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1 Introduction

This tutorial gives a brief introduction to programming, compiling, and executing parallel
shared-memory applications on the Wisconsin Wind Tunnel (WWT), a wvirtual prototyping
system® [7]. The WWT currently runs only on a Thinking Machines CM-5, so we assume
that the reader has access to one and knows how to log in and run programs and is familiar
with basic Unix(TM) functionality.

The tutorial illustrates how to parallelize a simple sequential application; how to use the
Cooperative Shared Memory (CSM) model [4] and different cache coherence protocols; how to
execute, debug and profile parallel applications on the WW'T; and how to use different network
simulators. The tutorial should give you enough information to get started writing your own

programs for the WWT.

2 Getting Ready

Before proceeding further, you should find the following directories that accompany the tutorial
package:
document/ templates/ sequential/ parallel/ parallel+cico/ bug/
This document should be in document/. templates/ contains template files for compil-

ing and running programs, sequential/ has a simple sequential matrix multiplication code,

1A virtual prototype is one that exploits similarities between the machine under design (the target) and an
existing platform on which it is running (the host). It only needs to simulate those parts of the target that are
not supported by the host. As a result, a virtual prototype is faster than a simulator, but slower than the host
on which it runs.



parallel/ contains the parallel version of the code in sequential/, parallel+cico/ has the
code in parallel/ with CSM annotations and bug/ has an example showing how to track
memory faults.

Make your own copy of the directories listed above. Make them writeable using chmod -R

u+w * in the directory to which you copied all these files.

3 A sequential program

You will find a simple program in the sequential/ directory that implements multiplication of
two square matrices. You should examine, compile and execute it. A Makefile is provided for
this purpose.

This program forms the basis for the parallel version presented below.

4 A parallel program

Currently the WWT supports only the Single Program Multiple Data (SPMD) paradigm. Loosely
speaking, in this paradigm all tasks execute the same code on different portions of the data. At
the beginning of execution only one task is active on one node (typically node zero) of the target
machine. This task is responsible for forking tasks on other nodes. Only one task can be forked
on a target node. The forked tasks get private copies of all the global variables (along with the
corresponding values just before the fork) created in the first active task.

Since no parallelizing compiler is available, you will have to parallelize your code by hand.
The Parmacs[2] directives allow you to do this. The Parmacs directives are a set of macros that
provides constructs for writing parallel programs.

The remainder of this section introduces some of the Parmacs directives supported by the
WWT, presents a parallel program containing some of them, explains how to compile the pro-
gram, shows how to run the resulting executable code, and briefly describes the output from a
WWT run.

4.1 Parmacs directives supported by the WWT
Below we describe the Parmacs directives supported by the WWT. Note that the syntax of some
of these directives are slightly different from the standard Parmacs specification.

4.1.1 ENV: declaration

ENV declares various data structures required by the WWT to support the Parmacs model.
These data structures must be visible to all the non-header files. For example, at the beginning

of the parallel/mm.U file you will find the following statements:



/* mm.U - matrix multiply */

/* Setup environment for WWT */

ENV

#include <stdio.h> /* for stderr */

4.1.2 INITENV(): statement

INITENV() initializes the environment and must execute before any other non-declarative Parmacs

directives. Look in Section 4.1.5 for an example of its usage.

4.1.3 G_MALLOC(sh.mem): function

Unless otherwise specified, all data are allocated in memory private to the allocating task created
by CREATE_ALL (explained later), and inaccessible to all other tasks. If some data needs to be
shared, the only option is to allocate shared memory using the directive G MALLOC(). G.MALLOC()
has the same interface as the standard Unix library call malloc (). For example, you can malloc
shared space for an integer variable shared var as
shared var = (int *)G_MALLOC(sizeof(int))

G_MALLOC guarantees that the address it delivers is aligned on a cache block boundary. There

is mo G_FREE to free up shared space.

4.1.4 CREATE_ALL(func) and WAIT_FOREND(): statements

In the Parmacs world, only one task is active (on processor zero) when the parallel program
starts. We will call this task the master. The directive CREATE_ALL()? activates the other tasks
(one on each of the other processors), which we call the slaves. This directive is passed the name
of a function, func, that will be executed in parallel by the slaves. The call to CREATE_ALL()
returns immediately.

Often a program requires a post-processing phase, which cannot operate in parallel and
cannot proceed until all parallel tasks complete. The directive WAIT_FOR_END() synchronizes all
slaves and deactivates them as soon as they return from func. When WAIT FOR_END() returns,
only the master is active. This directive should only be invoked by the master.

Here is an example from parallel/mm.U, where the master creates a process to execute the
function Multiply on each of the other processors. CREATE_ALL(Multiply) returns immedi-
ately and the master does its share of the work by calling Multiply. At the end, the master

2The Parmacs model supports a different macro, CREATE, that creates one process on one processor. Hence,
multiple calls to CREATE are necessary to fork multiple tasks, one on each processor. Although this macro is
supported on WWT, you should use CREATE_ALL instead of CREATE because forking one task at a time is
inefficient.



synchronizes the slaves by calling WAIT_FOR_END and then prints the output.

CREATE_ALL (Multiply);
MultiplyQ);
WAIT_FOR_END();
printf(...);

4.1.5 XX_NUM_NODES & XX _NODE_NUMBER: constants

The constant XX_NUM_NODES denotes the number of processors available to the parallel program.
The constant XX _NODE_NUMBER denotes the processor id on which a process is running, where
0 < XX_NODE_NUMBER < XX NUM_NODES. A process created by the macro CREATE_ALL can read
the processor id from XX_NODE_NUMBER and decide to do its own share of work. For example,
parallel update of a linear array A of size XX_NUM_NODES can be done by the following code:

ENV
int *A;
main ()
{
INITENVQ) ;
A = (int *)G_MALLOC(sizeof(int) * XX_NUM_NODES) ;

CREATE_ALL (Update) ;
Update();

WAIT_FOR_END() ;
X

Update ()

{
A[XX_NODE_NUMBER] = 0;

4.1.6 Locks

e LOCKDEC(lock) : declaration
e LOCKINIT(lock) : statement
e LOCK(lock) : statement

e UNLOCK(lock) : statement



The WWT implements MCS locks in software [6]. Declare a shared lock variable lock,
using LOCKDEC(lock) . Initialize it using LOCKINIT((lock) ). Use the directives LOCK(lock) and
UNLOCK (lock) to lock and unlock, respectively, the variable lock. For example, you can atomically

increment a shared variable, I, in the following way:

ENV
struct GlobalSpace

{

int I;

LOCKDEC (lock) ;
} xg;

main()
{
INITENVQ);
g = (struct GlobalSpace *)G_MALLOC(sizeof(struct GlobalSpace));
g->I = 0;
LOCKINIT(g->lock);

LOCK (g->1lock) ;
g->I++;
UNLOCK (g->1lock) ;

4.1.7 BARRIER(dummy, num procs): statement

The directive BARRIER (dummy, num_procs) sets up a barrier, which holds back processors
until num_procs - 1 other processors reach any BARRIER directive. There is, however, a caveat
here. num_procs must be equal to XX NUM_NODES. Or, in other words, you cannot have a partial
barrier. dummy is a dummy argument for our purpose. You do not have to declare it as any
variable. The original Parmacs specification requires the name of a barrier variable in its place.

For example, you can synchronize all processors at a point in the following way:

ENV

main()

{
INITENV();
CREATE_ALL(test_function);
test_function();
WAIT_FOR_ENDQ) ;

}

test_function()

{



BARRIER (dummy, XX_NUM_NODES) ;

4.2 Timing
e CLOCK(wtime): statement

A call to the macro CLOCK(vtime)? returns the wirtual time* in thousands of cycles in vtime.
This macro can be used to find the virtual time at any point during execution. For example,

you can measure the virtual time for the parallel section of your code in the following way:

ENV
unsigned start_time, end_time, total_time;
main()
{
INITENV();

CLOCK(start_time);
CREATE_ALL(...);

WAIT_FOR_END() ;

CLOCK(end_time) ;

/* total_time = total virtual time to execute the parallel section */
total_time = (end_time - start_time) * 1000;

4.3 Discussion of the example code

In parallel/, you will find a parallel version of the sequential matrix multiply program presented
earlier. You should examine it, but postpone compiling and executing until you have read the
next two subsections.

There are many ways to parallelize matrix multiplication. We have chosen to decompose
the problem into computations of complete rows of the result matrix. Most of the code is
straightforward. However, the work scheduler requires some explanation. The scheduler allows
dynamic load balancing by distributing work where there is demand. Tasks compute a row of
the result matrix at a time, picking a row in order, starting at the row with the smallest index.
A shared variable, I, records the lowest row number that still requires computation. An idle
task reads I’s value and increments it. A lock ensures correctness by guaranteeing that these

operations occur atomically.

3Statement.
“The virtual time is the number of simulated target machine cycles since the beginning of execution. It is
unaffected by how fast the WWT is running on its host, the CM-5.



Option | Description

-a Rewritten a.out file name (default: a.out.vt)

-c# All instructions have cost # (default: Cypress “601 #’s”)
-d Count down for WWT (default: up)

-i Print information about program operation

-T Directory for temporary files

-W Executable runs on WWT

Table 1: Command line options for the virtual timer vt

4.4 Compilation

Complications arise during compilation because a parallel program (a) contains Parmacs direc-
tives and (b) runs on the WWT, a wirtual prototype, and not on an actual machine. Hence,
the compilation process has a few more steps than usual. You should now examine the file
templates/Makefile-skeleton. You should use this file as a template for compiling your code
on the WWT. We assume you are familiar with the SunOS make. We are going to describe only
what is specific to the WWT.

We have filled in the blanks of the skeleton makefile for the parallel program in parallel/.
Before building the executable, you should make sure that the directories ${WWT_ROOT}/bin and
${WWT_ROOT}/scripts are on your search path.

You need to create your program as a set of .U (similar to .c) and .H (similar to .h) files
in the C language. The following actions will be taken by the Makefile. These files .U and .H
files will be preprocessed by the m4 macro processor and converted to the corresponding .c and
.h files. A C compiler will convert these into object files, which will be linked by the linker 1d.
Finally, vt will instrument the target binary to keep track of virtual time on the target machine.
The vt options are listed in Table 1. make -f Makefile produces an executable ready to run
on the WWT.

You need to set an environment variable, WWT_ROQT, to the root of the WWT hierarchy. The
root directory should contain the include/ and 1ib/ directories. In the Makefile you need to
set the variables PROTOCOL to the cache coherence protocol (see Section 6), MODEL to the model
you are using for writing shared-memory applications, which in our case is Parmacs, TARGET
to the target binary you want to create and 0BJS to the object files. 0BJS should also contain
another object file, /1ib/crt0. 0, which provides a pointer to the environment needed by some
library objects. You can set additional flags through the variables, 0THER_CFLAGS (optimization
level, the Wind Tunnel flag WWT, the cache coherence protocol etc.), OTHER_LDFLAGS (flags to
1d) and OTHER_VTFLAGS (flags to the virtual timer vt. See Table 1). Set the OTHER_VTFLAGS,



for example, to —c1. The resulting VT in the statistics file (see Section 4.6), WWT.stat.N, will
denote the total number of cycles executed by your program, instead of the total virtual time
taken by the program to execute on the target machine. You do not need to change any other
variable in Makefile.

You should now compile the files in parallel/ by typing in

make -f Makefile

4.5 Execution

Several ways exist to run the WW'T with your target program. The first method is fine for
simple runs. You might also want to use this while you are developing and debugging code. The
second method, which uses the benchmarks tree, is more extensive, systematic and powerful.
There are a collection of scripts in ${WWT_ROOT}/Scripts to facilitate the manipulation of the
benchmarks tree. This method should be used for extensive and systematic experimentation with
different benchmarks and cache coherence protocols once you are sure your code is debugged
and stable.

The WWT comes with this distribution as two binaries, namely, dirlsw and dirix, corre-
sponding to the cache coherence protocols, Diry SW and Dir;X respectively (Section 6). To run
the target code on WWT with Diri SW, you should make a call like:

dirlsw <dirlsw switches> <target> <target arguments>

To use Dir;X, replace dirlsw by dirix. The dirlsw and dirix switches are explained in
Section 9.

However, you might not be able to run your code by simply typing in the above command
in the command-line. The way you submit runs changes, depending on whether or not you have
the Distributed Job Manager (DJM) running on the CM-5 at your site.

Section 4.5.1 explains how to submit jobs to the DJM. Section 4.5.2 explains how to use the
same scripts as in Section 4.5.1 in the absence of the DJM. Section 4.5.3 describes how to use

the benchmarks tree structure for doing controlled experiments.

4.5.1 Simple runs using the Distributed Job Manager

The standard way is to submit your job on a CM-5 to the Distributed Job Manager (DJM)
with a file describing what and how things should be done. The file submit in parallel/ is an
example. submit contains DJM directives (commented expressions, like #JSUB ...) and a call
to one of the WWT binaries, dirlsw or dirix, as shown before. The file submit-skeleton can
be used as a template for submitting runs to the DJM. Most of the comments from the submit
script in parallel/ have been removed.

To submit the job type



jsub submit’®

The reply should read

Job submitted successfully. Job id is M.

where M is some number.

Upon successful execution of your program you will receive a notification through mail, and
you will find the following files in the directory from which you submitted the job: submit.oM
and WWT.stat.N, where NV is some number not necessarily equal to M. The first file contains a
summary of the execution session and the second file contains some WW'T statistics about the
execution of your program. The contents of the WWT.stat. N file will be explained in Section 4.6.

You should now examine the submit file in parallel/ and try to run the code in the

directory, if DJM is present at your site.

4.5.2 Simple runs without the Distributed Job Manager

To submit a job in the absence of the DJM, type
/bin/csh submit
At the end of the execution only the WWT.stat.N file will be created.
You should now try the above in the parallel/ directory, if DJM is not installed at your

site.

4.5.3 Benchmarks tree

The benchmarks tree is set up for large-scale experimentation and cannot be used without
the DJM. Figure 1 illustrates the structure. The default root directory is derived from the
environment variable ${WWT_ROOT}. However, as will be explained later, you can change this
root. benchmarks.src contains the source code and input files for the benchmarks. The
Protocoll..n/ directories contain the Makefile necessary to compile the target code with
the particular protocol. benchmarks/ contains links to the inputs/ and src/ directories in
benchmarks.src. The runs/ directory under benchmarks/ has the runs for the different ex-
periments, named Exptl..n/. Each such experiment directory must have two basic files -
Makefile and experiment_settings, and links to any other input files required. The contents
of experiment_settings will be explained later in this section.

You should manipulate the benchmarks tree only through three basic scripts - wwt_prepare,
wwt_build and wwt_run. You will find man pages for all of these.

Before using wwt_prepare you must set up the first experiment directory, typically dir1sw®,

which should contain a Makefile and an experiment_settings file. wwt_prepare can then cre-

5jsub is a DJM command. Check the man page for details.
5You can change this default directory through the -d switch to wwt_prepare.



Root directory

Benchmarks.src/ Benchmarks/
o | o |
Benchm‘ar kY - Benchmarkn/  Benchmarkl/ . Benchmarkn/
T
inputs/ %c/ Prot‘ocolll ... Protocoln/  jnputs sc runs/
il | T
prepare_defaults run_defaults Exptl/ ... Exptn/

‘ Makefile experiment_settings LAST_MAKE make.stdout make.stderr LAST_RUN err out submit.out submit.oM WWT.stat.N Benchmark1.Z input files

Figure 1: Benchmarks Tree

ate the experiment directories you want to set up. It reads from prepare _defaults names of files
(which must include Makefile and experiment_settings) to be copied from the default direc-
tory (typically dirisw) and names of input files which must be linked from the inputs/ directory.
The prepare_defaults file should be written in perl syntax. A typical prepare defaults file
would look like:

@COPY
GLINK

("Makefile", "experiment_settings");
("test.geom") ;

However, you have to go into the experiment directory created and modify the files Makefile
and experiment_settings for your purpose.

You should then run wwt_build to build the benchmark binary in the same directory. The
binary will automatically be stripped of the symbol table and compressed (e.g. Benchmarki.Z).
wwt_build will create the files LAST MAKE, make . stdout and make. stderr, which should contain
the execution history of the build.

Use wwt_run to run the experiments you set up. wwt_run reads the default settings for the
experiment from the run_defaults file and specific settings from the file experiment_settings
in the specific experiment directory. run defaults is written in csh syntax. It contains default
environment variable settings for the experiment runs. It sets default values for two sets of
variables. The first set relates to the Wind Tunnel and second to the DJM. The WWT related
variables are SIM_ZNAME (name of the protocol binary), SIM_ARGS (arguments to the protocol
binary, not including the name of the target code), CMD_NAME (name of the target binary),
CMD_ARGS (arguments to the target binary) and CMD_IN (name of the file from which the
target reads its input: optional). The DJM variables are JSUB_NPROC (number of processors),
JSUB_CPU (cpu time), JSUB_MEM (memory requirements of WWT + target code), JSUB_ME

10



(informs DJM to send you mail at the end of execution), JSUB_EXP (exports all these environ-
ment variables to the job) and JSUB_XTRA (extra DJM variables). A typical run_defaults
file would look like:

#!/usr/misc/tcsh -f

if ( ! $?SIM_NAME ) setenv SIM_NAME "${WWT_ROOT}/bin/dirilsw"
if ( ! $?SIM_ARGS ) setenv SIM_ARGS ""

if ( ! $7CMD_NAME ) setenv CMD_NAME "mp3d"

if ( ! $7CMD_ARGS ) setenv CMD_ARGS "24000 32 50 test.geom"
# if (! $?CMD_IN )

if ( ! $7?JSUB_NPROC ) setenv JSUB_NPROC "-nproc 32"

if ( ! $7?JSUB_CPU ) setenv JSUB_CPU "-cputime 60min"

if ( ! $7JSUB_MEM ) setenv JSUB_MEM "-memory 145mb"

if ( ! $7JSUB_ME ) setenv JSUB_ME "-mail_end"

if ( ! $?JSUB_EXP ) setenv JSUB_EXP "-export"

if ( ' $?JSUB_XTRA ) setenv JSUB_XTRA "-server mendota"

The experiment_settings file must at least define the environment variable EXP_FLAGS to
the protocol binary arguments (experiment flags). The variable SIM_ARGS is set to EXP_FLAGS.
The variables defined in run_defaults can be set to specific values peculiar to the experiment

in this file. A typical experiment_settings file would look like:

setenv EXP_FLAGS "-NPT -RO1 -n 4"

setenv CMD_ARGS "1000 32 5 test.geom"

setenv JSUB_CPU '"-cputime 10min"

wwt_run will create the files err, out, submit.out, submit.oM and WWT.stat./N. All these
files except the last one should always be created when you run wwt_run correctly. These contain
the execution history of the experiment run.

Three additional scripts - wwt_batch (to submit jobs in batches to the DJM), wwt_jq (to
check the status of your job in DJM) and wwt_jrm (to delete jobs in batches) will help you to
run and check your experiments. Check the corresponding man pages for details.

You can do regression tests on the benchmarks tree using the wwt_regress script. Check
${WWT_ROOT}/regression for examples and the man page of wwt_regress for details.

You can create and manipulate the benchmarks tree with any specified root (other than
${WWT_ROOT}) through the command line switch, -w, to any of the relevant scripts. There are
other options listed in the man pages which you can explore. Check the ${WWT_ROOT}/benchmarks
and ${WWT_ROOT}/benchmarks.src directories for examples.

4.6 WWT.stat.N

The statistics file, WWT.stat .V, contains a wealth of information about the execution of your

program on the target machine. You should examine the sample WWT. stat.2429 file in parallel/.

11



The following information is in the WWT.stat. N file:

e WWT execution parameters
e Virtual time statistics and breakdown for computation, TLB misses, cache misses etc.
e Protocol (e.g. Diri SW/Dir;X) dependent statistics

e CSM statistics, like number of check_outs, check_ins, prefetches, prefetch distance distri-

bution etc. for Diry SW
e Message counts and protocol transitions
e Broadcast statistics (for Diry SW)

e Cache statistics, like number of shared and private misses etc.

5 Cooperative Shared-Memory

Hill et al. [4] and Larus et al. [5] describe the Cooperative Shared-Memory (CSM) model in
detail. In CSM, programmers bracket the use of the shared data by a check_out command before
the first use of the data and a check_in command after the expected last use of the data. There
is a prefetch annotation which allows you to prefetch data thereby overlapping communication
with computation. Note that these annotations only help you to improve performance and do
not affect the correctness of the program in any way.

The annotations referred to above are called Check-In/Check-Out (CICO) annotations. These
are available to you as macro definitions in ${WWT_ROOT}/include/model.h. This file is auto-
matically included through the ENV declaration. See the example in parallel+cico/. You
can use the following annotations: CO_X (check out exclusive), CO_S (check out shared)”, PF X
(prefetch exclusive), PF_S (prefetch shared) & and CI (check_in). All of these annotations take
one argument - the address of the data you are referring to. For example, to check out a shared
variable A in the exclusive mode you would say

COX(&A)

However, the above annotations only allow to manipulate shared data at the granularity
at which the cache coherence protocol is implemented (currently it is 32 bytes). If you need
to manipulate larger data structures you need to add a M_ to the beginning of each of these
annotations. These annotations require an additional argument - the size of the data structure.

For example, if you have a structure defined as

"The default mode is check out shared that arises on a read reference. Hence, you may skip this annotation
when you want to check out a variable as shared read-only copy.
8We have neither used nor tested the PF_S annotation.
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struct mystruct {int A; int B} C;
Then you can check out exclusive the whole structure by the following annotation:
M_COX(&C, sizeof (struct mystruct))

If the size of your data structure is less than a cache block (granularity at which coherence is
maintained), then you might want to issue a C0_X only when you are the beginning of the cache
block. Also, you might want to CI only when you have reached the last data item in the cache
block. Macros are available in ${WWT_ROOT}/include/align.h for this purpose. However, you
do not have to explicitly include this header file because that is already done by ENV. These
macros are just a prefixed version of the macros C0_X, C0_S, PF_X, PF_S and CI, the prefix being
ALIGNED_. The following example should illustrate the use of these aligned macros.

ENV
int *A;
main()
{
int i;
INITENV();

A = (int *)G_MALLOC(sizeof(int) * 200);

for (i=0;i<200;i++)
{
ALIGNED_CO_X(&A[il);
ATi] = ...
ALIGNED_CI(&A[il);
}

In the above code, CO_X and CI will be executed once instead of eight times for each iteration,
assuming a 32-byte cache block and four-byte integer.

There are some additional macros available in ${WWT_ROOT}/include/align.h. These macros
are

To compile your program with CICO, add the -DCICO flag to the OTHER_CFLAGS macro
in the Makefile. You can selectively turn on check_in, check_out and prefetch by the fol-
lowing flags: -DCHECKOUT (check-out exclusive), -DCHECKIN, -DPREFETCH_X and -
DPREFETCH_S. These annotations are available with all three of the currently distributed
cache coherence protocols (Section 6) - namely, Dir SW, Diry SW* and Dir;X.

You do not have to modify the submit file to run your program with CICO.

13



6 Cache coherence protocols

The following cache coherence protocols are supported by the WWT: Diry SW [4], Diri SW [8]
and Dir;X [1]. The examples are set up for Diry SW. To use Diry SW ™, pass -NPT and -RO1 as
arguments to the dirisw binary (in submit). On an N-processor system, Dir;X supports Dir; B
for i=0,N and Dir; NB for i=1,N. To use dirix you have to recompile the target program.
Go into the Makefile and change the macros PROTOCOL to dirix and OTHER_CFLAGS to
-02 -DWWT -DDIRIX. Re-make your program. You also have to change the submit file. The
default for dirix is Dir, NB, on an n-processor system. To convert this to a broadcast protocol
you have to specify the flag -BR. To limit the number the hardware pointers to i, specify the flag
-DP i. The submit file has two examples of dirix on a four-processor system - namely, Dir,B
and Diry NB.

7 Tracking memory faults

You will find a tool called pcfind in ${WWT_ROOT}/bin that translates a program counter into a
source file and line number of the target binary. The executable must be compiled with the -g
flag. See the man page of pcfind for details. There is an example in the bug/ directory. bug.U
is the source file containing an MMU fault. Look into the session file for the execution history.
The MMU fault will produce a CMTSD_printf.pn.N file which will tell you the address needed
by pcfind to track the fault.

8 Profiling program execution

You can profile your program with a tool called xcprof. Xcprof needs a trace file which can be
generated by supplying the argument -xc n to the ${WWT_ROOT}/bin/dirisw binary®, where n
can be either 1 or 2. Level 1 annotates only source lines. Level 2 annotates both source lines
and data structures. You have to label the data structures yourself. Two macros, SH_LABEL and
PRIV _LABEL, are provided to allow labeling of memory regions. These macros are enabled by
compiling the target program with -DPROFILE. For memory regions not labeled, the default is
to label each cache block with its virtual address.

The trace file generated has the name XCPROF.N, where IV is the same as in WWT.stat.N
described in Section 4.5.1. The -02 option in the OTHER_CFLAGS in the Makefile should be
changed to -g.

Refer to the man page for details on xpcrof.

9There is no support for profiling in dirix.
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9 Parameters to dirlsw and dirix

The binaries dirlsw and dirix offer you some flexibility in setting parameters for the target
machine through command-line switches. These switches and their default values are listed in
Table 2. The table does not list the switches for the network simulators described in the next

section.

10 Network Simulation

This section describes the range of options for simulating interconnection networks with the
Wisconsin Wind Tunnel. Burger and Wood describe the network simulator in more detail in [3].

Our simulated networks assume unidirectional virtual channels with one virtual channel per
physical channel. The network is wormhole-routed and the routers are loosely based on Dally’s
Torus router. Routing is statically determined; adaptive routing schemes are currently under

development.

10.1 Simulation Strategies

A range of simulation strategies has been implemented, which trade off speed versus accuracy in
simulation. The flag -icn X determines which strategy to use, where X is one of the following:

c: Constant. This is the original WWT network model. Each message travelling through
the network will take z cycles, where z is set with the -nl option. The default for z is 100. The
quantum latency, set with the -gl option, should be less than or equal to z. The default quantum
latency is also 100. This is the only network option that is topology-independent. This model
tends to overestimate latency for the default value of 100.

p: Contention-free. The network latency is computed as the sum of the message length
plus its distance through the network. The quantum latency should be set to 15 cycles for this
option, which is the minimum end-to-end traversal time of any message. This model significantly
underestimates network latency. A topology should be specified.

r: Random. The network latency is the sum of the message length plus network distance
travelled, plus a random variable that accounts for contention. In addition to a topology, a
random variable distribution and the accompanying parameters should be specified. (Using the
-dis, -r1, and -r2 flags described below). This model should also use a quantum latency of 15
cycles, and is the most accurate ”fast” model currently available. The slowdown (generally a
factor of 2 to 3) is almost entirely due to the reduction in quantum latency.

a: Approximate. This is an expensive discrete event simulator which reduces error to gen-
erally less than 5%. It will slow simulations down from 3 to 9 times, and should be run with a

topology and a maximum quantum latency of 15 cycles.
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e: Baseline. This is the most accurate simulation module, which performs an event-driven
simulation which simulates each flit utilizing each channel. It slows simulations from 7 to 20
times (for 32 processors), and should be run with a topology specified and a maximum quantum

latency of 15 cycles.

10.2 Topologies

Currently three classes of topologies have been implemented. The -top X option chooses the
topology to be run. Legal values for X are:

n: None. This is the default, and is only used with the constant model. A real topology
should be specified for any model other than the constant one.

k: Kary-ncube. An n-dimensional cube of degree k, where k is automatically chosen for each
dimension. The simulator attempts to balance each of the n dimensions according to powers
of 2. For example, a three-dimensional 32 processor system would be a 4z4z2 cube. Links
are unidirectional, and wrap around in each dimension. Routing is done in dimension-order,
from lowest to highest. Dimensionality is selected with the -d N option, where N is the desired
number of dimension. Legal values for N range from 2 to 10, and is set to a default of 2.

f: Fat-tree. This represents a tree in which constant bandwidth is maintained at each level
of the tree. The processing nodes are at the leaves. Multiple routers form single logical internal
nodes of the tree at higher levels. Routing is randomized on the way up the tree and deterministic
on the way down. The degree of the tree is set by the -ary V argument, where V' can range
from 2 to 10. V has a default value of 4.

r: Ring. This is a ring-based topology that is intended for use with the SCI simulator. This

topology is currently under development.

10.3 Random Variable Distributions

The random module allows 7 distributions to be used to generate random contentions. The -dis
X option chooses the distribution. -r1 Y and -r2 Z provide the necessary parameters for the
distributions as described below. The -st [N option chooses the random number stream to use;
the streams are numbered between 0 and 99 inclusively. Legitimate values for X are:

d: Dynamically chosen distribution. This chooses a distribution based on Y and Z, which
represent the mean (E[X]) and coeflicient of variation (Cz) of contention in the equivalent
baseline run.

u: Uniform distribution. Y and Z represent the lower and upper bounds, respectively, for a
uniform distribution.

e: Exponential distribution. Y is the parameter for the exponential distribution, while Z is

a dummy argument that doesn’t need to be specified.
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h: Hyperexponential distribution. Y is E[X], and Z is Cz.
r: Erlang-k distribution. Y is E[X], and Z is the number of stages in the distribution (k).
g: Gamma distribution. Y represents the o parameter, and Z represents the § parameter.

n: Normal distribution. Y represents the y parameter, and Z represents the o parameter.
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Options Description Default Legal
Short | Long values
Both dirlsw and diriX
-a -assoc cache associativity 4 2",
1<n<5
-acbt -acob-entries # of async checkout buffer entries 4000 >0
-aa -alloc-all allocate sh. mem. on all nodes of f on/of f*
-an -alloc-non-proc allocate sh. mem. non-processing nodes only of f onfof f
-b -block cache block size (in bytes) 32 32 x 2,
n=0,1,...
-C -cache cache size (in bytes) 256 | -b x -a x 2",
KBytes n=0,1,...
-cpf -cpf-alloc # of CPFs to allocate initially 128 >0
-le -loop-on-error loop on error instead of exiting of f onfof f
-1l -local-latency target local message latency (in cycles) 10 >0
-me -msg_cost target message send/receive cost (in cycles) 5 >0
-n -nodes # of target nodes to use for processing #hn* 1,2,....#hn
-nl -net-latency target network message latency (in cycles) 100 > 0
-pfb++ -pfb-entries # of prefetch buffer entries 4000 >0
-pnc -pn-core dump PN core files (CMTSD _core...) of f on/of f
-pm -pvt-magic make private data "magic” (not cached) of f on/of f
-pt -print-trace send debug trace to file instead of buffer of f onfof f
-ql -quantum-length simulation quantum length (in cycles) 100 >0, < -nl
-s -shared-static make static data shared of f onfof f
-tlb -tlb-entries # of TLB entries 64 >0
-tr -trace turn on debug tracing of f onfof f
-ts -trace-size # of trace buffer entries 100 >0
-v -verb verbosity level 0 0,1,...4
-xc T+ -xcprof-profiling xcprof profiling level 0 0,1,2
-CA -cache-access cache access cost (in cycles) 3 >0
-CF -cache-fill cache fill cost per block (in cycles) 1 >0
-DA -dir-access directory access cost (in cycles) 10 >0
-DF -dir-fill directory fill cost per block (in cycles) 1 >0
dirlsw
-RMX -Read-miss-excl Read misses prefer exclusive copies of f onfof f
-ACO** | -Async-co CO’s are asynchronous (non-blocking) of f onjof f
-ASIS -Get-asis read misses send GET_ASIS message of f on/of f
-RO1 -RO-one keep pointer for single shared copy of f on/of f
-RO1X -RO-one-x keep xor for two shared copies (implies RO1) of f on/of f
-NPT -No-pairwise-traps || handle pairwise conflicts in hardware of f onfof f
-TLAT -trap-latency directory trap response latency (in cycles) 5 >0
-TACK | -trap-ack directory trap acknowledge latency (in cycles) 50 >0
-TC -trap-cost directory trap handler runtime (in cycles) 200 >0
diriX
-DP -Directory-Pointers || # of directory pointers #hn 1,2,....,#hn
-BR -Broadcast switch to diriB from diriNB of f onfof f
-SWIC -Swap-in-Cache enable swapping in cache of f onfof f

Table 2: Switches to dirlsw and dirix

* on (of f) implies whether the switch is specified (or not)

*x #hn = number of host nodes

*xx WWT runs slow (fast) for small (large) values of quantum length. Try -q1 1000 -nl 1000 during

debugging

+ ACO (asynchronous check out) does not work
++ These switches, although present, do not work for dirix
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