Maintaining Strong Cache Consistency in the World-Wide Web

Pei Cao and Chengjie Liu

Department of Computer Science
University of Wisconsin-Madison
Madison, WI 53706
{cao,chengjie }Qcs.wisc.edu

Abstract

As the Web continues to explode in size, caching be-
comes increasingly important. With caching comes
the problem of cache consistency. Conventional wis-
dom holds that strong cache consistency is too expen-
sive for the Web, and weak consistency methods such
as Time-To-Live (TTL) are most appropriate. This
study compares three consistency approaches: adap-
tive TTL, polling-every-time and invalidation, through
analysis, implementation and trace replay in a sim-
ulated environment. Our analysis shows that weak
consistency methods save network bandwidth mostly
at the expense of returning stale documents to users.
Our experiments show that invalidation generates a
comparable amount of network traffic and server work-
load to adaptive TTL and has similar average client re-
sponse times, while polling-every-time results in more
control messages, higher server workload and longer
client response times. We show that, contrary to pop-
ular belief, strong cache consistency can be maintained
for the Web with little or no extra cost than the cur-
rent weak consistency approaches, and it should be
maintained using an invalidation-based protocol.

Keywords: World Wide Web, Cache Consistency,
Invalidation Protocols, Distributed Systems, Perfor-
mance Analysis and Measurements.

1 Introduction

The exploding popularity of the World Wide Web
(WWW) has led to exponentially increasing traffic on
the Internet. Since the network infrastructure does
not grow at an exponential rate, the increase of net-
work load has lead to increased latency in access-
ing Web documents. Fortunately, caching can re-
duce both network traffic and document access la-
tency. By caching replies to HTTP requests and using

the cached replies whenever possible, client-side Web
caches reduce the network traffic between clients and
Web servers, reduce the load on Web servers, and re-
duce the average user-perceived latency of document
retrieval.

For Web caches to be useful, however, cache con-
sistency must be maintained, that is, cached copies
should be updated when the originals change. We
define weak consistency as the consistency model in
which a stale document might be returned to the user,
and strong consistency as the model in which after a
write completes, no stale copy of the modified doc-
ument will ever be returned to the user. The exact
definition of the completion of a write varies by the
consistency approaches.

Existing Web caches mostly provide weak consis-
tency. That is, a stale document might be returned
to the user, though infrequently. Weak consistency
mechanisms include TTL (Time-To-Live), in which a
client considers a cached copy up-to-date if its time-
to-live has not expired, and client polling, in which a
client periodically contacts Web servers to verify the
freshness of cached copies. Weak consistency, how-
ever, is not always satisfactory. Users have to be aware
that the browser may occasionally display a stale page.
To make sure that a requested document is up-to-
date, a user has to instruct the browser to “reload”,
which means contacting the Web server to validate
the cached copy. Reload not only burdens the user,
but also burdens the Web server. Essentially, lack of
strong consistency reduces the effectiveness of client
caches as a way to improve the scalability of the Web.

In this paper, we investigate the cost and perfor-
mance of two approaches that provide strong consis-
tency, invalidation and polling-every-time. In the in-
validation approach, the Web server keeps track of all
the client sites that cache a document, and when the
document is changed, sends invalidation messages to
the clients. A write is considered complete when in-

validation messages reach all of the relevant clients. In
the polling-every-time approach, every time the user
requests a document and there is a cached copy, the
cache first contacts the Web server to validate the
cached copy, then returns the copy to the user. In
this approach, a write is complete when the modifica-
tion is registered in the server’s file system.

We compare invalidation and polling-every-time
with a widely-used weak consistency approach, adap-
tive TTL [6], through analysis, implementation and
trace replay experiments. Adaptive TTL is shown
to perform the best among existing weak consistency
protocols [11]. Using a simple model that captures
the interleave of document requests and modifications,
we demonstrate that weak consistency protocols save
network bandwidth mostly at the expense of return-
ing stale documents to the user, and the comparison
of invalidation and polling-every-time depends on the
relative frequency of document requests and modifica-
tions.

We implemented the three consistency approaches
in the popular Web caching system Harvest [7], and
compared their performance by replaying Web server
traces through the prototypes running on workstations
connected by an Ethernet. Our experiments show that
the invalidation approach performs the best among
the three consistency approaches, It provides strong
consistency at a cost that is similar to that of adap-
tive TTL. Compared with adaptive TTL, invalidation
generates similar (within 6%) number of network mes-
sages and imposes similar server load (within 3%). It
also has similar client response times, though occa-
sionally a request is stalled for a long time (due to an
inefficiency in our current implementation, the server
does not accept new requests until it finishes send-
ing all invalidation messages). Polling-every-time, on
the other hand, generates significantly more network
messages (as high as 50% in some experiments) and
imposes higher server CPU load. Thus, strong cache
consistency can be maintained on the Web with lit-
tle or no extra cost than the current weak consistency
approaches, and invalidation-based protocols are the
appropriate methods.

2 Related Work

Our study is motivated by recent work on Web caching
and Web cache consistency. In particular, Gwertzman
and Seltzer’s paper [11] gave an excellent comparison
of cache consistency approaches via simulation, and
concluded that a weak-consistency approach such as
adaptive TTL would be best for Web caching. The

main metric used in [11] is network traffic. The study
did not address many other important questions, such
as server loads, client response times, and consistency
message latency.

Another study that is similar to ours is Worrell’s
thesis [21]. The study investigates using invalidation
as the consistency approach in hierarchical network
object caches. It compares invalidation with a fized
TTL approach, in which a single time-to-live is as-
signed to all files. The study concludes that invalida-
tion is a better approach for cache consistency. How-
ever, the results in [21] relies on the existence of a
hierarchical caching structure, which significantly re-
duces the overhead for invalidation. Unfortunately,
hierarchical caches are not yet widely present in the
Internet. Thus, we focus on invalidation in the absence
of caching hierarchies.

Another study [20] describes a light-weight caching
server that employs both adaptive TTL and invalida-
tion for cache consistency. However, the paper focuses
on comparing the performance differences between the
light-weight server and the CERN proxy server, and
does not compare the consistency approaches.

Though we chose the Harvest [8, 7] system for our
implementations, there are many other Web caching
software. Popular browsers such as Netscape and the
Internet Explorer all offer some form of client caching.
CERN proxy [17] offers caching for all its clients, us-
ing TTL as the consistency mechanism. We choose
Harvest due to its source code availability and good
performance [20].

Cache consistency problems exist in any system
that uses some form of cache to speed up accesses.
In particular, cache consistency protocols have been
studied extensively in computer architecture [12], dis-
tributed shared memory (DSM) [16, 5], network and
distributed file systems [19, 13, 18], and distributed
database systems [9, 10]. The consistency problems
are slightly different in the four contexts.

In computer architecture and DSM systems, the
consistency algorithms must handle multiple writers
to a data item, and are subject to the most strin-
gent limits on CPU and storage overheads. The
World Wide Web so far provides only a single-writer
multiple-reader interface for document retrieval, and
processors as well as storage are relatively fast and
cheap compared to the Internet bandwidth. On the
other hand, some of solutions in the computer archi-
tecture and DSM contexts apply to the Web. For ex-
ample, our initial interest in this work came from dis-
cussions with Stefanos Kaxiras and James Goodman
at University of Wisconsin at Madison on applying

the GLOW scalable hardware shared-memory coher-
ence protocol [14] to cache consistency on the Web.
GLOW uses hierarchical caching and hardware mul-
ticast network for invalidation messages. Though we
did not pursue the idea due to the lack of hierarchy on
the Internet, GLOW-style multicast protocols can po-
tentially improve the performance of invalidation sig-
nificantly by saving network traffic and reducing server
load. This remains part of our future work.

In distributed databases, the database system must
provide transactional guarantees over a set of data
accesses in the presence of caches [9, 10]. In com-
parison, the Web provides a much more primitive in-
terface. Thus, the Web cache consistency problem
is much simpler than the database cache consistency
problem. However, many of the performance trade-
offs between polling (called “validity check” in [10])
and invalidation (called “change notification” in [10])
are similar in both contexts. In this paper we mainly
compare strong cache consistency protocols with the
current weak cache consistency approach in the Web.
We plan to look more into leveraging the techniques in
database consistency algorithms to improve the per-
formance of Web consistency protocols.

Of the four contexts, the cache consistency problem
of network and distributed file systems [19, 13, 18] is
most similar to the Web consistency problem. The
main differences are that the Web is orders of mag-
nitudes bigger than any distributed file system, and
the systems participating in the Web are heteroge-
neous, use different operating systems and belong to
different organizations. Despite the differences, there
are similarities in the solutions. For example, the
TTL approach is very similar to the NFS protocol
for cache consistency [19], the polling-every-time ap-
proach is similar to what is adopted in the Sprite
file systems (clients contact the server on every file
open/close) [18], and invalidations are essentially call-
backs in AFS [13]. The unique challenge in the Web
is to scale these protocols to the size of the Internet.
Though many recent studies on distributed file sys-
tems followed the trend of letting client workstations
assume more responsibilities, including caching, con-
sistency maintanence and failure resilience [4, 1], these
techniques do not easily apply to the current Web be-
cause most web clients have limited resources.

3 Consistency Approaches
This section discusses in more detail the three cache

consistency approaches, the load they put on the net-
work, and the consistency they provide under the cur-

rent Internet.

3.1 Cache Consistency Maintanence

The current HTTP protocol provides two mechanisms
for cache consistency. Each URL (Universal Resource
Locator) document has a “time-to-live” (or “expire”)
field, which is an a priori estimate of how long the
document will remain unchanged. The time-to-live
field can be used by the cache manager to determine
if a cached copy is up to date. In addition, each client
can send an “if-modified-since” request, containing the
URL of the document and a timestamp, to the Web
server. Upon receiving the request, the server checks
whether the document has been modified since the
timestamp. If so, the server returns the status code
“200” and the new data; otherwise, the server returns
the code “304”, which stands for “document unmodi-
fied.”

Existing Web caches mostly utilize combinations
of two basic approaches for cache consistency. The
TTL approach maintains cache consistency using the
copy’s time-to-live attribute; a cached copy is con-
sidered valid until its TTL expires, at which point
the next request to it results in an “if-modified-since”
message. The client polling approach sends an “if-
modified-since” request every time the validity of a
cached copy needs to be verified.

The difficulty with the TTL approach is that it is
often hard to assign an appropriate time-to-live for a
document. If the value is too small, the server will
be burdened with many “if-modified-since” messages,
even when the document is not changed. If the value is
too large, the probability that the user will see a stale
copy of the document significantly increases. Similar
difficulties exist with the client polling approach in
deciding when to send “if-modified-since” requests.

The adaptive TTL approach handles the problem
by adjusting a document’s time-to-live based on obser-
vations of its lifetime. The approach, also called the
Alex protocol, was first proposed in [6]. Adaptive TTL
takes advantage of the fact that file lifetime distribu-
tions tend to be bimodal [4, 2]; if a file has not been
modified for a long time, it tends to stay unchanged.
Thus, in adaptive TTL, the cache manager assigns a
time-to-live attribute to a document, and the time-to-
live is a percentage of the document’s current “age”,
which is the current time minus the last modified time
of the document (this information is provided in the
header of a HTTP reply).

Studies [6, 11] have shown that adaptive TTL can
keep the probability of stale documents within reason-
able bounds (< 5%). The Harvest cache manager [7]

Clientcl D> Web Server
—
Clientcn C >— Document Dn

Figure 1: Modeling clients’ requests to documents.

mainly uses this approach to maintain cache consis-
tency, with the percentage set to 50% !.

Though adaptive TTL keeps the frequency of stale
documents low, it does not eliminate its occurance.
Two other approaches can provide stronger consis-
tency guarantees.

The polling-every-time approach simply sends
an “if-modified-since” request every time a request
for a document hits in the cache. The approach has
the advantage that it can be implemented easily in
the existing HT'TP protocol, and indeed the Netscape
browser allows users to select this approach for cache
consistency. The problem with this approach, how-
ever, is that the user waits a network round-trip la-
tency on every document retrieval, even though the
document itself is cached.

The invalidation approach relies on the server to
send out notifications when a file is modified. It is
similar to the cache consistency mechanism used in
the wide-area file system AFS. The server keeps track
of all the client sites that cache a particular document,
and when the document is changed, the server sends
out invalidation messages to all the clients. Upon re-
ceiving an invalidation message, the cache deletes the
cached copy (if there is one), but does not retrieve a
new copy. The advantage of this approach is that it
eliminates the stale copy problem (subject to network
connectivity) with low cost. The disadvantage of this
approach is that current HTTP protocol does not in-
clude invalidation messages.

3.2 Analysis of Network Traffic

We can analyze the network traffic contributed by the
three approaches through a simple model. There are
many Web servers and clients in the Web. A particular
Web server may have many documents, and more than
one clients may request the document (Figure 1). If
we focus on a particular client Cs’s accesses to a par-
ticular document D;, we can calculate the network

1Harvest also uses the “time-to-live” field of a document if
the Web server provides one. In addition, the percentage and
maximum TTL can be adjusted and set for specific types of
documents through configuration files.

traffic due to delivering Dy to C. The total network
traffic is then the sum of the network traffic incurred
by each client-document pair.

During a time period, 'y may request to view D,
multiple times, and D; may change many times as
well. The interleave of requests and file modifications
can be expressed as a stream: “rrrmmmrrmrrrm
m r m.” The stream completely captures the events
relevant to Cy’s accesses to Dy, for the period from
C5 bringing D, into its cache till Cs evicting D from
its cache. That is, the first “r” is the regular GET
request, and the last “r” is the request that hits in
the cache just before D; is replaced. If D; is changed
before C5 brings it into cache again, the stream is
ended by a file modification “m.” Assuming C4’s cache
makes the same cache replacement decisions regardless
of the consistency protocol, we only need to look at a
single stream to compare the network traffic of the
consistency approaches.

We distinguish between two types of network traf-
fic: control messages and file transfers. The control
messages include regular GET requests, “if-modified-
since” requests, invalidation messages, and “304”
replies. The reason to distinguish the two is because
control messages are usually much smaller than file
transfers. The average size of control messages is usu-
ally less than two hundred bytes, while file transfers
vary from a few thousand to over tens of thousands of
bytes.

Let R be the number of times C, views D;, and
let RI be the number of intervals during which Cy
repeatedly requests D; while D; is unchanged. For
example, R is 9 in the above sequence, and RI is 4.
Assuming the cache at C» always has space for D, the
minimum amount of network traffic needed to ensure
that Cy always sees an up-to-date version of D is RI
control messages plus RI file transfers.

The consistency protocols generate different mes-
sages:

e In adaptive TTL, the first request is a regular
GET request, and subsequently, for each request
that hits in the cache but the document’s time-to-
live has expired, an “if-modified-since” message
is sent. Of all the “if-modified-since” requests,
only those that are the first “if-modified-since” re-
quests in their access intervals receive a reply car-
rying the new document, and all others receive a
reply “file not changed.” If an “if-modified-since”
request does not occur in an access interval, all
requests in the interval are stale hits, and the in-
terval is called a stale-hit-interval. A file transfer
occurs upon the first “if-modified-since” request

in an access interval.

e In polling-every-time, except the first request, all
requests are cache hits and result in “if-modified-
since” requests, of which only RI — 1 requests are
useful (receiving new documents), and the rest
only result in “304” responses. The number of file
transfers is exactly RI, since the file is delivered
once at the beginning of every access interval.

e For invalidation, the number of invalidation mes-
sages is the number of access intervals, not the
number of file modifications. The reason is that
once an invalidation is sent, the client no longer
caches the document, so unless the client accesses
the document again, there is no need to notify the
client about the document’s changes. Thus, an
invalidation message is only sent upon the first
modification after an access interval. The first
request in each access interval generates a new
GET request, resulting in RI GET requests, and
RI file transfers.

Table 1 shows the control messages and file transfers
of the three consistency approaches.

We can make the following observations from Ta-
ble 1:

e The only times when adaptive TTL saves file
transfers over the other approaches are when stale
documents are returned to user. Since network
bandwidth is mostly consumed by file transfers,
this means that the bandwidth saving of the TTL
approach comes mainly at the cost of stale hits.

e Invalidation incurs at most twice the minimum
number of control messages; both polling-every-
time and invalidation incur the minimum number
of file transfers.

e Though adaptive TTL also incurs fewer control
messages than polling-every-time, it may incur
more control messages than invalidation if the
TTL expires and the document is not changed.

e The comparison of polling-every-time and inval-
idation depends on the relative frequency of re-
quests and modifications. If modifications hap-
pen often but requests happen infrequently, then
invalidation incurs an extra invalidation message
on every request. On the other hand, if re-
quests happen frequently between modifications,
polling-every-time may generate too many valida-
tion requests.

Thus, strong consistency mechanisms do not neces-
sarily consume more network bandwidth than weak
consistency mechanisms.

3.3 Consistency in the Presence of
Failures

Our discussion so far ignores the fact that in today’s
Internet, networks, servers, and clients may fail at any
time. The three approaches provide different consis-
tency guarantees in the presence of failure.

Polling-every-time guarantees that when the user
requests a document, the returned document is up-
to-date at the time when the server processes the “if-
modified-since” message. If a server or network failure
happens when the user requests a document, polling-
every-time can inform the user of the failure. The
user can then choose to view the cached copy, while
being aware that the copy maybe stale and server or
networks failures are hindering the propagation of up-
dates.

Invalidation guarantees that when the user requests
a document, the returned document is up-to-date
within the time it takes the server to send an invalida-
tion message to the client. However, if a network par-
tition prevents the flow of information from the server
to the client, the user might view stale documents for
an extended period of time without knowing it. The
only way to guard against it is for the client to peri-
odically contact the server to make sure the network
links and the server are up.

Depending on implementation, invalidation can
guarantee that the cached files are in a “casually” con-
sistent state even when a network failure occurs. Es-
sentially, if the messages are delivered in order (as in
TCP), and the server sends out invalidations for docu-
ment A before it sends out invalidations for document
B, then if a client sees the new version of document
B and then requests document A, the client is guar-
anteed to see the new version of document A or be
notified that a network failure occurred. This guaran-
tee can be quite useful in certain situations.

Adaptive TTL can only guarantee that the returned
document is up-to-date within the specified time-to-
live period. To keep overhead low, time-to-live must
be similar to the life-time of the document, which can
be hours, days or even months. Thus, it is much larger
than the network delays or the invalidation processing
delays, which are often well within a second. Thus,
strong consistency approaches provide a much better
guarantee on the “freshness” of documents.

Messages Polling-Every-Time | Invalidation Adaptive TTL

“GET” Requests 1 RI 1

If-Modified-Since R-1 0 TTL-missed - 1

304 replies R-RI 0 TTL-missed - TTL-missed-and-new-doc
Invalidation 0 RI 0

Total Control Msg 2R-RI 2RI 2*TTL-missed - TTL-missed-and-new-doc
File transfers RI RI RI - stale-hit-intervals

Table 1: Message counts for the three consistency approaches. R is the total number of requests, and RI is the

interval of requests with no intervening modification.

4 Implementation

We implemented all three consistency approaches in
the Harvest Web caching system. (Source codes can be
found in http://www.cs.wisc.edu/~cao/icache.) We
ignore the support for cache hierarchies in Harvest,
and all consistency operations happen between the
Web server and individual cache sites. For example,
invalidation does not depend on higher level caches to
send out invalidation messages to lower level caches —
the Web server sends invalidation to all cache sites.

4.1 Adaptive TTL

We improved the original adaptive TTL implementa-
tion in Harvest. Everytime a cache hit happens, the
cache entry’s time-to-live is checked. If it expires, the
original implementation deletes the entry and sends
a regular GET request for the document. Our im-
plementation keeps the cached file and sends an “if-
modified-since” request instead.

4.2 Polling-Every-Time

For polling-every-time, we simply send an “if-
modified-since” request to the server every time a
cache hit happens. If the server replies with status
code 304, the cached copy is returned to the user. If
the server replies with the document, the cached copy
is deleted, the new copy is put in the cache and re-
turned to the user.

4.3 Invalidation

The Harvest cache software provides both a proxy
cache for client browsers and an HTTP accelerator
for Web servers. The accelerator intercepts HT'TP re-
quests by running on port 80 and putting the Web
server on port 81. The original purpose of the accel-
erator is to improve server performance by keeping a

main memory cache of URL documents. We imple-
mented the invalidation approach in the accelerator
to avoid modifying the server.

The accelerator has to perform three basic opera-
tions: keeping track of the remote sites that cache a
copy of a document, detecting changes to the docu-
ment, and sending out invalidation messages.

Keeping track of client sites The accelerator
maintains an invalidation table which records, for each
URL document, a list of remote sites that accessed the
document since the previous invalidation of the docu-
ment. We do not rely on the client telling the server
whether it will cache a document; rather, every time a
client accesses the document, we assume that it might
cache the document and add its address to the remote
site list. (For those who are worried about scalability
issues, see Section 6.)

Detecting changes Detecting modifications to a
document is surprisingly nontrivial. There are many
ways a URL document can be modified, including all
the editors and shell commands like “cp.” The only
reliable way to detect changes to a file is at the file
system level. One would like a trigger mechanism in
the kernel to dispatch a user-level handler every time
a file is modified. Unfortunately, most operating sys-
tems do not provide such mechanisms.

We identify two approaches for the accelerator
to detect changes to a document. The first, “no-
tify”, provides a check-out/check-in mechanism for the
user. The document is considered changed when it is
checked-in, and the check-in utility automatically in-
forms the accelerator about it. The second approach
takes advantage of the fact that users often invoke the
browser to see a document when they change it. Thus,
when the proxy server sees a request from the browser
for a local document, it suggests to the accelerator to
check whether the document has been modified. This

means that each entry in the invalidation table needs
to keep a timestamp of when the document was last
seen modified. A third alternative is for the acceler-
ator to check the status of all files periodically. We
ruled it out because the overhead is prohibitively high
for even moderate numbers of files. We implemented
both “notify” and the browser-based approach in Har-
vest.

Sending invalidations We added a new HTTP
message type: INVALIDATE. An INVALIDATE mes-
sage can carry either a URL or the Web server ad-
dress. In the former case, a proxy cache that receives
the message checks to see if the URL is cached. If
so, it deletes the cached copy; if not, it ignores the
message. In the latter case, the proxy cache checks to
see if it has copies of documents from the Web server,
and marks those copies as questionable. A question-
able copy needs an “if-modified-since” message before
it can be returned to the user. This form of message
is used when the Web server site fails.

Upon detecting changes to a document, the accel-
erator sends out INVALIDATE messages carrying the
URL to all the client sites. Once a client receives the
invalidation message, the accelerator deletes it from
the site list of the document. Thus, if the client does
not access the document again, it will not receive fu-
ture invalidations.

Handling Failures: There are three failure scenar-
ios. The first is when a proxy is down and misses an
invalidation message. Our solution is simply to let
the proxy mark all its cache entries as questionable
when it recovers. When the user requests a question-
able entry, the proxy checks with the server using “if-
modified-since.”

The second scenario is when the server site fails (i.e.
both the accelerator and the Web server die). When
the server site recovers, it must send out invalidation
messages for the documents that were changed during
the failed interval. This requires that site lists for all
documents survive the failure. We could implement it
by logging every HTTP request to disk before servic-
ing it, but the overhead would be too high.

Our solution is to store on disk a list of all the
sites that ever received a document from the server.
When the accelerator recovers, it sends an INVALI-
DATE message carrying the Web server address to all
sites in its list. The solution incur low overhead: a
disk access is only necessary when a new client site
which has never been seen before contacts the server.
The accelerator keeps an in-memory table of all the

site addresses it has seen, and updates the list on disk
when a new site enters.

The third scenario is when network partitions oc-
cur between the server site and the client site. This
is the hardest failure case to handle. It is difficult
to maintain strong consistency in the event of net-
work partition. Our current solution is to use TCP to
send invalidation messages, and when the TCP mes-
sage fails, use periodic retry.

5 Performance Comparison

We compare the performance of the three approaches
by replaying Web server traces in a simulated environ-
ments. Below we first discuss the performance metrics
we are interested in, then the Web traces and the sim-
ulation scheme, and finally our results.

5.1 Performance Metrics

Our performance comparison of the approaches in-
cludes the following criteria.

e total number and bytes of messages: the
total number and byte count of messages sent by
the clients and the server, including the messages
needed to service HT'TP requests and to maintain
cache consistency.

e client response time: the latency from send-
ing an HTTP request till receiving the document,
measured from the browser; it reflects the delay
experienced by the user.

e server load: the average load experienced by the
server to satisfy the incoming requests and main-
tain cache consistency, measured as CPU and disk
utilizations.

e stale hits: since adaptive TTL does not main-
tain strong consistency, a stale copy may be re-
turned to clients. We count all such occurances.

e invalidation cost: one of the main concerns for
invalidation is that the server may have to main-
tain a large list for each document to record all
sites that have accessed the document (since its
last invalidation), and the cost of sending invali-
date messages to all the sites maybe high. Thus,
we keep track of the total storage required by the
site lists, and the time it takes the server to send
all the invalidation messages for each modifica-
tion.

We instrumented our Harvest implementation to keep
appropriate counters for these measurements. The
server load is measured by running an “iostat” on the
server machine; the “iostat” process reports the disk
and CPU utilizations for each minute. We report the
average of the utilization ratios for the duration of
each trace replay.

5.2 Web Access Traces

We used five Web server traces from the Inter-
net Traffic Archive (http://town.hall.org/Archives/
pub/ITA/). The servers are:

o ClarkNet: a commercial Internet provider for the
Metro Baltimore-Washington DC area;

e EPA: the EPA WWW server located at Research
Triangle Park, NC;

e NASA: the NASA Kennedy Space Center WWW
server in Florida;

e SASK: the Web server at the University of
Saskatchewan, Saskatoon, Canada;

o SDSC: the WWW server for the San Diego Su-
percomputer Center.

Since replaying the traces through the prototypes is
quite time-consuming. we used only part of the avail-
able traces for ClarkNet, NASA and SASK. A sum-
mary of the traces appears in table 2.

We did not use the trace files as is, but applied
several preprocessing steps. Below we describe each
of the preprocessing steps and discuss their effect on
the results.

First, we replay only the requests that are cachable
and have a status code of either 200 or 304. In other
words, POST requests, requests that have responses
with status code 302 (temporarily moved), 401 (unau-
thorized), 403 (forbidden), etc. are filtered out. The
total number of trace records and the number of re-
quests we replay are listed in Table 2. The effect of
this filtering is that it magnifies the performance dif-
ferences between the consistency approaches, because
the consistency protocols have no effect on such re-
quests, and all incur the same overhead for them.

Second, we assume that file modifications do not
change file sizes. Since a small number of documents
are modified during the trace period, the trace may
record different sizes for the same file. We assign a
fixed size to every document, taking an average of its
reported sizes in the trace. If a document only ap-
pears in the trace with “304” replies (that is, no size

information is available), the document size is set to
be the average size of the document type in the trace
file. The effect of this assumption is that the experi-
ments do not reflect accurately the bandwidth savings
from stale hits, but rather reflect only the expected
average bandwidth reduction by stale hits.

Third, we assign pseudo IP addresses to requests
that come with client host names rather than IP ad-
dresses. The only reason we need the IP addresses is
to determine which pseudo client emulates which real
client (see the next section). Some traces provide the
client TP address of each request. For traces that do
not provide the client IP address, we assign a pseudo
IP address by splitting the host name into a network
name and a hostid, and assigning numbers to the net-
work name and hostid based on their first appearances
in the trace. This is done to facilitate the setup of the
experiments.

Finally, since the traces do not come with complete
file modification history, our simulation uses synthetic
modification patterns. As explained below, our syn-
thetic modification pattern reflects a bimodal file life
time distribution where 90% of the files are changed
infrequently, and 10% of the files are changed fre-
quently. We choose the bimodal distribution because
it has been observed in the file life time distribution
in many real systems [3, 11], and adaptive TTL works
particularly well under such distribution.

5.3 Simulation by Trace Replay

We measure the performance of adaptive TTL,
polling-every-time, and invalidation by running the
traces through the implemented prototypes in an envi-
ronment emulating the Internet. We pick five worksta-
tions, connected with a fast Ethernet (100Mb/s). One
of the workstations is designated as the pseudo-server,
and the others are pseudo-clients. The workstations
are SPARC-20s with 64MB of main memory running
Solaris 2.4.1.

Pseudo-Server The pseudo-server emulates the
Web server in each of the traces. The workstation
runs the NCSA HTTPD 1.5.1 web server and the Har-
vest server accelerator. On its disk, it also has scaled
copies of all the URL documents in the trace. Due
to disk space limitations, we scale down the size of
each document by a factor of 100, and create a file
of the scaled-down size with the same pathname in
the HTTP document directory. Our calculation of the
bytes of network messages scales back the file transfer
sizes by 100 to reflect the actual amount of traffic in

Ttem EPA SDSC ClarkNet NASA SASK
Trace Duration 1 day(9/29/96) | 1 day(8/22/95) | 10 hours(8/28/95) | 1 day(7/1/95) | 8 days(7/1-8/95)
Trace Records 47,748 28,338 64,078 64,715 52,963
Requests Replayed 40,658 25,430 61,703 61,823 51,471
Number of Files 3787 1661 6574 1667 2129

Avg. File Size 21 KB 14 KB 13 KB 44 KB 12 KB

File Popularity 1642 (8.2) 1020 (12) 680 (8) 3138 (31) 1155 (14)

Table 2: Summary of the traces used in our experiments. The last row, file popularity, measures how popular the
files at different servers are. For each trace, it shows the maximum number of different client sites that requested
the same document (the average is show in parathesis). For example, files at NASA are apparently more popular

than files at other servers.

the network. Though the scaling reduces the client
response time, the effect is the same on all three ap-
proaches.

Pseudo-Clients FEach pseudo-client generates the
requests for approximately one fourth of the real
clients in the trace. Each real client has a clientID,
which is a 32-byte integer concatenating the four bytes
in its IP address. Pseudo-client ¢ handles real clients
whose clientID mod 4 is . A caching proxy (Har-
vest “cached”) runs on each pseudo-client. A separate
program reads every record from the trace file, and if
the real client in the record is handled by the pseudo-
client, generates a corresponding HTTP request and
sends it to the proxy process, then waits for the reply.
The proxy checks if the request URL is in cache, and
if not, forwards the request to the Web server.

Since in reality client sites do not share caches, we
simulate separate caches for individual clients. The
proxy concatenates the real client’s clientID to the
URL before putting the document in cache. That
is, if client z requests document url0, and the proxy
fetches url0 from the server, the proxy puts the reply
as url0Qg in its cache. If client y asks from url0 next,
the request would be a cache miss. However, if client
x asks for url0 again, the request would be a cache
hit. In running the invalidation prototype, the proxy
sends the real clientID along with the GET request
to the server, so that the accelerator can register the
clientID in the site list. The proxy also handles the
invalidation messages to individual real clients.

Timing Coordination in Trace Replay To coor-
dinate the replay of timestamped requests, a time co-
ordinator is introduced to run the simulations in lock
step for every five minutes in the trace file. The coordi-
nator first broadcasts the current simulated time, then
all the pseudo-clients send requests whose timestamps
in the trace file fall in the five minute interval after the

current simulated time. After a pseudo-client finishes
its requests, it sends a reply back to the time coordina-
tor. After collecting all replies from the pseudo-clients,
the time coordinator broadcasts a new simulated time
which is five minutes after the previous one. The time
coordinator also coordinates the modifier process, as
described below.

Document Modification Since the traces do not
contain enough information on the modification his-
tory of the documents, we generate the modifications
ourselves. We use a hot/cold pattern, where 10% of
the documents change frequently, and the rest of the
document have a very long life time. The experiments
treat the cold files as if they do not change during the
simulated period, which is a reasonable approximation
given the relatively short durations of our traces.

In selecting the hot files in the hot/cold pattern, we
make sure that documents of varying degree of popu-
larity are equally sampled. We sort the documents by
their degrees of popularity (i.e. the number of differ-
ent sites requesting them), and pick one out of every
ten files on the list. This is to make sure that the
simulations include the cases of popular files changing
frequently, which we feel is the case for many commer-
cial servers.

A modifier process is run on the pseudo-server to
generate the file changes. Based on the timing infor-
mation sent by the coordinator, the modifier chooses
a random file from the hot files to modify every N
seconds. This modification pattern leads to a geomet-
ric life time distribution for the hot files; N is set so
that the average life time of the hot files is a particular
value (for example, 5 days). For each selected file, the
modifier performs a “touch”, which updates the last
modified time of the file, then a “check-in” of the file,
which notifies the accelerator that the file has been
modified. After the modifier finishes its work for the
five minute interval, it sends a reply back to the time

coordinator.

5.4 Results

Tables 3 through 5 show the performance of the con-
sistency approaches during the replay of the traces.
Shown in the table are the replays of the EPA trace
with average hot file life time of 5 days, the SASK
trace with hot file life time of 1.4 days, the ClarkNet
trace with hot file life time of 5 days, the NASA trace
with hot file life time of 0.7 days, and the SDSC with
hot file life time of .25 days and of 2.5 days. The av-
erage hot file life times are chosen to sample the life
time range from less than a day to over 5 days, which
roughly corresponds to the life time range for hot files
found in other studies [3, 11].

Data are presented in rows. “Hits” lists the number
of client cache hits. “GET Requests” through “Invali-
dations” list the number of messages of different types.
“Reply 200” means the number of replies with status
200 (“document follows”); these are file transfers in
response to a GET request or an “if-modified-since.”
“Reply 304” means the number of replies with sta-
tus 304 (“file not modified”), in response to an “if-
modified-since.” “Total Messages” reports the total
number of messages. The next three rows list bytes
of file transfer messages (“file xfer bytes”), bytes of
control messages (“Ctrl msg bytes”), and total bytes
of messages (“Message Bytes”).

“Stale Hits” reports the number of stale hits in
adaptive TTL. The three rows following it list the
average, minimum and maximum of client response
times. Finally, “Server CPU” and “disk RW/s” are
the average CPU utilization and the average number
of disk reads and writes per second at the pseudo-
server workstation, as reported by iostat (the server
load numbers are only meaningful for comparison pur-
poses). Below, we look at each performance metrics
in more detail.

Cache hits Looking at the number of cache hits ,
we see that the three approaches have fairly similar
numbers in most experiments, except for SASK. To
understand the difference in SASK, we have to look
at the impacts the three approaches have on cache
hits.

Harvest’s implementation of adaptive TTL replaces
expired documents first. Coupled with adaptive
TTL’s conservative estimate of the file’s lifetime, this
policy can lead to undesirable effects. For example,
if a document has just been modified at the server
and then requested by a client, adaptive TTL assigns

10

Trace EPA, 40658 requests
Modification 72 files modified
Approach TTL Polling | Invalidation
Hits 8530 8533 8532
GET Requests 32128 32125 32126
If-Modified-Since 205 8533 0
Reply 200 32128 32136 32126
Reply 304 205 8522 0
Invalidations 0 0 96
Total Messages 64666 81316 64348
File xfer bytes 238MB | 238MB 238MB
Ctrl msg bytes 3.38MB | 5.06MB 3.35MB
Message Bytes 241MB | 243MB 241MB
Stale Hits <11 0 0
Avg. Latency 0.166 0.175 0.158
Min Latency 0.010 0.039 0.010
Max Latency 12.2 12.2 20.1
Server CPU 37.6% 41.6% 38.6%
Server Disk 2.7;3.1 2.6;3.2 2.8;3.3

Trace SASK, 51471 requests
Modification 1148 files modified
Approach TTL Polling | Invalidation
Hits 16456 16565 16268
GET Requests 35015 34906 35203
If-Modified-Since 922 16565 0
Reply 200 35388 35689 35203
Reply 304 549 15782 0
Invalidations 0 0 6028
Total Messages 71874 102942 76434
File xfer bytes 185MB | 187MB 183MB
Ctrl msg bytes 3.91MB | 7.09MB 4.29MB
Messages Bytes 189MB | 194MB 187TMB
Stale Hits < 410 0 0
Avg. Latency 0.124 0.138 0.134
Min Latency 0.010 0.039 0.010
Max Latency 32.1 12.2 107.0
Server CPU 26.0% 30.2% 27.6%
Disk RW/s 37:2.2 | 41,23 A41;2.5

Table 3: Results for EPA and SASK.

Trace EPA SASK | ClarkNet | NASA | SDSC(57) | SDSC(576)
Storage 1.0MB | 621 KB | 1.6 MB | 742 KB | 489 KB 474 KB
Avg. SiteList 4 13 26 6.7 8.3 12.0
Max. SiteList 23 666 103 70 81 503
Avg. Invalidation Time .180 1.15 2.18 295 437 .813
Max. Invalidation Time 1.82 106 8.88 7.45 6.78 50.9

Table 6:

Invalidation costs. SDSC(57) is the SDSC replay with average file life time of 2.5 days, and SDSC(576)

is the replay with the .25-day life time. “Storage” is the amount of memory consumed by site lists at the end of
each trace replay simulation. The average and maximum site list lengths are taken among the site lists of files
that have been modified. Invalidation time is the time it takes the accelerator to send all invalidation messages

for one document modification.

a short life-time to the document. The document is
then among the first to be replaced when cache space is
needed, despite that it was recently brought into cache
and maybe accessed again soon. This effect shows up
in the replay of SASK; examination of simulation re-
sults shows that there are many documents replaced
due to TTL expiration, accounting for the lower hit ra-
tio compared to polling-every-time. Clearly, if adap-
tive TTL is used as the cache consistency protocol,
TTL expiration should not be a factor in determining
whether a document should be replaced.

Invalidation has a beneficial effect on cache hits. In
invalidation, the proxy cache deletes stale documents
upon receiving invalidation messages. This frees up
cache space for fresh documents. Thus, invalidation
tends to have less file transfers than polling-every-
time, though its cache hit count appears lower (be-
cause our cache hit counts include “hits” on stale doc-
uments in the case of polling-every-time).

Number of messages Rows “GET Requests”
through “Invalidations” list the number of network
messages according to their types. Numbers in the
“invalidations” row include both invalidation messages
and their acknowledgements from the clients. All mes-
sages are small control messages except “Reply 200”
messages, which are responses from the server carrying
the document (that is, file transfers).

The tables show that the number of control mes-
sages incurred by adaptive TTL to maintain cache
consistency (that is, if-modified-since messages and
“304” replies) is similar to the number of control mes-
sages incurred by invalidation. The reason is that in-
validation messages are not sent to a client every time
the file is modified, but rather when the file is mod-
ified after the client has requested a copy. Thus, the
number of invalidation messages is proportional to the
times when the client needs to get a new copy of the
file. Since adaptive TTL also sends if-modified-since

11

requests when it guesses that the client needs to get a
new copy of the file, the number of control messages
in the two cache consistency protocols are similar.

Polling-every-time has significantly more control
messages. This is because every cache hit generates
an if-modified-since request, and the majority of such
requests result in “304” replies because the frequency
of file changes are far less than the frequency of cache
hits.

Thus, in terms of total message counts, adaptive
TTL and invalidation are similar, while polling-every-
time has 10% to 50% more messages.

Network bandwidth consumption The tables
show that adaptive TTL and invalidation have very
similar total message bytes, given that their file trans-
fer counts and control message counts are very similar.
As the stale hit count shows, adaptive TTL is very suc-
cessful at keeping stale hit ratio low, and thus has file
transfers similar to the strong consistency protocols.

The tables also show that polling-every-time has 50-
100% more control message bytes, though their con-
tribution to the total message bytes is less than 3%.
In general, control messages are much shorter than
file transfers. However, control message overhead in
polling-every-time increases as the cache hit ratio in-
creases, and can become significant when the cache hit
ratio is high.

Stale hits Though our experiments did not count
them exactly, the number of stale hits in adaptive
TTL is bounded by the difference between the num-
ber of useful “if-modified-since” requests in polling-
every-time and that in adaptive TTL (a useful “if-
modified-since” request is the one that results in a file
transfer). Assuming that all cache hits in adaptive
TTL are cache hits in polling-every-time, the differ-
ence is an upper bound on the number of stale hits (it
is not exactly the number of stale hits because cache

Trace ClarkNet, 61703 requests
Modification 40 files modified
Approach TTL Polling | Invalidation
Hits 6102 6119 6094
GET Requests 55601 55584 55609
If-Modified-Since 13 6119 0
Reply 200 55601 55611 55609
Reply 304 13 6092 0
Invalidations 0 0 424
Total Messages 111228 | 123406 111642
File xfer bytes 503MB | 503MB 503MB
Ctrl msg bytes 5.95MB | 7.20MB 5.99MB
Messages Bytes 509MB | 510MB 509MB
Stale Hits < 27 0 0
Avg. Latency 0.204 0.210 0.202
Min Latency 0.010 0.039 0.010
Max Latency 15.0 13.8 12.2
Server CPU 38.3% 40.4% 38.1%
Disk RW/s 3.6;3.4 | 3.8;3.5 3.8;3.5
Trace NASA, 61823 requests
Modification 144 files modified
Approach TTL Polling | Invalidation
Hits 9740 9758 9754
GET Requests 52087 52069 52073
If-Modified-Since 113 9758 0
Reply 200 52098 52110 52073
Reply 304 102 9717 0
Invalidations 0 0 466
Total Messages 104400 | 123654 104612
File xfer bytes 1.31GB | 1.31GB 1.31GB
Ctrl msg bytes 5.96MB | 8.01MB 5.98MB
Messages Bytes 1.32GB | 1.32GB 1.32GB
Stale Hits < 30 0 0
Avg. Latency .188 .195 184
Min Latency 0.010 0.039 0.010
Max Latency 13.9 12.2 20.4
Server CPU 32.6% 36.1% 34.4%
Disk RW/s 25:2.5 | .24;2.6 25;2.8

Table 4: Results for ClarkNet and NASA.

12

Trace SDSC, 25430 requests
Modification 57 files modified
Approach TTL Polling | Invalidation
Hits 4907 4907 4905
GET Requests 20523 20523 20525
If-Modified-Since 239 4907 0
Reply 200 20535 20549 20525
Reply 304 227 4881 0
Invalidations 0 0 248
Total Messages 41524 50860 41298
File xfer bytes 263MB | 263MB 263MB
Ctrl msg bytes 2.39MB | 3.38MB 2.36MB
Messages Bytes 265MB | 266MB 265MB
Stale Hits <14 0 0
Avg. Latency 0.160 0.173 0.165
Min Latency 0.010 0.038 0.010
Max Latency 12.2 12.2 12.2
Server CPU 34.1% 35.6% 32.7%
Disk RW/s 94:2.3 | 1.4;2.0 1.0;2.2
Trace SDSC, 25430 requests
Modification 576 files modified
Approach TTL Polling | Invalidation
Hits 4904 4907 4847
GET Requests 20526 20523 20583
If-Modified-Since 572 4907 0
Reply 200 20595 20614 20583
Reply 304 503 4816 0
Invalidations 0 0 2190
Total Messages 42196 50860 43356
File xfer bytes 264MB | 264MB 264MB
Ctrl msg bytes 2.47TMB | 3.38MB 2.57TMB
Messages Bytes 266MB | 267MB 266MB
Stale Hits < 22 0 0
Avg. Latency 0.172 0.177 0.186
Min Latency 0.010 0.038 0.010
Max Latency 8.7 8.6 51.6
Server CPU 33.6% 36.7% 34.7%
Disk RW/s 92:2.5 | .72:2.2 65:2.3

Table 5: Results for SDSC with two average file life

times.

hits under polling-every-time maybe cache misses in
adaptive TTL, because of adaptive TTL’s eviction of
TTL-expired documents). This upper bound on stale
hits is listed in the tables.

The results show clearly that adaptive TTL is very
successful at keeping stale hit ratio low, most of the
time under .1% and always less than 1%. In other
words, adaptive TTL does not save much network traf-
fic compared to invalidation, but it also keeps the stale
hit ratio very low. Invalidation still has the advantage
of providing the guarantee that if the propogration
time for invalidation messages is bounded by ¢ seconds,
clients never see documents more than ¢ seconds stale.
Because adaptive TTL adjusts the time-to-live period
according to the age of the file copy, it is difficult to
provide such guarantee.

Client response times The results show that con-
tacting the server at every cache hit costs polling-
every-time a high minimum latency and a higher av-
erage latency. Invalidation’s average latency is similar
to that of adaptive TTL, except when the number of
invalidation messages is very high.

The numbers show that invalidation has a signifi-
cantly larger worst-case latency, that is, a request from
the browser can be stalled for a long time. Compar-
ing the data with those in Table 6 shows that this is
mainly due to the fact that, in our current implemen-
tation, the accelerator does not accept new requests
until all invalidation messages for a document have
been sent via TCP. A more fine-tuned implementation
would have a separate process sending the invalidation
messages, thus avoiding the maximum latency prob-
lem. On the other hand, the numbers do show that
sending invalidation messages via TCP takes time, and
the invalidation protocol needs to either limit the num-
ber of invalidation messages for each document (see
Section 6), or use reliable multicast schemes.

Since the experiments are done in the local area
network, how would the relative comparison of the
response times change in the real Internet? We can
estimate the trend by looking at the number of client-
server interactions in the three approaches. Polling-
every-time incurs a server interaction upon every re-
quest, adaptive TTL incurs fewer “if-modified-since”
interactions, and invalidation incurs “invalidate” in-
teractions. Thus, polling-every-time will have a much
worse average response time in the Internet. How-
ever, “invalidate” interactions do not directly impact
client response times. The proxy’s action upon re-
ceiving an invalidation message is simple: evicting the
stale document. As long as sending invalidations is

13

decoupled from handling regular HTTP requests at
the server site, the only impact sending invalidations
has on client response times is that it increases server
CPU load and consumes kernel resources for network-
ing (such as socket descriptors), and this may in turn
increase response times when the server is overloaded.
However, the number of “if-modified-since” requests
incurred by adaptive TTL is similar to the number
of invalidation messages in invalidation, and the “if-
modified-since” requests burden the server in similar
fashion. Thus, we believe that in the real Internet,
invalidation would still have similar client response
times as adaptive TTL.

Server loads The last two rows in tables 3 to 5 show
the average server CPU utilization and disk read /write
per second during the trace replay. Looking at the
numbers, we see that polling-every-time generally has
a higher server CPU utilization, especially when the
proxy cache hit ratio is high. This reflects the CPU
cost of handling “if-modified-since” requests at the
server. Invalidation tends to have a slightly higher
CPU utilization than adaptive TTL, but the differ-
ences are mostly within 3%. The disk loads are similar
since all three approaches log incoming requests.

Table 6 shows the invalidation costs. The numbers
show that the storage consumed by site lists is actu-
ally quite small (on the order of 20 to 30 bytes per
request), and the main concern is the time for send-
ing invalidation messages. Comparing the two runs of
SDSC, we see that when more files are modified, the
chance that a file with a very long site list is modified
increases, and thus the maximum and average invali-
dation times increase.

How would the results change in the Internet?
Clearly, the delay for sending invalidations using TCP
is longer, which means the invalidation approach oc-
cupies longer memory resources used for network pro-
tocol handling and incurs more CPU overhead. How-
ever, the delays for receiving “if-modified-since” re-
quests and sending “304” replies are also longer, with
the same effect on the server load of adaptive TTL
and polling-every-time. Thus, we expect the relative
comparison of CPU and disk utilization to stay mostly
unchanged.

Summary To summarize, our experiments show:

o Adaptive TTL works very well at keeping stale hit
ratio low, but strong consistency protocols such
as inwvalidation do not cost more in comparison.
Whether it is in terms of cache hits, network traf-
fic, response time, or server loads, invalidation

performs quite similarly to adaptive TTL, while
providing strong cache consistency.

o Invalidation is a preferred method for maintaining
strong consistency than polling-every-time. Ex-
cept in the extreme case of file lifetimes on the or-
der of minutes, cache hits occur much more often
than file modifications. Thus, invalidation incurs
much fewer network transactions than polling-
every-time. It also improves cache utilization by
deleting stale copies, and incurs less server CPU
overhead.

e Sending a large number of invaelidation messages
via TCP can lead to long delays. If not imple-
mented carefully, the delay can cause a client re-
quest to stall for a long time.

The results suggest that invalidation should be used to
maintain strong cache consistency in the Web. How-
ever, a simple invalidation scheme has a scalability
problem, as evidenced by the long invalidation time.
In section 6, we introduce a two-tier lease-augmented
invalidation scheme that addresses the problem.

5.5 Limitations in the Experiments

There are many limitations in our experiments. First,
the trace replay is performed in a local area network
instead of the Internet. The effect of this limitation
on client response times and server loads has been dis-
cussed above. The number of cache hits, network mes-
sages, and stale hits are not affected by the trace re-
play environments. Second, we use server traces in the
experiments, instead of client or proxy traces. Since
requests seen by the server are partially filtered by
client caches, server traces show a lower hit ratio at
the client sites. This means that, in reality, polling-
every-time performs even worse than the results shown
here. However, we expect the relative comparison be-
tween invalidation and adaptive TTL to stay the same,
since the two approaches are less affected by client hit
ratios. Finally, the traces are for short periods and
relatively old. However, we believe the experiments
still give us valid insights on the comparison of the
three consistency approaches.

6 Scalability Issues

There are a number of scalability concerns in the in-
validation approach, including the storage needed to
keep track of client sites for each document, the CPU
overhead to search and update the site lists, and the

14

time to send invalidation messages. Results in Sec-
tion 5.4 show that for short periods (from 10 hours to
8 days), memory consumption and CPU overhead do
not pose serious problems to invalidation. However,
site lists grow linearly with the number of requests
seen by the server, which in turn increases linearly
with time. Thus, unless some measure is taken, the
size of site lists can grow to be unmanageable.

The solution is to augment the simple invalidation
scheme with leases. Every document shipped from the
server to a client carries a lease. The server promises
to notify the client via invalidation if the document
changes before the lease expires. The client promises
to send a “if-modified-since” request to the server
when the lease expires, to validate the freshness of
its copy. Thus, the server only needs to remember
clients whose leases have not expired. For example,
if the lease is three days, the total size of site lists
is bounded by the total number of requests seen by
the server for the last three days. The performance
of the invalidation approach reported in the last sec-
tion can be interpreted as the performance of a lease-
augmented invalidation scheme with the lease equal to
the duration of each trace.

A second optimization further reduces the size of
site lists and the number of invalidation messages.
From the server’s point of view, the benefit of site
lists and invalidation messages is reduced “if-modified-
since” request traffic. Thus, the server would like to
remember only those clients that are truly interested
in its documents and view the documents multiple
times. To achieve this goal, the server assigns a very
short lease (possibly zero) to regular “GET” requests,
and assigns the regular lease to “if-modified-since” re-
quests. The scheme trades extra “if-modified-since”
requests for filtered site lists; only those clients that
ask to view the document for the second time are re-
membered by the server. We call this scheme “two-tier
lease-augmented invalidation.”

The two-tier approach is quite effective at reduc-
ing site list sizes. For example, at the end of the
8-day SASK trace, the site lists have only 5021 en-
tries, compared to 29106 entries under the simple in-
validation scheme. The maximum length of the site
list of a document is reduced from 1155 entries to
521 entries. The reduction is achieved with 5021 ex-
tra “if-modified-since” requests, much less than the
16565 requests generated by polling-every-time (Ta-
ble 3). Other traces have similar results.

Variable Leases The two-tier approach is only a
special case of a general technique in which the server

varies the lease attached with each reply to suit its own
needs. Essentially, a lease allows the server to trade
the frequency of “if-modified-since” requests with the
overhead of remembering the client and sending invali-
dation messages. The frequency of “if-modified-since”
requests from a client cache depends on the frequency
of cache hits to the document at the client. Thus,
there are three factors that affect the choice of an op-
timal lease for each reply: the expected frequency of
cache hits at the client site, the expected life-time of
the documents (i.e., time till next modification), and
the current length of the site list of the document.

Various adaptations can be designed based on each
of the factors. For example, the above two-tier ap-
proach changes the leases based on the first factor.
Another similar approach is for the server to give out
replies with non-zero leases only to Web proxies (which
act as gateways between many users and the server).
Considering the second factor, the server can monitor
the modification history of the document, shorten the
leases when the document becomes active (i.e., mod-
ified often), and increase the leases when the docu-
ment becomes dormant. Considering the third factor,
the server can reduce the leases proportionally as its
available storage runs out, and increase the leases as
more storage becomes available. The server can also
revoke a lease given to a client (thereby deleting all
information it keeps about the client) by sending the
client an invalidation of the document. Based on the
protocol, the client will contact the server upon next
access.

Clearly, there is a rich design space for variable-
lease algorithms. We have only characterized it based
on the factors that determine the optimal leases. A
full investigation requires a large collection of Web
access traces unfiltered by browser caches and proxy
caches. We are still in the process of collecting the
traces, and plan to study the best combination of the
above adaptation techniques through simulation and
implementation.

Finally, proxy caches and browser caches should use
different consistency protocols. Browser processes are
started and stopped by the user. WWW proxy pro-
cesses are expected to be always up and running. Since
the invalidation approach requires client processes to
be able to receive invalidation messages at any time, it
is more appropriate for maintaining strong cache con-
sistency between proxy caches and Web servers. If the
browser wants to keep its cached copies strongly con-
sistent, it should communicate with its proxy. That
is, the proxy acts as a receiver for invalidation mes-
sages to contents in browser caches, and retains the

15

messages to be queried by browsers. The proxy re-
tains all invalidation messages received in the last N
days, and the browser is asked to check the fresh-
ness of all its cached documents at least once every
N days. Since many companies and Internet Service
Providers already use or are considering to use Web
proxies, the majority of browser processes will be be-
hind Web proxies. For browsers that directly connect
to the Web server, polling-every-time can be used to
maintain strong cache consistency if desired.

7 Conclusion and Future Work

We have analyzed and compared the performance
of three consistency maintanence approaches: adap-
tive TTL, polling-every-time, and invalidation. Our
results show that invalidation performs similarly to
adaptive TTL (within 3% most of time), in terms
of network traffic, average client response times, and
server CPU loads. Polling-every-time, on the other
hand, leads to significantly more network messages
and higher response times than adaptive TTL. Thus,
it is feasible to maintain strong cache consistency for
the Web, and invalidation is the right approach for it.
We have also described a two-tier lease-augmented in-
validation scheme that addresses the scalability issues
in invalidation.

There are many limitations in this study. In addi-
tion to what we listed before, we have not considered
many other concerns that may dictate the consistency
approach taken by a Web server. Documents are not
all equally important to the user. Not all Web servers
want to keep its copies consistent across the Internet.
What we have shown is that, for those that do care, in-
validation is feasible, and it is a better approach than
TTL or client polling. For those commercial Web sites
that want to control the accesses to its contents, inval-
idation should be merged with other hit-metering pro-
tocols [15] to provide both the benefits of caching and
the availability of access control. Finally, for clients
that are behind a firewall, invalidation should operate
between the Web server and the proxy running at the
firewall machine (many companies run Web proxies
for the exact reason of handling Web traffic through
the firewall); the proxy then relays the invalidation
messages to the clients inside the firewall.

Many future work remains. We plan to improve
the implementation of the invalidation protocol, look-
ing into UDP-based or multi-casting schemes that
reduce the messaging overhead. We also plan to
implement the two-tier lease-augmented invalidation
scheme, and improve failure handling in the consis-

tency approach. We hope to provide a highly-efficient
and high-performance implementation of invalidation
protocols that can be widely deployed in the Internet.

Acknowledgments

C. Y. Chan and Rahul Kapoor participated in the im-
plementation of the initial prototype of invalidation in
Harvest. The study benefited much from the discus-
sions with Jeff Mogul, Stefanos Kaxiras, James Good-
man, David Wood and Mark Hill. We are indebted to
the Wisconsin Wind Tunnel group for letting us to run
the simulations on the Wisconsin Clusters of Work-
stations. Gideon Glass, Doug Burger, Dan Boneh and
John Edwards provided helpful feedbacks on the early
drafts of the paper. Finally, we would like to thank
the anonymous referees for their comments.

References

[1] Thomas E. Anderson, Michael D. Dahlin,
Jeanna M. Neefe, David A. Patterson, Drew S.
Roselli, and Randolph Y. Wang. Serverless net-
work file systems. In Proceedings of 15th ACM
Symposium on Operating Systems Principles, De-
cember 1995.

Mary Baker, John H. Hartman, Michael D.
Kupfer, Ken W. Shirriff, and John Ousterhout.
Measurements of a distributed file system. In
Proceedings of 13th ACM Symposium on Operat-
ing Systems Principles, pages 198-211, October
1991.

A. Bestavros. Demand-based resource alloca-
tion to reduce traffic and balance load in dis-
tributed information systems. In Proceedings of
the 1995 IEEE Symposium on Parallel and Dis-
tributed Processing, October 1995.

Matthew A. Blaze. Caching in Large-Scale Dis-
tributed File Systems. PhD thesis, Princeton Uni-
versity, January 1993.

[5] John B. Carter, John K. Bennett, and Willy
Zwaenepoel. Implementation and performance of
Munin. In Proceedings of 18th ACM Symposium
on Operating Systems Principles, pages 152-164,
October 1991.

[6] V. Cate. Alex - a global file system. In Proceed-
ings of the 1992 USENIX File System Workshop,
pages 1-12, May 1992.

16

[7] A. Chankhunthod, P. Danzig, C. Neerdaels,
M. Schwartz, and K. Worrell. A hierarchical in-
ternet object cache. In Proceedings of the 1996
USENIX Technical Conference, San Diego, CA,
January 1996.

[8] P. B. Danzig, R. S. Hall, and M. F. Schwartz. A
case for caching file objects inside internetworks.
In Proceedings of SIGCOMM ’93, pages 239-248,

1993.

Michael Franklin. Client Data Caching: A Foun-
dation for High Performance Object Database
Systems. Kluwer Academic Publishers, 1996.

Michael J. Franklin, Michael J. Carey, and Miron
Livny. Transactional client-server cache con-
sistency: Alternatives and performance. ACM
Transaction on Database Systems, 1997.

[11] James Gwertzman and Margo Seltzer. World-
wide web cache consistency. In Proceedings of the
1996 USENIX Technical Conference, San Diego,

CA, January 1996.

John L. Hennessy and David A. Patterson.
Computer Architecture A Quantitative Approach.
Morgan Kaufmann Publishers, Inc., 1990.

John H. Howard, Michael Kazar, Sherri G. Me-
nees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J. West.
Scale and performance in a distributed file sys-
tem. ACM Transactions on Computer Systems,
pages 6(1):51-81, February 1988.

Stefanos Kaxiras and James Goodman. Imple-
mentation and performance of the GLOW kilo-
processor extensions to sci on the wisconsin wind
tunnel. In Proceedings of the 2nd International
Workshop on SCI-Based High-Performance Low-
Cost Computing, March 1995.

[15] Paul Leach and Jeff Mogul. The HTTP hit-
metering protocol. Internet draft, November
1996. URL ftp://ieft.org/internet-draft/draft-

mogul-http-hit-metering-00.txt.

Kai Li and Paul Hudak. Memory coherence in
shared virtual memory systems. ACM Trans-
actions on Computer Systems, 7(4):321-359,
November 1989.

[17] A. Luotonen, H. Frystyk, and T. Berners-Lee.
CERN HTTPD public domain full-featured hy-

pertext/proxy server

with caching. Technical report, Available from
http://www.w3.org/hypertext/ WWW /
Daemon/Status.html, 1994.

[18] Michael N. Nelson, Brent B. Welch, and John K.
Ousterhout. Caching in the Sprite file system.

ACM Transactions on Computer Systems, pages
6(1):134-154, February 1988.

[19] R. Sandberg, D. Boldberg, S. Kleiman, D. Walsh,
and B. Lyon. Design and implementation of the
Sun network filesystem. In Summer Useniz Con-
ference Proceedings, pages 119-130, June 1985.

[20] D. Wessels. Intelligent caching for the world-wide
web objects. In Proceedings of INET-95, 1995.

[21] K. Worrell. Invalidation in large scale network
object caches. Technical report, Master’s Thesis,
University of Colorado, Boulder, 1994, 1994.

Author Information

Pei Cao received her Ph.D. degree from Princeton
University in 1995 and is currently Assistant Profes-
sor of Computer Science at University of Wisconsin-
Madison. Her research interests are in operating sys-
tems, distributed systems including World-Wide Web,
and computer architecture. She is currently a member
of the IEEE Computer Society Task Force on Inter-
networking.

Chengjie Liu received his MS degree in Com-
puter Science from University of Wisconsin-Madison
in 1997. He is currently a technical staff member at
Sun Microsystems, Inc. His research interests include
distributed systems and performance measurements.

17

