AppearedWorkshop on Compiler Support for System SoRArCSSS’9% Tucson, Arizona, February 1996.

Instruction Scheduling and Egutable Editing

Eric Schnarr and James R. Larus

Computer Sciences Department
University of Wisconsin—Madison
1210 West Dayton Street
Madison, WI 53706 USA
(608) 262-9519
{schnarr,larus}@cs.wisc.edu

February 2, 1996

Modern micoprocessos ofer moe instruction-leel pamllelism than most mgrams and
compiles can curently eploit. The esulting disparity between a nfage’s peak and
actual performancewhile frustating for computer ahitects and kip manufactuers,
opens the xxiting possibility of low-cost orven no-cost instrumentation for measur
ment, simulation, or emulation. Instrumentation code tlatetes in mviously unused
processor cycles isfettively hidden. These migrocessos also pose another ginlem,
which arises fom the malgine-specific instruction seduling necessary for high perfor-
mance Different implementations of an dhuitectue, sud as the many x86 @ressos,
may benefit bm diferent shiedules, whic either equires multiple gecutables or a way
to reshedule &isting poograms for nev madines.

We investigated both opportunities by adding an instructidredaler to the EELxecut-
able editing libary. On first-genegation, 2 and 3-way supstalar SRRC ppcessos, this
simple local steduler hid an avege of 17% (8—22%) of theverhead cost of pfiling
instrumentation in the SPECINT bémearks and an avage of 28% (5-53%) of the @r
filing cost in the SPECFP bemmarks. On a seconcegegtion, 4-way supecalar
UltraSFARC, the deeduler hid an avexge of 16% (8—21%) of the @iiling cost in the
SPECINT bertumarks and 65% (7—136%) in the SPECFP bemarks. W also used the
sdcheduler to estiedule uninstrumented codeepiously compiled for the SuperSRC.
Sdeduling that taks into account the UBSFARC's out-of-oder execution impoved the
SPECFP bertumarks by an avege of 9% (1-33%).

1 Intr oduction

Modern microprocessorsfef more instruction-kel parallelism than most programs and compilers can
currently exploit. For example, the most recent generation of RISC chips—the Digital Alpha 21164, IBM/
Motorola Pever PC 620, SGI R10000, and Sun UltraSparc—araylsuperscalar processors the@ite

up to four independent instructions in a singlele. Even recent high-end x86 processors—the Intel Pen-
tium Pro and AMD K5—are 3-ay superscalars. Unfortunatebkploited instruction-leel parallelism

lags fir behind the hardave. Cetanwic and Bhandarkar found that programs running on ap-super-

scalar Digital Alpha 21064 could dual issue only 20-50% of their instructions, which means that in 67—
90% of gcles, only one instructiorxecuted [1]. SimilarlyDiep et al. found that on a 4aw superscalar
Paver PC 620, four ingger SPEC benchmarks completed aarage of 1.05-1.25 instructions pgcle

and three floating-point SPEC benchmarks completederage of 1.0-1.9 instructions psrcte [3].

This lage disparity between a machisgdeak and actual performance, while frustrating for computer
architects and chip maradturers, opens theating possibility of lav-cost or ®en no-cost instrumenta-
tion for measurement, simulation, or emulation. Scheduling reduces instrumestpgorgied cost by

1. Copyright 0 1996 by Eric Schnarr and James Larus.
Measurements in this paper are preliminary and may change slightly indegiems.

putting instrumentation instructions in pieusly unused processoydes. Instrumentation code thaiee
cutes in unusedycles is dfiectively hidden.

Program instrumentation has been used forymamposes, including performance measurement, com-
puter architecture simulations, and saftey fult isolation and error detection. Although direct instrumen-
tation typically incurs lver cost than alternat approaches, the increased program running time caused
by instrumentation is occasionally a limitirecfor and is alays an anngance. At onexdreme, in parallel

or real-time systems, instrumentatiorethead can perturb system bébaby introducing time dilation.

Even for less demanding applications, the cost of program profiling or error detection is currently too high
for production codes. Prmus instrumentation systemspended considerablefeft to formulate dicient
instrumentation code sequences [10], place them parsimoniously [1], and insert instrumentation without
affecting a prograng behaior [8]. However, few systems attempted tg@oit instruction-leel parallelism

by scheduling the instrumentation code into a program.

This paper describes a simple instruction scheduler that we added to the EEL pregratabée editing
library [9]. We applied the scheduler to a common program instrumentation, which records a basc block’
execution frequencwith a fourinstruction sequence. On the dual-issypaiSRARC, scheduling hides
13-21% of the werhead of profiling the SPECINT benchmarks (compiled with the Sun Compiler) and 5—
53% of the werhead from the SPECFP benchmarks (with cice@ion). The results on the 3awSuper-
SFARC are similar as scheduling hides 8-22% of the SPECIN&rbead and 6-48% of the SPECFP
overhead (onexeeption). The results on the awUltraSARC are similar to the other twmicroarchi-
tectures for the SPECINT benchmarks, as scheduling hides 8-21% of profdihgad. On the SPECFP
benchmarks, scheduling iarfmore dictive and hides arvarage of 65% (7—136%) of the profilinges-

head (one xxeption). In the future, these results may imprand scheduling becomeea more attrac-

tive, with a more accurate and aggressiinstrumentation scheduler and more aggressi
microarchitectures thatfefr further opportunities to hide instrumentation.

Beyond hiding instrumentation, superscalar processdes ahother opportunity to combine instruction
scheduling with wecutable editing—which we pridusly mentioned in passing [9]. Modern, aggnessi
microprocessors require careful, machine-specific instruction scheduling tueattee highest perfor-
mance. A computer architecture mayéaaeral implementations whose microarchitectures and schedul-
ing constraints diér widely Some of these implementations may be older machinestibers may be
contemporarycompeting products. Considéor example, the state of the high-end x86rid shavn in
Tablel. These fie high-performance processors$eofa wide range ofvailable parallelism and out-of-
order execution possibilities, and each processor presentwitset of scheduling rules and constraints.

Out of Order Rename

Processor Dispatch Rate | Function Units Buffer Registers
Intel Pentium 2 3 - -
Intel Pentium Prg 3 5 40 40
AMD K5 2-3 7 16 16
Cyrix M1 2 2 — 32
NexGen Nx586 1 4 14 22

Table 1:High-end x86 processors [4]. Dispatch rate is the number of instructions that can be issued
per g/cle. Function units is the number of independent units on the chip. Out of offderidthe

size of the instruction reordeuntfer (in instructions). Renamegisters is the number ofgisters
available for rgister renaming.

We also used EE& instruction scheduler to measure the benefitsstiuction esdieduling where fully
compiled (and likly scheduled) lgacy programs are rescheduled to optimize for gedéht microarchitec-
ture. In &periments on SMRC processors, rescheduling yed beneficial when the wemicroarchitec-
ture ofered features that were wadlable on the older machine. On the UltrABE, rescheduling

2

improved the performance of programs\poeisly compiled and optimized for the SupeA& by up to

33% (average speedup of 9% for the SPECFP benchmarks) by scheduling that accounted for out-of-order
execution on lgel-1 cache misses. Rescheduling for theenlSRARC produced no speedup oreeage (-3

to 5%), because there arevfdifferences between this machmeicroarchitecture and the SupeARE.

To implement instruction scheduling, waended EEL with the specific details of a processmicroar-
chitecture. EEL uses a concise, highelespecification describing a machiméristruction set architecture.
A tool called Span [9] translates these specifications imteautable C++ code, which becomes the part
of EEL that decodes and interprets machine instructions. As part ofdtkswe extended the architecture
specification language to capture salient features of a mashineroarchitecture and used this informa-
tion to drve an instruction scheduler in EEL. This paper describes this languagsien and he EEL
uses the information to schedule instructions.

The paper is @anized as folles. Sectior? describes relatedosk. Sectior3 presents thexéensions to

Spavn and shws hav they represent the information necessary for instruction scheduling. Séction
describes oungeriments on scheduling program instrumentation and rescheduling uninstrumented codes
for different taget microarchitectures. Finallgections concludes.

2 Related Work

This paper @ends seeral areas of pwéous work. Patil and Fischer used a fitifent form of parallelism to
hide instrumentationwerhead. On a multiprocessahey ran on a second processor the code to check
pointer and array accesses [11]. The additional processor reduced theepexerhead of error checking

by 2-55%. Our approach is more widely applicable since instructehgarallel processors are, or soon
will be, ubiquitous and because instructioneleparallelism permits a tighter coupling between program
and instrumentation.

Proebsting and Fraser described ditieht algorithm for detecting structural hazards in single pipeline
processors and a language for concisely describing these machines [12]. Our description language is more
verbose, bt it also captures the syntax and semantics of machine instructions and scheduling constraints
for superscalar machines. Our algorithm is also |d&sezit, lut more general since itorks for supersca-

lar processors as well as single pipeline machines.

Gyllenhaal described the machine description language (HMDES) used in the lllinéi€TMmpiler

[5]. This language, li& Spavn’s description language, describes instruction encoding and scheduling con-
straints. HMDES describes instructions froraesal perspectes, which together pvide the basic infor-
mation for instruction schedulers: instruction latencies and resource usage Smaesents this
information more concisely as a single semantigression for a group of instruction, which describes
when these instruction acquire and release resourcesn®@scriptions also capture instruction seman-
tics and binary encodings.

Schuette detected processor errors in unused instruction slots on a VLIW processor [14]. His amntrol-flo
monitoring inserted check operations into unfilled VLIW instructions. This is similar tesEE&chedul-

ing of instrumentation,xeept that EEL also reschedules the original instructions and can handielifran
ferent forms of instrumentation. Because a VLIW hasdigize instructions, Schuetehstrumentation

did not increase code size. On a supersciastrumentation code has a secondafgceinf reducing per-
formance by increasing instruction cache misses.

3 Spawn Extensions

Any executable editing tool depends on an accurate description of a macghstaiction set architecture.

While most parts of a tool such as EEL are machine independent, it still must disassemble, analyze, and
modify binary machine instructionsa$t experiences withecutable editing tools demonstrated that the

code that manipulates binary instructions is simplé tédious and dicult to delug. For example, in the

3

profiling and tracing tool gpt [8],ver 2,000 lines of hand-written C codrist to manipulate binary
instructions. Subtle errors in this code werdidlift to detect by inspection and often lay undisgzed for
months before a meinput executable gercised them.

To remedy this problem and n&EEL portable across tBfent processors, it uses a concise description of
a machine instruction set architecture written in a higbelearchitecture description language. These
descriptions are short—the ARC is 333 lines—and similar in form to the descriptions often found in
architecture manuals, which meskthem easier taailidate. Errors werlooked in a code rgew are also
more likely to arise during testing, since a single description of an instrig#mtoding and semantics
underlies may different EEL instruction manipulation functions andfetént instructions often share
common code in the description file.

Spawvn [9] is the tool that carerts an architecture description into the C++ code used by EEWNnSpea-
lyzes descriptions written in SADL (Spa Architecture Description Language) to detect errors and
extract syntactic and semantic information needed by EELwSpizen reads an annotated C/C++ file and
replaces its annotations by appropriate code produced using informetiacted from the description.
The resulting C/C++ file is compiled and lekinto EEL to preide eficient functions for manipulating
binary instructions.

Instruction scheduling requires more detailed information than the architectural descriptionfited suf
previously for EEL. In particulgrscheduling requires a model of a machimeicroarchitecture, especially

its execution pipeline. Since a microarchitecture is specific to a particular processor implementation, this
level of detail entails writing mgnmore descriptions, so each description should be concise and easy to
modify. To support instruction scheduling, weended SADL to include pipeline timing and resource uti-
lization information. This n& information can be combined with the instruction semantic description to
provide a complete map of an instructisrictions as it mes through a processs®xecution pipeline.

Ideally, one would like to separate a microarchitecture-specific description from a general architecture
description. SADL only partially accomplishes this goal by supporting functions that encapsulate some of
the timing and resource usage characteristics. The coupling of architectural and resource allocation infor-
mation is necessary to permit 8gato determine when gester \alues are read and when resw@tues

become visible. On the other hand, oxperience modeling theyperSRRARC, SuperSRRC, and UltraS-

PARC processors shad that the architecture semantics are easily carviediato a description of a dif-

ferent microarchitecture, despitedarchanges in the pipeline description.

A (micro)architecture description, written in SADL, describasss aspects of a machiseirchitecture:
instruction encodings, instruction semantics, architectugitezs, and pipeline resources. The first three
aspects (encodings, semantics, amsters) are described elgaere [9]. Sectio3.1 describes ho pipe-

line resources and timing operators are combined with instruction semantics to encode detadsaf-an e
tion pipeline. Sectio.2 describes o an instruction scheduler uses this information to predict pipeline
behaior.

3.1 Describing an Execution Pipeline

The first part of a pipeline description names and enumerates theaharthgources—géster ports,

ALUs, etc. Each resource is described by a unit name aald@ nepresenting the number of copies of this
resource that reside in the proces&agurel shavs some of the units defined for th@&S lyperSRARC
microarchitecture [13]. This processor is a dual-issue superscalar with an ALU for arithmetic operations

unit Group 2 /[l number of simultaneous instructions
unit ALU 1, ALUr 2, ALUw 1 /I ALU capacities
unit LSU 1, LSUr 2, LSUw 1 /l LSU capacities

Figure 1:Functional unit definitions used in describing tH@3S lyperSRRARC execution pipeline.

4

val multi is AR Group, () // potential dual issue instructions

val single is AR Group 2, () /I cannot be dual issued
register untyped{32} R[36] /I general purpose registers (GPR)
/I Aliases used to read and write from the GPR
alias signed{32} R4rl[i] is AR ALUr, RJi] /I ALU read from GPR
alias signed{32} R4wl[i] is AR ALUw, RJi] /I ALU write to GPR
/I Defining arithmetic and logical operators
val[+ - & | A
is (\op.\a.\b. D 1, AALU, x:=opab, D 1, RALU, x)
@[add32 sub32 and32 or32 xor32]
/I Defining shift operators
val[<< >> >>
is (\op.\a.\b. D 1, A ALU, isShift, x:=opab, D 1, R ALU, X)
@[sll32 srl32 sra32 |

/I Get the second source operand or immediate value
val src2 is iflag=1 ? #simm13 : R4r[rs2]

/l Semantic description of the instructions add, sub, and sra

sem [add sub sra]
is (\op. multi, s1:=R4r[rs1], s2:=src2, R4w[rd]:=op s1 s2)
@[+ - >>]

Figure 2: Semantic description of the SRC instructionsadd, sub, andsra. The resource usage and
timing information are for the @SS lyperSRARC microarchitecture.

and an ALU for memory address calculations (LSU). Aber andALUw units in the figure represent read
and write ports to the gester file for the arithmetic ALU. Similarlythe LSUr andLSUw units are ports
used by the LSU.

The second part of a description specifies the pipelinevimehat an instruction and is combined with the
instructions semantic description. The SADL commamdsR, AR, and D describe when units are
acquired and released and when the pipelinarambs. The commard<unit> [<num>] acquires<num>
copies of the unit, or stalls the pipeline if not enough copies of the unitalabde. If<num> is omitted,

it is assumed to be R <unit> [<num>] releasescnum> copies of a unit. The commamR <unit>
[<num> [<delay>]] acts like theA command, bt it also releasesnum> copies of the same unit after the
instruction eecutes foxdelay> cycles.AR is handy for acquiring a resource for afixamount of time,
without haring to doR’s later in a semantixpression. The commariil[<delay>] advances the pipeline
by <delay> cycles.

An instruction scheduling algorithm must also Wnwhen rgisters are read and written. When an instruc-
tion reads a gister the description must record the pipelipele in which the read occurred. Writes are
more dificult, since most pipelined implementations fard \alues between instructions [6]. When a
value is computed, Spa records theycle in which the computation finished. When thague is written

back into a rgister Spavn tracks theycle in which the alue was computed, not when theigter assign-

ment took place. Therefore, a SADL instruction description must place the computation of an ingruction’
resultalue in the gcle in which the &lue becomesvailable to the ne instruction.

Figure2 illustrates the semantics and pipeline b@vraof three lyperSRRC ALU instructions. This
description contains geral types of statementgl statements, which act ékmacro definitionsiegister
declarations, which define the architecturgisters;alias statements, which define alternatemsgeof rey-
isters (or memory); ansem statements, which bind semantigpeessions to instruction mnemonics. The

5

effect of thesem statement abe is to bind the instructiorsld, sub, andsra, to their semanticxpressions
which: (1) restrict the pipeline to at most 2 simultaneous instructions; (2) acquire one ALtiwead
ports and read thegister \alues; (3) adance the pipeline by lycle and release the ALU read ports; (4)
acquire the ALU functional unit and compute the instructioasult alue; (5) adance the pipeline by one
cycle and release the ALU functional unit; (6) acquire an ALU write port and update the destirgation re
ter; and (7) adance the pipeline by oneg/ae and release the ALU write port. From this description,
Spawn infers that these instructions can be dual issu@tuge in 3 gcles, read their operands iycte O,
produce a alue that subsequent instructions can usgdtecl, and update thegister file in gcle 2.

Spavn oiganizes resource acquire and release information into groups. Instructions with identical timing
and resources allocation patterns go into the same group. Each group records the nyolesribfades

for a member instruction to pass completely through the pipeline, the resources acquiredyioleaahc

the resources released in eagtle. Spavn also associates gate number with eery access to the irger

or floating point rgister file, for both reads and writegrfFeads, this number indicates the pipelixece-

tion gycle when the read occursorFwrites, it indicates when the writtealue actually becomesailable

to subsequent instructions, not when thkig is written to the ggster file.

3.2 Predicting Pipeline Behaior

The key metric used by EEk instruction scheduler is the number péles that the ne instruction must
wait before entering thexecution pipeline. SADL describes the resource usage and timing feidunali
instruction. This information can describe theaution behaor of mary superscalar processorseeut-
ing a straight-line sequence of instructions.

Spavn passes this information to an instruction scheduler by filling in annotations in the C++ function,
pipeline_stalls, which given a sequence of instruction, computes when tkieimgruction can startxecu-

tion (see AppendiA for an orerview of this function). This function starts with a representation of the
pipeline state, which captures the state of the microarchitecture after theuprastructions in a
sequence, and the instruction whose delay is to be computed. The pipeline state includes history informa-
tion, such as the lasyde in which each gister was read and written and which units are currently
acquired by pnéous instructionspipeline_stalls uses this state information to simulate the pipeliaeg-

tion of the nev instruction and computes Wwomary stall g/cles are needed to satisfy the WWAWAR,

WAW dependencies and structural hazards.

The Spavn microarchitecture models can describe a limited subset of the possipler iatel floating
point pipelines. Our goal has been to describe actual machines rathelypiudinetical systems. The
descriptions contain no information about a processnemory intedce to instruction prefetching, write
buffering, or instruction and data cache baba pipeline_stalls does not compute stalls due to these
mechanisms. On the other handy fecheduling algorithms takthese features into account since their
behaior is data-dependent (c.f. [7]). In addition, SADL does not yet describe out-of-aedertien, since

it was not needed for the descriptions producedisd\e will soon add this feature.

4 Scheduling Instrumentation

EEL schedules instructions in a basic block (local scheduling). The instructions in the block come either
from the original program (for rescheduling) or a combination of the program and instrumentation code. If
instrumentation contains branches, the scheduler only processegitives ref straight-line code. The
scheduler uses the commorotywass list scheduling algorithm [6]. The first pass starts at the end of the
block and verks backvards to compute the length (igates) of the dependence chain betweeere
instruction and the end of the block. This computation only considers the stalls required between data
dependent instructions.

The second pass starts at thgibeing of the block and erks forward, to order instructions with list
scheduling. The instruction with the highest priority of arstruction that can bedally scheduled at this

6

Sun Compiler gcc
Uninst. Inst. Sched. % Uninst. Inst. Sched. %

Benchmark ||BB Size| Time Time Time Hidden || Time Time Time Hidden
espresso 2.6 8.1 204 (252) | 17.9(2.20) | 21.2% 9.2 205 (2.22) | 17.9(1.94) | 232%
xlisp 2.2 118.1 | 273.8(2.32) | 249.0 (2.11) | 15.9% 127.2 | 277.4(2.18) | 252.3 (1.98)| 16.7%
egntott 2.0 10.5 27.0(2.57) | 24.3(2.32) | 16.3% 21.2 58.7 (2.77) | 48.3(2.28) | 27.6%
compress 3.3 8.7 14.1(1.62) | 13.1(1.51) | 17.5% 8.9 14.6 (1.64) | 13.8(1.55) | 13.4%
sc 1.9 47.9 84.1(1.76) | 78.2(1.63) | 16.3% 31.8 65.4 (2.06) | 58.8(1.85) | 19.8%
ccl 25 10.6 23.4(2.21) | 21.8(2.06) | 12.6% 6.4 16.2 (2.53) | 15.2(2.38) | 9.9%
spice2g6 41 510.3 | 7945 (156) | 711.7 (1.39) | 29.1%

doduc 5.6 28.3 432 (1.52) | 41.1(1.45) | 13.7%

mdljdp2 4.9 6.6 10.1 (1.53) 8.8 (1.33) 37.7%
waveb 8.0 79.0 102.4 (1.30) | 95.6 (1.21) | 29.3%

tomcatv 19.9 425 46.5(1.10) | 45.8(1.08) | 19.1%

ora 4.5 45.9 56.5(1.23) | 51.8(1.13) | 44.6%

alvinn 6.8 132.6 | 204.4 (1.54) | 166.7 (1.26) | 52.5%

ear 5.8 4334 | 591.3(1.36) | 551.1(1.27) | 25.5%

mdljsp2 4.6 5.7 9.1 (1.61) 7.7 (1.36) 41.0%

swm256 67.3 223.8 | 234.5(1.05) | 235.6 (1.05) | -10.2%

su2cor 12.1 117.5 | 135.3 (1.15) | 128.9 (1.10) | 35.8%

hydro2d 4.8 147.5 | 231.4(1.51) | 209.9 (1.42) | 25.5%

nasa’ 15.0 318.0 | 343.8(1.08) | 335.8(1.06) | 31.3%

fpppp 12.9 116.1 | 161.9 (1.39) | 159.6 (1.37) | 5.0%

Table 2: Slow profiling instrumentation on theyperSRRARC. Avg. BB Sizds the (dynamic)erage basic block

size (instructions)Uninst. Tme is a prograns uninstrumentedxecution time (seconds).imings were the
minimum user and system time from 3 runs on an unloaded syst&tiimeis a prograns instrumented,
unscheduled»ecution time. The number in parentheses is the ratio to the uninstrumentefdiet. Tmeis

the instrumented time after scheduling. FingtyHiddenis the fraction of instrumentatiorverhead hidden by
scheduling.

point is put ngt in the schedule. An instructiepriority is determined primarily by hofew stalls it
requires before it can stastexution (as computed Ipjpeline_stalls). If two instructions require the same
number of stalls, the instructioarthest from the end of the block, using the metric computed in the first
pass, has higher prioritif two instructions still hee the same priorifythe instruction listed earlier in the
unscheduled sequence is chosen under the assumption that the instructionsweersypseheduled.

When computing data dependencies in both passes, the scheduleratme$eassumes that loads and
stores from the original code access the same addresais@/assume that loads and stores in instrumen-
tation code access the same address, whitdrglifom the address accessed by original instructions. This
permits instrumentation loads and stores, which typically do not conflict with the original loads and stores,
more freedom of mement. Since some instrumentatmemory references are more constrained, we
are adding options to limit the m@ment of instrumentation code.

4.1 Limitations on Scheduling Instrumentation

On aggresse superscalar machines, one could hope that all instrumentation code could be hidden in
unused pipeline stallycles. Unfortunatelyprocessor limitations, such as memory layefacload on the
hyperSRARC has a oneycle lateng) and resource usage (stores on tyigehSARC use the LSU for 2

cycles and loads use it for ¥ae), limit the gcles in which to hide instrumentation. A further problem is

that in magy programs, most basic blocks are short and so preseopfgortunity to hide instrumentation.

On the SRRC, the SPECINT benchmarksveaarerage dynamic block sizes of 1.9-3.3 instructions (the
floating point benchmarksarage 4.1-67.3 instructiongjtbmost are under 7 instructions per block).

7

SUN Compiler gcc
Avg. ||Uninst. Inst. Sched. % Uninst. Inst. Sched. %

Benchmark ||BB Size| Time Time Time Hidden || Time Time Time Hidden
espresso 2.6 8.2 19.8(2.43) | 17.6(2.16) | 19.1% 8.7 194 (2.24) | 16.8(1.95) | 23.7%
xlisp 2.2 109.9 | 223.4(2.03) | 201.4 (1.83) | 19.4% 120.3 | 234.3(1.95) | 211.6 (1.76)| 20.0%
egntott 2.0 10.8 26.6 (2.47) | 245(2.27) | 13.0% 215 60.7 (2.82) | 53.7(2.49) | 18.0%
compress 3.3 7.8 14.0 (1.80) | 12.7(1.63) | 21.8% 7.8 14.0 (1.79) | 135(1.72) | 8.9%
sc 1.9 47.1 78.2(1.66) | 71.6 (1.52) | 21.2% 21.9 42.3(1.93) | 38.9(1.78) | 16.8%
ccl 25 9.2 20.4(2.22) | 195(2.13) | 7.9% 6.3 15.3 (2.44) | 14.6(2.33) | 8.2%
spice2g6 41 4945 | 779.6 (1.58) | 699.6 (1.41) | 28.1%

doduc 5.6 26.6 37.1(1.40) | 36.5(1.37) 5.7%

mdljdp2 4.9 8.7 11.8 (1.36) | 10.7 (1.24) | 35.2%
waveb 8.0 73.3 98.2 (1.34) | 94.4(1.29) | 15.1%

tomcatv 19.9 34.0 385 (1.13) | 37.5(1.10) | 22.5%

ora 4.5 48.5 58.5(1.20) | 54.6(1.12) | 38.9%

alvinn 6.8 160.2 | 233.9(1.46) | 198.7 (1.24) | 47.7%

ear 5.8 4795 | 647.7(1.35) | 583.1(1.22) | 38.4%

mdljsp2 4.6 7.8 10.9 (1.39) | 9.8 (1.25) 36.1%

swm256 67.3 284.3 | 289.8 (1.02) | 295.7 (1.04) | -108.7%

su2cor 12.1 144.6 | 165.3 (1.14) | 162.9 (1.13) | 11.7%

hydro2d 4.8 162.7 | 238.4 (1.47) | 213.9(1.32) | 32.3%

nasa’ 15.0 270.9 | 297.0(1.10) | 293.7 (1.08) | 12.7%

fpppp 12.9 103.9 | 121.4(1.17) | 117.9(1.13) | 19.8%

Table 3: Slow profiling instrumentation on the Supef$&C.

Finally, scheduling instrumentation does not reduce instruction (or data) cache misses caused by instru-
mentation, since the additional instructions increase the code gizdless of ha few stalls the program

incurs. Lebeck and @éd proposed a model for the instruction caclieces of program instrumentation,

which reasonably accurately predicted that instrumentation that increases a maizarhy adctor of

E, will increase cache misses Byx ./E [10]. Profiling increases a prograsiixt size by adctor of 2—3.
Fortunately mary programs hee low instruction cache miss rates, so the increase is not significant.

4.2 Scheduling Pofiling Instrumentation

We scheduled QPT&'slav profiling instrumentation [1], which adds 4 instructions—set immediate, load,
add, and store—into most basic blocks in a program. This ceaetes in 3 ycles on the yperSRARC

and 4 gcles on the Super8RC and UltraSRRC. Blocks with a single instrumented singlétgrede-
cessor or a single instrumented single-entry successor are not instrumented. TheARMergPyper-
SFARC experiments ran on dual processor SunARBEstation 20s equipped with 55Mhz SUN
SuperSRRC [16] processors and 66MhZOSS lyperSRARC processors [13]. Both systems ran Solaris
2.4. The UltraSRRC experiments ran on a 8RCstation 140 with a 143Mhz SUN UltraSIRC proces-
sor [15] running Solaris 2.5. The test programs were compiled -O (not at SPEC optimizaiie)nble the
Sun C and értran compilers (@rsion 3.0.1 for the older machines amdlsion 4.0 for the Ultra¥RC).

We did not use the compiler options that generate UIKREPspecific code. In addition, as a comparison,
we compiled the SPECINT benchmarks with goergion 2.6.3) with the -O flag. In all cases, we ran the
programs with the single SPEC input file that produced the longssit@n.

Table2 contains measurements for thgp@rSARC, Table3 contains results for the SupeAHC, and
Table4 contains results for the UltraSRC. On all three machines,v&zal trends are clea®cheduling is
less efective for integer programs than for floating-point programge(age impreement of 17%, 17%,
and 16%, respeetely for integer benchmarkserses 30%, 26%, and 60%, respaii for floating point
benchmarks). \&/ see three reasons for thifetiénce. First, intger benchmarks ka significantly shorter
basic blocks (intger blocks gerage 2.4 instructions and floating point blocksrage 12.6 instructions).

8

Uninst. Inst. Sched. %

Benchmark ||BB Sizel| Time Time Time Hidden
€espresso 34 7.0 (2.06) 6.3 (1.85) 20.1%
xlisp 46.1 97.1(2.01) | 93.2(2.02) 7.7%

eqgntott 5.0 9.8 (1.96) 9.0 (1.81) 15.7%
compress 2.3 4.2 (1.83) 3.9 (1.69) 16.8%
sc 11.1 20.9(1.88) | 18.8(1.70) | 21.2%
ccl 3.0 6.6 (2.20) 6.2 (2.06) 11.7%
spiceZg6 191.8 | 284.2(1.48) | 252.8(1.32) | 34.0%
doduc 12.3 16.4 (1.33) | 16.2(1.31) 6.6%

mdljdp2 2.8 3.7 (1.31) 3.3(1.18) 42.5%
waveb 275 34.1(1.24) | 322(1.17) | 29.4%
tomcatv 13.2 145(1.10) | 135(1.03) | 74.1%
ora 21.2 25.9(1.22) | 24.1(1.13) | 38.3%
alvinn 30.3 55.9 (1.84) | 50.2(1.65) | 22.4%
ear 127.2 | 175.8 (1.38) | 155.3(1.22) | 42.2%
mdljsp2 2.1 66.5 (31.09) | 66.5(31.05) | 0.1%

swm256 77.8 80.8 (1.04) | 76.7(0.99) | 135.6%
su2cor 51.9 58.0 (1.12) | 50.5(0.97) | 122.4%
hydro2d 64.0 89.3(1.40) | 76.7 (1.20) | 49.8%
nasa’ 125.9 | 134.4(1.07) | 125.0(0.99) | 110.9%
fpppp 54.8 59.5(1.08) | 53.4(0.97) | 131.7%

Table 4: Slow profiling instrumentation on the UltraSRC.

Since our schedulerag local and did not look between block boundaries, shorter blofsksfater
opportunities to hide instrumentationeshead. Havever, performance imprement did not appear corre-
lated to &erage block size (correlation céieient of 0.034 for fiperSRRARC and -0.13 for Super8RC).

In addition, the Super@®RC and UltraSRRC both issue at most 2 igger instructions perycle, so for
integer codes thedo not ofer more parallelism than the 2aw superscalaryperSRRARC. The profiling
instrumentationyeecuted entirely in the inger unit. In theorya 2-way superscalar could hide this instru-
mentation$ overhead. Haever, small blocks, resource constraints, and instruction parallelism in the orig-
inal program mak this outcome unlidy. In particular conflicts for scarce resources, such as the single
load/store unit in all processors, hinder us frorarlapping instrumentation with irger instructions in
both sets of benchmarks.

By contrast, floating point instructions, on all three machines;ude in an autonomous FPU. Not only
could we easily schedule these instructions with ougértenstrumentation without resource conflicig, b
the long lateng floating point instructions easilywerlap the entire profiling code sequence.

Nevertheless, the results arery encouraging. On a first-generation superscalath as the dual-issue
hyperSRARC, scheduling hides 13-21% of theedhead in profiling the SPECINT benchmarks and 5-
53% of the gerhead in the SPECFP benchmarkEhe results on the SuperdRC are similar since
scheduling hides 8-22% of the SPECIN/Edead and 6—48% of the SPECMerbead (agin, excluding
swm256). More aggres& superscalar implementation, such as the UI&RER can hide ¥en more
instrumentation werhead, ranging from 8-21% of the SPECIN/Eriead and 7-136% of the SPECFP
overhead. An interesting sidelight is that four SPECFP benchmarks asterf with instrumentation,
thanks to EEIs instruction scheduling.

1. With the eception of swm256, whose betiar on both processors seems to indicate problems in our scheddedling of the ery
large basic block in which this program spends most of its tineeai studying this problem.

2. Excluding mdljsp2. Instrumenteessions of mdljsp2 on the UltraSRC seem to spend their time in the operating systesra\/ study-
ing this problem.

hyperSPARC UltraSPARC

Uninst. | Re-Sched. % Uninst. | Re-Sched. % 4.0
Benchmark|| Time Time Speedup| Time Time Speedup| Time
espresso 8.1 8.0 1.2% 3.2 3.1 2.5% 3.4
xlisp 118.1 117.4 0.6% 485 49.4 -1.8% 46.1
egntott 10.5 10.6 -0.9% 5.1 5.0 1.0% 5.0
compress 8.7 8.6 1.4% 2.1 2.1 3.3% 2.3
sc 47.9 47.8 0.3% 26.3 26.3 -0.3% 11.1
ccl 10.6 10.5 0.7% 3.0 2.9 2.7% 3.0
spice2g6 510.3 507.8 0.5% 209.8 207.0 1.3% 191.8
doduc 28.3 28.6 -1.0% 12.9 11.0 14.8% 12.3
mdljdp2 6.6 6.6 0.0% 2.4 2.3 4.6% 2.8
waveb 79.0 78.8 0.3% 29.5 27.7 6.1% 27.5
tomcatv 425 43.7 -2.9% 11.6 10.7 7.7% 13.2
ora 459 45.6 0.6% 20.6 19.9 2.9% 21.2
alvinn 132.6 125.7 5.2% 50.5 50.0 0.9% 30.3
ear 433.4 434.2 -0.2% 190.6 171.8 9.9% 127.2
mdljsp2 5.7 5.7 -1.2% 2.1 2.1 2.8% 2.1
swmz256 223.8 228.8 -2.2% 87.9 83.1 5.5% 77.8
su2cor 117.5 116.6 0.8% 49.2 42.7 13.3% 51.9
hydro2d 147.5 151.4 2.7% 58.1 515 11.3% 64.0
nasa’ 318.0 317.2 0.2% 115.9 106.2 8.4% 125.9
foppp 116.1 118.0 -1.6% 52.8 35.4 32.8% 54.8

Table 5: Rescheduling Super8RC program on the yperSRRRC and UltraSRRC. These
programs were compiled by the Sun compilers3(@.1) for a Super@®RC. Uninst. Tme is a
program$ uninstrumented xecution time (secondsRe-Sbed. Tme is a prograns time after
rescheduling for the respegati machine% Speedugds the impreement due to rescheduling.0
Time is the &ecution time (seconds) on the Ultréd&¥C for programs compiled -0 by the 4.0
UltraSFARC compiler (without UltraSRC-specific optimizations).

4.3 Instruction Rescheduling

In another gperiment, we measured thdesft of rescheduling uninstrumented SPEC92 benchmarks on
the same SARC platforms as alve. The original code as compiled at optimizationel -O by the Sun
compilers for the Super8RC (v. 3.0.1) and then rescheduled by EEL.

Table5 contains measurements of the SPEC92 benchmarks rescheduled by EEL ypetB&IRC and
UltraSFRARC, running on fiperSRRC and UltraSRRC, respectiely. Not surprisingly rescheduling
SuperSRRC programs for a similar processasuch as theyperSRRRC, produced little performance
improvement. Rescheduling SPECINT benchmarks for the Ul&kREPalso yielded little impreement.
As noted abee, the lyperSRARC, SuperSRRC, and UltraSRRC hare similar microarchitectures for
purely inteyer codes and presentf@pportunities for rescheduling to impeoperformance.

Only the SPECFP benchmarks on the UltéiS® shav consistent impneement. On this platformyery
floating point program raraéter with an aerage speedup of 9% (1-33%). Most of this improent is
due to modeling the Ultra8IRC’s out-of-order wecution on lgel-1 cache misses. Rescheduled code on
the UltraSRRRC only sheved significant impreement when the scheduler assumed ycledoad lateng
(cost of a lgel-2 cache hit). The small block size in the geebenchmarks precluded most rescheduling
for this long lateng

As expected, a scheduling algorithm cannot inver@ good compiles’ instruction scheduling for tw
machines with similar microarchitectures. Instruction reschedulingevss, can produce significant per-
formance impreements by xploiting previously unaailable features, such as out-of-ordre@uition. In

10

the future, rescheduling will becomeea more attracte, as superscalar processors become more aggres-
sive and ofer nav features, such as out-of-ordeeeeution, lockup-free caches, and specutagkecution,
that can bexploited by rescheduling dacy code.

5 Conclusion

This paper iwesticated the benefits of combining instruction scheduling wigitetable editing. Measure-
ments on the SPEC92 benchmarksastitat on a dual-issue superscalar processsimple, local instruc-
tion scheduler can hide arvemage of 17-30% of theverhead introduced by program profiling
instrumentation. On a more modern, dysuperscalathe scheduler can hide avesage of 16—65% of
the profiling werhead. As future machinedaf more abindant, less restrieg instruction-lgel parallel-
ism, it should be possible to hideem more instrumentatiorverhead. Alreadythe benefits of scheduling
program instrumentation are clear enough thétiag and future instrumentation systems should adopt
this simple technique to reduce instrumentatioaeribead. In addition, this approach promises to help
reduce the cost of error checking, such as array bounds or null pointer testselcatiwich it is rou-
tinely included in production code.

The results for our second application, instruction rescheduling, are also encouraging. Local rescheduling
of optimized code dérs little benefit when a memachine$ microarchitecture is similar to the machine for
which a program @as originally compiled. Hwever, when the tw microarchitectures ddr, rescheduling

can significantly impree the performance ofdacy code. Morewer, we hae not yet inesticgated the pos-

sibility of optimizing the code by introducingwenstructions, such as conditional ves or intger multi-

plies.

Acknowledgments

Many thanks to Bob Roessler for arranging the loan of the UIkREPused in thesexperiments. Mark
Hill suggested that our scheduler model the L2 cache in the URRSPVinod Grover and Kirt Goebel
provided helpful comments on a draft of this paper

This work is supported in part by Wright Laboratoryiénics Directorate, Air Brce Material Command,

USAF, under grant #F33615-94-1-1525 and AR#tder no. B550, an NSF NYIlward CCR-9357779,

NSF Grants CCR-9101035 and MIP-9225097, DOE Grant DE-FG02-93ER25176, and donations from
Digital Equipment Corporation and Sun Microsystems. The U.S8ef@ment is authorized to reproduce

and distrilute reprints for Geernmental purposes notwithstanding/ aopyright notation thereon. The

views and conclusions contained herein are those of the authors and should not be interpreted as necessar-
ily representing the €tial policies or endorsements, eithapeessed or implied, of the Wright Labora-

tory Avionics Directorate or the U.S. @rnment.

References
[1] Thomas Ball and James R. Larus, “Optimally Profiling and Tracing Progra@' Transactions on Programming Lan-
guages and Systems (TOPLAR®). 16, no. 4, July 1994, pages 1319-1360.

[2] Zzarka Cvetanovic and Dileep Bhandarkar. Characterization of the Alpha AXP Performance Using TP and SPEC Workloads.
In Proceedings of the 21st Annual International Symposium on Computer Architpetges 60—70, April 1994.

[3] TrungA. Diep, Christopher Nelson, and JoRaul Shen. Performance Evaluation of the PowerPC 620 Microarchitecture. In
Proceedings of the 22nd Annual International Symposium on Computer Architpetges 163174, June 1995.

[4] Linley Gwennap. Intel's P6 Uses Decoupled Superscalar Dédigroprocessor Repor9(2):9-15, February 16 1995.

[5] JohnC. Gyllenhaal. A Machine Description Language for Compilation. Master’s thesis, Department of Electrical Engineering,
University of lllinois, Urbana IL, September 1994.

[6] JohnL. Hennessy and Davifl. PattersonComputer Architecture: A Quantitative Approashorgan Kaufmann, 1990.

[7] DanielR. Kerns and Susah Eggers. Balanced Scheduling: Instruction Scheduling When Memory Latency is Uncertain. In
Proceedings of the SIGPLAN '93 Conference on Programming Language Design and ImplementatiqmpégeBB78—-289,
June 1993.

11

[8] JamegR. Larus. Efficient Program TracindEEE Computer26(5):52—-61, May 1993.

[9] JamesR. Larus and Eric Schnarr. EEL: Machine-Independent Executable EditiRgpdeedings of the SIGPLAN '95 Con-
ference on Programming Language Design and Implementation (Ph&dgs 291-300, June 1995.

[10] Alvin R. Lebeck and Davié. Wood. Active Memory: A New Abstraction for Memory-System SimulatiorPioceedings
of the 1995 ACM Sigmetrics Conference on Measurement and Modeling of Computer, Ppsfesn®20-230, May 1995.

[11] Harish Patil and Charles Fischer. Efficient Run-time Monitoring Using Shadow Process2ngl. limernational Workshop
on Automated and Algorithmic Debugging (AADEBUG ;¥8) Malo, France, May 1995.

[12] ToddA. Proebsting and Christoph@f. Fraser. Detecting Pipeline Structural Hazards QuicklCdnference Record of the
Twenty-First Annual ACM Symposium on Principles of Programming Langyaagss 280—286, Portland, Oregon, January
1994.

[13] ROSS Technology, INGPARC RISC User’'s Guide: hyperSPARC Edjt®eptember 1993.

[14] Michael A. Schuette. Exploitation of Instruction-Level Parallelism for Detection of Processor Execution Errors. Ph.D. thesis,
Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh PA, January 1991.

[15] SUN Microsystems, IndJlitraSPARC-I User’'s ManualAugust 1995.
[16] Texas InstrumentSuperSPARC User's Guid@ctober 1993.

12

Appendix A: Functionpipeline_stalls

unsigned long

pipeline_stalls(unsigned long cycle, /I cycle when mi starts executing
UnitValues &state, /I current pipeline state
const mach_inst* mi) /I next instruction

unsigned long stalls = 0;

{{INST mi CATEGORY any::
/I All Spawn annotations now refer to instruction mi.

unsigned long gid = {{GROUP}}; /I mi’s timing group
long ii;

/I Trace][] records the resources used by

/I this instruction in the current cycle.

unsigned long trace[{{UNITS COUNT}}];
for(ii=0; ii<{{UNITS COUNT}}; ++ii) tracelii] = 0;

/I Search for stalls
unsigned long mi_cycle = 0; /I current cycle in mi's pipeline
while(mi_cycle <= {{GRP gid CYCLES}}) {

/I Units[] records the number of unused resources in this cycle
/I after allocating resources for all previous instructions.
unsigned long* units = state[cycle];

bool advance = true;

/I Test for structural hazzards.
if(advance)
for(ii=0; ii<{{GRP gid ACQUIRE mi_cycle COUNT}}; ++ii) {
unsigned long unit_val =
units[{{GRP gid ACQUIRE mi_cycle UNIT ii}}] -
trace[{{GRP gid ACQUIRE mi_cycle UNIT ii}}];
if(unit_val < {{GRP gid ACQUIRE mi_cycle NUM ii}}) {
advance = false;

break;
}
}
/I Test for RAW hazzards.
if(advance)

for(ii=0; ii<{{R READ COUNT}}; ++ii)
if{{R READ ii TIME}} == mi_cycle &&
cycle < state.write_cy[O][{{R READ ii}}]) {
advance = false;
break;

/I Similar tests for WAR and WAW hazzards.

/I Advance the execution pipeline for
I previously scheduled instructions.
++cycle;

/I Advance instruction pipeline or record the stall
if(advance) {
for(ii=0; ii<{{GRP gid ACQUIRE mi_cycle COUNT}}; ++ii)
trace[{{GRP gid ACQUIRE mi_cycle UNIT ii}}]
+= {{GRP gid ACQUIRE mi_cycle NUM ii}};
++mi_cycle;
for(ii=0; ii<{{GRP gid RELEASE mi_cycle COUNTY}}; ++ii)
trace[{{GRP gid RELEASE mi_cycle UNIT ii}}]
-= {{GRP gid RELEASE mi_cycle NUM ii}};
} else
++stalls;
ki
B

return stalls;

13

