinematics
— Specify angles, see what happens
* Inverse Kinematics

— Specify end-effector positions, figure out where joints angles must
be

» Doing IK
— Might be no solutions
— Might be lots of solutions
— Non-linear equations

— Easy to solve for special cases (2 link arms)

4

Drawing Hierarchical Models

« Simple: Draw rigid pieces
* Complex: (arbitrarily)

— Compute some “skin” over the bones
— Use simulation, or anything

* One tradeoff:
— Use a simple “skinning” model
— Have a single mesh for the object

— Associate each vertex with multiple coordinate systems
— Weights determine how much




Skinning

* Smooth skinning, linear blend skinning, ...
» Blend positions (interpolate) or matrices

— Note that interpolating matrices doesn’t preserve rigidity
* Good points

— Easy

— Efficient

— Maps Nicely to hardware
» Bad points

— Simple / hackish

— Hard to find weights

— Bad effects (collapsing, candy-wrappering)
» Improved methods keep coming...

. I
Where does motion come from 4t

A

« Keyframing
« Observation (motion capture)
* Procedural (compute it)

¢ Physics = a form of procedural

« Synthesis by example = combine procedure and
observation

’

Animation by Observation

* Motion Capture
* Record the movements of a real performer

e Why?
— Realistic motion
— Get the actual person
— Actors are directable
— No need to have models of motion properties
« Mathematical definition for “happy” or “skip”
e Why not?
— Realistic motion
— Get what actor does (at best)
— Need special devices to record

How to do Motion Capture )

« Video — not possible (yet)
— Not enough information to make good measurements
— Can't get correspondences for triangulation

« Optical Motion Capture
— Engineer away what's hard about video
— Dot markers — easy to find
« Retro-reflective markers (lights on cameras)
« LEDs (blinked to get correspondences)
Cameras only see bright spots
— Many cameras (to do triangulation, disambiguation)

Some systems have dozens — if not hundreds — of cameras

Why not optical mocap

 Still get drop outs
* Real-time, online hard (drop outs, correspondence)

e Alternatives:
» Electromagnetic
¢ Mechanical

How to use motion capture 3,

« Individual clips generally short
« String together into longer chains

« Transitions
— Might be easy, might be hard
— Look for easy cases

¢ Motion Graphs
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