
Appeared:Workshop on Compiler Support for System Software (WCSSS’96), Tucson, Arizona, February 1996.

Instruction Scheduling and Executable Editing1

Eric Schnarr and James R. Larus

Computer Sciences Department
University of Wisconsin–Madison

1210 West Dayton Street
Madison, WI 53706 USA

(608) 262-9519
{schnarr,larus}@cs.wisc.edu

February 2, 1996

Modern microprocessors offer more instruction-level parallelism than most programs and
compilers can currently exploit. The resulting disparity between a machine’s peak and
actual performance, while frustrating for computer architects and chip manufacturers,
opens the exciting possibility of low-cost or even no-cost instrumentation for measure-
ment, simulation, or emulation. Instrumentation code that executes in previously unused
processor cycles is effectively hidden. These microprocessors also pose another problem,
which arises from the machine-specific instruction scheduling necessary for high perfor-
mance. Different implementations of an architecture, such as the many x86 processors,
may benefit from different schedules, which either requires multiple executables or a way
to reschedule existing programs for new machines.

We investigated both opportunities by adding an instruction scheduler to the EEL execut-
able editing library. On first-generation, 2 and 3-way superscalar SPARC processors, this
simple, local scheduler hid an average of 17% (8–22%) of the overhead cost of profiling
instrumentation in the SPECINT benchmarks and an average of 28% (5–53%) of the pro-
filing cost in the SPECFP benchmarks. On a second-generation, 4-way superscalar
UltraSPARC, the scheduler hid an average of 16% (8–21%) of the profiling cost in the
SPECINT benchmarks and 65% (7–136%) in the SPECFP benchmarks. We also used the
scheduler to reschedule uninstrumented code previously compiled for the SuperSPARC.
Scheduling that takes into account the UltraSPARC’s out-of-order execution improved the
SPECFP benchmarks by an average of 9% (1–33%).

1 Intr oduction

Modern microprocessors offer more instruction-level parallelism than most programs and compilers can
currently exploit. For example, the most recent generation of RISC chips—the Digital Alpha 21164, IBM/
Motorola Power PC 620, SGI R10000, and Sun UltraSparc—are 4-way superscalar processors that execute
up to four independent instructions in a single cycle. Even recent high-end x86 processors—the Intel Pen-
tium Pro and AMD K5—are 3-way superscalars. Unfortunately, exploited instruction-level parallelism
lags far behind the hardware. Cvetanovic and Bhandarkar found that programs running on a 2-way super-
scalar Digital Alpha 21064 could dual issue only 20–50% of their instructions, which means that in 67–
90% of cycles, only one instruction executed [1]. Similarly, Diep et al. found that on a 4-way superscalar
Power PC 620, four integer SPEC benchmarks completed an average of 1.05–1.25 instructions per cycle
and three floating-point SPEC benchmarks completed an average of 1.0–1.9 instructions per cycle [3].

This large disparity between a machine’s peak and actual performance, while frustrating for computer
architects and chip manufacturers, opens the exciting possibility of low-cost or even no-cost instrumenta-
tion for measurement, simulation, or emulation. Scheduling reduces instrumentation’s perceived cost by

1. Copyright 1996 by Eric Schnarr and James Larus.
Measurements in this paper are preliminary and may change slightly in later versions.

2

putting instrumentation instructions in previously unused processor cycles. Instrumentation code that exe-
cutes in unused cycles is effectively hidden.

Program instrumentation has been used for many purposes, including performance measurement, com-
puter architecture simulations, and software fault isolation and error detection. Although direct instrumen-
tation typically incurs lower cost than alternative approaches, the increased program running time caused
by instrumentation is occasionally a limiting factor and is always an annoyance. At one extreme, in parallel
or real-time systems, instrumentation overhead can perturb system behavior by introducing time dilation.
Even for less demanding applications, the cost of program profiling or error detection is currently too high
for production codes. Previous instrumentation systems expended considerable effort to formulate efficient
instrumentation code sequences [10], place them parsimoniously [1], and insert instrumentation without
affecting a program’s behavior [8]. However, few systems attempted to exploit instruction-level parallelism
by scheduling the instrumentation code into a program.

This paper describes a simple instruction scheduler that we added to the EEL program executable editing
library [9]. We applied the scheduler to a common program instrumentation, which records a basic block’s
execution frequency with a four-instruction sequence. On the dual-issue hyperSPARC, scheduling hides
13–21% of the overhead of profiling the SPECINT benchmarks (compiled with the Sun Compiler) and 5–
53% of the overhead from the SPECFP benchmarks (with one exception). The results on the 3-way Super-
SPARC are similar, as scheduling hides 8–22% of the SPECINT overhead and 6–48% of the SPECFP
overhead (one exception). The results on the 4-way UltraSPARC are similar to the other two microarchi-
tectures for the SPECINT benchmarks, as scheduling hides 8–21% of profiling overhead. On the SPECFP
benchmarks, scheduling is far more effective and hides an average of 65% (7–136%) of the profiling over-
head (one exception). In the future, these results may improve, and scheduling become even more attrac-
tive, with a more accurate and aggressive instrumentation scheduler and more aggressive
microarchitectures that offer further opportunities to hide instrumentation.

Beyond hiding instrumentation, superscalar processors offer another opportunity to combine instruction
scheduling with executable editing—which we previously mentioned in passing [9]. Modern, aggressive
microprocessors require careful, machine-specific instruction scheduling to achieve their highest perfor-
mance. A computer architecture may have several implementations whose microarchitectures and schedul-
ing constraints differ widely. Some of these implementations may be older machines, but others may be
contemporary, competing products. Consider, for example, the state of the high-end x86 world shown in
Table1. These five high-performance processors offer a wide range of available parallelism and out-of-
order execution possibilities, and each processor presents its own set of scheduling rules and constraints.

We also used EEL’s instruction scheduler to measure the benefits ofinstruction rescheduling, where fully
compiled (and likely scheduled) legacy programs are rescheduled to optimize for a different microarchitec-
ture. In experiments on SPARC processors, rescheduling proved beneficial when the new microarchitec-
ture offered features that were unavailable on the older machine. On the UltraSPARC, rescheduling

Processor Dispatch Rate Function Units
Out of Order

Buffer
Rename
Registers

Intel Pentium 2 3 – –
Intel Pentium Pro 3 5 40 40
AMD K5 2–3 7 16 16
Cyrix M1 2 2 – 32
NexGen Nx586 1 4 14 22

Table 1:High-end x86 processors [4]. Dispatch rate is the number of instructions that can be issued
per cycle. Function units is the number of independent units on the chip. Out of order buffer is the
size of the instruction reorder buffer (in instructions). Rename registers is the number of registers
available for register renaming.

3

improved the performance of programs previously compiled and optimized for the SuperSPARC by up to
33% (average speedup of 9% for the SPECFP benchmarks) by scheduling that accounted for out-of-order
execution on level-1 cache misses. Rescheduling for the hyperSPARC produced no speedup on average (-3
to 5%), because there are few differences between this machine’s microarchitecture and the SuperSPARC.

To implement instruction scheduling, we extended EEL with the specific details of a processor’s microar-
chitecture. EEL uses a concise, high-level specification describing a machine’s instruction set architecture.
A tool called Spawn [9] translates these specifications into executable C++ code, which becomes the part
of EEL that decodes and interprets machine instructions. As part of this work, we extended the architecture
specification language to capture salient features of a machine’s microarchitecture and used this informa-
tion to drive an instruction scheduler in EEL. This paper describes this language extension and how EEL
uses the information to schedule instructions.

The paper is organized as follows. Section2 describes related work. Section3 presents the extensions to
Spawn and shows how they represent the information necessary for instruction scheduling. Section4
describes our experiments on scheduling program instrumentation and rescheduling uninstrumented codes
for different target microarchitectures. Finally, Section5 concludes.

2 Related Work

This paper extends several areas of previous work. Patil and Fischer used a different form of parallelism to
hide instrumentation overhead. On a multiprocessor, they ran on a second processor the code to check
pointer and array accesses [11]. The additional processor reduced the perceived overhead of error checking
by 2–55%. Our approach is more widely applicable since instruction-level parallel processors are, or soon
will be, ubiquitous and because instruction-level parallelism permits a tighter coupling between program
and instrumentation.

Proebsting and Fraser described an efficient algorithm for detecting structural hazards in single pipeline
processors and a language for concisely describing these machines [12]. Our description language is more
verbose, but it also captures the syntax and semantics of machine instructions and scheduling constraints
for superscalar machines. Our algorithm is also less efficient, but more general since it works for supersca-
lar processors as well as single pipeline machines.

Gyllenhaal described the machine description language (HMDES) used in the Illinois IMPACT compiler
[5]. This language, like Spawn’s description language, describes instruction encoding and scheduling con-
straints. HMDES describes instructions from several perspectives, which together provide the basic infor-
mation for instruction schedulers: instruction latencies and resource usage. Spawn represents this
information more concisely as a single semantic expression for a group of instruction, which describes
when these instruction acquire and release resources. Spawn descriptions also capture instruction seman-
tics and binary encodings.

Schuette detected processor errors in unused instruction slots on a VLIW processor [14]. His control-flow
monitoring inserted check operations into unfilled VLIW instructions. This is similar to EEL’s reschedul-
ing of instrumentation, except that EEL also reschedules the original instructions and can handle many dif-
ferent forms of instrumentation. Because a VLIW has fixed size instructions, Schuette’s instrumentation
did not increase code size. On a superscalar, instrumentation code has a secondary effect of reducing per-
formance by increasing instruction cache misses.

3 Spawn Extensions

Any executable editing tool depends on an accurate description of a machine’s instruction set architecture.
While most parts of a tool such as EEL are machine independent, it still must disassemble, analyze, and
modify binary machine instructions. Past experiences with executable editing tools demonstrated that the
code that manipulates binary instructions is simple, but tedious and difficult to debug. For example, in the

4

profiling and tracing tool qpt [8], over 2,000 lines of hand-written C code exist to manipulate binary
instructions. Subtle errors in this code were difficult to detect by inspection and often lay undiscovered for
months before a new input executable exercised them.

To remedy this problem and make EEL portable across different processors, it uses a concise description of
a machine’s instruction set architecture written in a high-level architecture description language. These
descriptions are short—the SPARC is 333 lines—and similar in form to the descriptions often found in
architecture manuals, which makes them easier to validate. Errors overlooked in a code review are also
more likely to arise during testing, since a single description of an instruction’s encoding and semantics
underlies many different EEL instruction manipulation functions and different instructions often share
common code in the description file.

Spawn [9] is the tool that converts an architecture description into the C++ code used by EEL. Spawn ana-
lyzes descriptions written in SADL (Spawn Architecture Description Language) to detect errors and
extract syntactic and semantic information needed by EEL. Spawn then reads an annotated C/C++ file and
replaces its annotations by appropriate code produced using information extracted from the description.
The resulting C/C++ file is compiled and linked into EEL to provide efficient functions for manipulating
binary instructions.

Instruction scheduling requires more detailed information than the architectural description that sufficed
previously for EEL. In particular, scheduling requires a model of a machine’s microarchitecture, especially
its execution pipeline. Since a microarchitecture is specific to a particular processor implementation, this
level of detail entails writing many more descriptions, so each description should be concise and easy to
modify. To support instruction scheduling, we extended SADL to include pipeline timing and resource uti-
lization information. This new information can be combined with the instruction semantic description to
provide a complete map of an instruction’s actions as it moves through a processor’s execution pipeline.

Ideally, one would like to separate a microarchitecture-specific description from a general architecture
description. SADL only partially accomplishes this goal by supporting functions that encapsulate some of
the timing and resource usage characteristics. The coupling of architectural and resource allocation infor-
mation is necessary to permit Spawn to determine when register values are read and when result values
become visible. On the other hand, our experience modeling the hyperSPARC, SuperSPARC, and UltraS-
PARC processors showed that the architecture semantics are easily carried over into a description of a dif-
ferent microarchitecture, despite large changes in the pipeline description.

A (micro)architecture description, written in SADL, describes several aspects of a machine’s architecture:
instruction encodings, instruction semantics, architectural registers, and pipeline resources. The first three
aspects (encodings, semantics, and registers) are described elsewhere [9]. Section3.1 describes how pipe-
line resources and timing operators are combined with instruction semantics to encode details of an execu-
tion pipeline. Section3.2 describes how an instruction scheduler uses this information to predict pipeline
behavior.

3.1 Describing an Execution Pipeline

The first part of a pipeline description names and enumerates the hardware resources—register ports,
ALUs, etc. Each resource is described by a unit name and a value representing the number of copies of this
resource that reside in the processor. Figure1 shows some of the units defined for the ROSS hyperSPARC
microarchitecture [13]. This processor is a dual-issue superscalar with an ALU for arithmetic operations

unit Group 2 // number of simultaneous instructions

unit ALU 1, ALUr 2, ALUw 1 // ALU capacities
unit LSU 1, LSUr 2, LSUw 1 // LSU capacities

Figure 1:Functional unit definitions used in describing the ROSS hyperSPARC execution pipeline.

5

and an ALU for memory address calculations (LSU). TheALUr andALUw units in the figure represent read
and write ports to the register file for the arithmetic ALU. Similarly, theLSUr andLSUw units are ports
used by the LSU.

The second part of a description specifies the pipeline behavior of an instruction and is combined with the
instruction’s semantic description. The SADL commandsA, R, AR, and D describe when units are
acquired and released and when the pipeline advances. The commandA <unit> [<num>] acquires<num>
copies of the unit, or stalls the pipeline if not enough copies of the unit are available. If<num> is omitted,
it is assumed to be 1.R <unit> [<num>] releases<num> copies of a unit. The commandAR <unit>
[<num> [<delay>]] acts like theA command, but it also releases<num> copies of the same unit after the
instruction executes for<delay> cycles.AR is handy for acquiring a resource for a fixed amount of time,
without having to doR’s later in a semantic expression. The commandD [<delay>] advances the pipeline
by <delay> cycles.

An instruction scheduling algorithm must also know when registers are read and written. When an instruc-
tion reads a register, the description must record the pipeline cycle in which the read occurred. Writes are
more difficult, since most pipelined implementations forward values between instructions [6]. When a
value is computed, Spawn records the cycle in which the computation finished. When this value is written
back into a register, Spawn tracks the cycle in which the value was computed, not when the register assign-
ment took place. Therefore, a SADL instruction description must place the computation of an instruction’s
result value in the cycle in which the value becomes available to the next instruction.

Figure2 illustrates the semantics and pipeline behavior of three hyperSPARC ALU instructions. This
description contains several types of statements:val statements, which act like macro definitions;register
declarations, which define the architectural registers;alias statements, which define alternate views of reg-
isters (or memory); andsem statements, which bind semantic expressions to instruction mnemonics. The

val multi is AR Group, () // potential dual issue instructions
val single is AR Group 2, () // cannot be dual issued

register untyped{32} R[36] // general purpose registers (GPR)

// Aliases used to read and write from the GPR
alias signed{32} R4r[i] is AR ALUr, R[i] // ALU read from GPR
alias signed{32} R4w[i] is AR ALUw, R[i] // ALU write to GPR

// Defining arithmetic and logical operators
val [+ - & | ^]
 is (\op.\a.\b. D 1, A ALU, x:=op a b, D 1, R ALU, x)
 @ [add32 sub32 and32 or32 xor32]

// Defining shift operators
val [<< >> >>]
 is (\op.\a.\b. D 1, A ALU, isShift, x:=op a b, D 1, R ALU, x)
 @ [sll32 srl32 sra32]

// Get the second source operand or immediate value
val src2 is iflag=1 ? #simm13 : R4r[rs2]

// Semantic description of the instructions add, sub, and sra
sem [add sub sra]
 is (\op. multi, s1:=R4r[rs1], s2:=src2, R4w[rd]:=op s1 s2)
 @ [+ - >>]

Figure 2: Semantic description of the SPARC instructionsadd, sub, andsra. The resource usage and
timing information are for the ROSS hyperSPARC microarchitecture.

6

effect of thesem statement above is to bind the instructionsadd, sub, andsra, to their semantic expressions
which: (1) restrict the pipeline to at most 2 simultaneous instructions; (2) acquire one or two ALU read
ports and read the register values; (3) advance the pipeline by 1 cycle and release the ALU read ports; (4)
acquire the ALU functional unit and compute the instruction’s result value; (5) advance the pipeline by one
cycle and release the ALU functional unit; (6) acquire an ALU write port and update the destination regis-
ter; and (7) advance the pipeline by one cycle and release the ALU write port. From this description,
Spawn infers that these instructions can be dual issued, execute in 3 cycles, read their operands in cycle 0,
produce a value that subsequent instructions can use in cycle 1, and update the register file in cycle 2.

Spawn organizes resource acquire and release information into groups. Instructions with identical timing
and resources allocation patterns go into the same group. Each group records the number of cycles it takes
for a member instruction to pass completely through the pipeline, the resources acquired in each cycle, and
the resources released in each cycle. Spawn also associates a cycle number with every access to the integer
or floating point register file, for both reads and writes. For reads, this number indicates the pipeline execu-
tion cycle when the read occurs. For writes, it indicates when the written value actually becomes available
to subsequent instructions, not when the value is written to the register file.

3.2 Predicting Pipeline Behavior

The key metric used by EEL’s instruction scheduler is the number of cycles that the next instruction must
wait before entering the execution pipeline. SADL describes the resource usage and timing for individual
instruction. This information can describe the execution behavior of many superscalar processors execut-
ing a straight-line sequence of instructions.

Spawn passes this information to an instruction scheduler by filling in annotations in the C++ function,
pipeline_stalls, which given a sequence of instruction, computes when the next instruction can start execu-
tion (see AppendixA for an overview of this function). This function starts with a representation of the
pipeline state, which captures the state of the microarchitecture after the previous instructions in a
sequence, and the instruction whose delay is to be computed. The pipeline state includes history informa-
tion, such as the last cycle in which each register was read and written and which units are currently
acquired by previous instructions.pipeline_stalls uses this state information to simulate the pipeline execu-
tion of the new instruction and computes how many stall cycles are needed to satisfy the RAW, WAR,
WAW dependencies and structural hazards.

The Spawn microarchitecture models can describe a limited subset of the possible integer and floating
point pipelines. Our goal has been to describe actual machines rather than hypothetical systems. The
descriptions contain no information about a processor’s memory interface to instruction prefetching, write
buffering, or instruction and data cache behavior. pipeline_stalls does not compute stalls due to these
mechanisms. On the other hand, few scheduling algorithms take these features into account since their
behavior is data-dependent (c.f. [7]). In addition, SADL does not yet describe out-of-order execution, since
it was not needed for the descriptions produced so far. We will soon add this feature.

4 Scheduling Instrumentation

EEL schedules instructions in a basic block (local scheduling). The instructions in the block come either
from the original program (for rescheduling) or a combination of the program and instrumentation code. If
instrumentation contains branches, the scheduler only processes the regions of straight-line code. The
scheduler uses the common two pass list scheduling algorithm [6]. The first pass starts at the end of the
block and works backwards to compute the length (in cycles) of the dependence chain between every
instruction and the end of the block. This computation only considers the stalls required between data
dependent instructions.

The second pass starts at the beginning of the block and works forward, to order instructions with list
scheduling. The instruction with the highest priority of any instruction that can be legally scheduled at this

7

point is put next in the schedule. An instruction’s priority is determined primarily by how few stalls it
requires before it can start execution (as computed bypipeline_stalls). If two instructions require the same
number of stalls, the instruction farthest from the end of the block, using the metric computed in the first
pass, has higher priority. If two instructions still have the same priority, the instruction listed earlier in the
unscheduled sequence is chosen under the assumption that the instructions were previously scheduled.

When computing data dependencies in both passes, the scheduler conservatively assumes that loads and
stores from the original code access the same address. We also assume that loads and stores in instrumen-
tation code access the same address, which differs from the address accessed by original instructions. This
permits instrumentation loads and stores, which typically do not conflict with the original loads and stores,
more freedom of movement. Since some instrumentation’s memory references are more constrained, we
are adding options to limit the movement of instrumentation code.

4.1 Limitations on Scheduling Instrumentation

On aggressive superscalar machines, one could hope that all instrumentation code could be hidden in
unused pipeline stall cycles. Unfortunately, processor limitations, such as memory latency (a load on the
hyperSPARC has a one cycle latency) and resource usage (stores on the hyperSPARC use the LSU for 2
cycles and loads use it for 1 cycle), limit the cycles in which to hide instrumentation. A further problem is
that in many programs, most basic blocks are short and so present few opportunity to hide instrumentation.
On the SPARC, the SPECINT benchmarks have average dynamic block sizes of 1.9–3.3 instructions (the
floating point benchmarks average 4.1–67.3 instructions, but most are under 7 instructions per block).

Sun Compiler gcc

Benchmark BB Size
Uninst.
Time

Inst.
Time

Sched.
Time

%
Hidden

Uninst.
Time

Inst.
Time

Sched.
Time

%
Hidden

espresso 2.6 8.1 20.4 (2.52) 17.9 (2.20) 21.2% 9.2 20.5 (2.22) 17.9 (1.94) 23.2%

xlisp 2.2 118.1 273.8 (2.32) 249.0 (2.11) 15.9% 127.2 277.4 (2.18) 252.3 (1.98) 16.7%

eqntott 2.0 10.5 27.0 (2.57) 24.3 (2.32) 16.3% 21.2 58.7 (2.77) 48.3 (2.28) 27.6%

compress 3.3 8.7 14.1 (1.62) 13.1 (1.51) 17.5% 8.9 14.6 (1.64) 13.8 (1.55) 13.4%

sc 1.9 47.9 84.1 (1.76) 78.2 (1.63) 16.3% 31.8 65.4 (2.06) 58.8 (1.85) 19.8%

cc1 2.5 10.6 23.4 (2.21) 21.8 (2.06) 12.6% 6.4 16.2 (2.53) 15.2 (2.38) 9.9%

spice2g6 4.1 510.3 794.5 (1.56) 711.7 (1.39) 29.1%

doduc 5.6 28.3 43.2 (1.52) 41.1 (1.45) 13.7%

mdljdp2 4.9 6.6 10.1 (1.53) 8.8 (1.33) 37.7%

wave5 8.0 79.0 102.4 (1.30) 95.6 (1.21) 29.3%

tomcatv 19.9 42.5 46.5 (1.10) 45.8 (1.08) 19.1%

ora 4.5 45.9 56.5 (1.23) 51.8 (1.13) 44.6%

alvinn 6.8 132.6 204.4 (1.54) 166.7 (1.26) 52.5%

ear 5.8 433.4 591.3 (1.36) 551.1 (1.27) 25.5%

mdljsp2 4.6 5.7 9.1 (1.61) 7.7 (1.36) 41.0%

swm256 67.3 223.8 234.5 (1.05) 235.6 (1.05) -10.2%

su2cor 12.1 117.5 135.3 (1.15) 128.9 (1.10) 35.8%

hydro2d 4.8 147.5 231.4 (1.51) 209.9 (1.42) 25.5%

nasa7 15.0 318.0 343.8 (1.08) 335.8 (1.06) 31.3%

fpppp 12.9 116.1 161.9 (1.39) 159.6 (1.37) 5.0%

Table 2:Slow profiling instrumentation on the hyperSPARC. Avg. BB Size is the (dynamic) average basic block
size (instructions).Uninst. Time is a program’s uninstrumented execution time (seconds). Timings were the
minimum user and system time from 3 runs on an unloaded system.Inst. Time is a program’s instrumented, but
unscheduled execution time. The number in parentheses is the ratio to the uninstrumented time.Sched. Time is
the instrumented time after scheduling. Finally, % Hidden is the fraction of instrumentation overhead hidden by
scheduling.

8

Finally, scheduling instrumentation does not reduce instruction (or data) cache misses caused by instru-
mentation, since the additional instructions increase the code size regardless of how few stalls the program
incurs. Lebeck and Wood proposed a model for the instruction cache effects of program instrumentation,
which reasonably accurately predicted that instrumentation that increases a program’s size by a factor of

, will increase cache misses by [10]. Profiling increases a program’s text size by a factor of 2–3.
Fortunately, many programs have low instruction cache miss rates, so the increase is not significant.

4.2 Scheduling Profiling Instrumentation

We scheduled QPT2’s slow profiling instrumentation [1], which adds 4 instructions—set immediate, load,
add, and store—into most basic blocks in a program. This code executes in 3 cycles on the hyperSPARC
and 4 cycles on the SuperSPARC and UltraSPARC. Blocks with a single instrumented single-exit prede-
cessor or a single instrumented single-entry successor are not instrumented. The SuperSPARC and hyper-
SPARC experiments ran on dual processor Sun SPARCstation 20s equipped with 55Mhz SUN
SuperSPARC [16] processors and 66Mhz ROSS hyperSPARC processors [13]. Both systems ran Solaris
2.4. The UltraSPARC experiments ran on a SPARCstation 140 with a 143Mhz SUN UltraSPARC proces-
sor [15] running Solaris 2.5. The test programs were compiled -O (not at SPEC optimization levels) by the
Sun C and Fortran compilers (version 3.0.1 for the older machines and version 4.0 for the UltraSPARC).
We did not use the compiler options that generate UltraSPARC-specific code. In addition, as a comparison,
we compiled the SPECINT benchmarks with gcc (version 2.6.3) with the -O flag. In all cases, we ran the
programs with the single SPEC input file that produced the longest execution.

Table2 contains measurements for the hyperSPARC, Table3 contains results for the SuperSPARC, and
Table4 contains results for the UltraSPARC. On all three machines, several trends are clear. Scheduling is
less effective for integer programs than for floating-point programs (average improvement of 17%, 17%,
and 16%, respectively for integer benchmarks verses 30%, 26%, and 60%, respectively for floating point
benchmarks). We see three reasons for this difference. First, integer benchmarks have significantly shorter
basic blocks (integer blocks average 2.4 instructions and floating point blocks average 12.6 instructions).

SUN Compiler gcc

Benchmark
Avg.

BB Size
Uninst.
Time

Inst.
Time

Sched.
Time

%
Hidden

Uninst.
Time

Inst.
Time

Sched.
Time

%
Hidden

espresso 2.6 8.2 19.8 (2.43) 17.6 (2.16) 19.1% 8.7 19.4 (2.24) 16.8 (1.95) 23.7%

xlisp 2.2 109.9 223.4 (2.03) 201.4 (1.83) 19.4% 120.3 234.3 (1.95) 211.6 (1.76) 20.0%

eqntott 2.0 10.8 26.6 (2.47) 24.5 (2.27) 13.0% 21.5 60.7 (2.82) 53.7 (2.49) 18.0%

compress 3.3 7.8 14.0 (1.80) 12.7 (1.63) 21.8% 7.8 14.0 (1.79) 13.5 (1.72) 8.9%

sc 1.9 47.1 78.2 (1.66) 71.6 (1.52) 21.2% 21.9 42.3 (1.93) 38.9 (1.78) 16.8%

cc1 2.5 9.2 20.4 (2.22) 19.5 (2.13) 7.9% 6.3 15.3 (2.44) 14.6 (2.33) 8.2%

spice2g6 4.1 494.5 779.6 (1.58) 699.6 (1.41) 28.1%

doduc 5.6 26.6 37.1 (1.40) 36.5 (1.37) 5.7%

mdljdp2 4.9 8.7 11.8 (1.36) 10.7 (1.24) 35.2%

wave5 8.0 73.3 98.2 (1.34) 94.4 (1.29) 15.1%

tomcatv 19.9 34.0 38.5 (1.13) 37.5 (1.10) 22.5%

ora 4.5 48.5 58.5 (1.20) 54.6 (1.12) 38.9%

alvinn 6.8 160.2 233.9 (1.46) 198.7 (1.24) 47.7%

ear 5.8 479.5 647.7 (1.35) 583.1 (1.22) 38.4%

mdljsp2 4.6 7.8 10.9 (1.39) 9.8 (1.25) 36.1%

swm256 67.3 284.3 289.8 (1.02) 295.7 (1.04) -108.7%

su2cor 12.1 144.6 165.3 (1.14) 162.9 (1.13) 11.7%

hydro2d 4.8 162.7 238.4 (1.47) 213.9 (1.32) 32.3%

nasa7 15.0 270.9 297.0 (1.10) 293.7 (1.08) 12.7%

fpppp 12.9 103.9 121.4 (1.17) 117.9 (1.13) 19.8%

Table 3:Slow profiling instrumentation on the SuperSPARC.

E E E×

9

Since our scheduler was local and did not look between block boundaries, shorter blocks offer fewer
opportunities to hide instrumentation overhead. However, performance improvement did not appear corre-
lated to average block size (correlation coefficient of 0.034 for hyperSPARC and -0.13 for SuperSPARC).

In addition, the SuperSPARC and UltraSPARC both issue at most 2 integer instructions per cycle, so for
integer codes they do not offer more parallelism than the 2-way superscalar hyperSPARC. The profiling
instrumentation executed entirely in the integer unit. In theory, a 2-way superscalar could hide this instru-
mentation’s overhead. However, small blocks, resource constraints, and instruction parallelism in the orig-
inal program make this outcome unlikely. In particular, conflicts for scarce resources, such as the single
load/store unit in all processors, hinder us from overlapping instrumentation with integer instructions in
both sets of benchmarks.

By contrast, floating point instructions, on all three machines, execute in an autonomous FPU. Not only
could we easily schedule these instructions with our integer instrumentation without resource conflicts, but
the long latency floating point instructions easily overlap the entire profiling code sequence.

Nevertheless, the results are very encouraging. On a first-generation superscalar, such as the dual-issue
hyperSPARC, scheduling hides 13–21% of the overhead in profiling the SPECINT benchmarks and 5–
53% of the overhead in the SPECFP benchmarks.1 The results on the SuperSPARC are similar, since
scheduling hides 8–22% of the SPECINT overhead and 6–48% of the SPECFP overhead (again, excluding
swm256). More aggressive superscalar implementation, such as the UltraSPARC, can hide even more
instrumentation overhead, ranging from 8–21% of the SPECINT overhead and 7–136% of the SPECFP
overhead2. An interesting sidelight is that four SPECFP benchmarks ran faster with instrumentation,
thanks to EEL’s instruction scheduling.

1. With the exception of swm256, whose behavior on both processors seems to indicate problems in our scheduler’s handling of the very
large basic block in which this program spends most of its time. We are studying this problem.

2. Excluding mdljsp2. Instrumented versions of mdljsp2 on the UltraSPARC seem to spend their time in the operating system. We are study-
ing this problem.

Benchmark BB Size
Uninst.
Time

Inst.
Time

Sched.
Time

%
Hidden

espresso 3.4 7.0 (2.06) 6.3 (1.85) 20.1%

xlisp 46.1 97.1 (2.01) 93.2 (2.02) 7.7%

eqntott 5.0 9.8 (1.96) 9.0 (1.81) 15.7%

compress 2.3 4.2 (1.83) 3.9 (1.69) 16.8%

sc 11.1 20.9 (1.88) 18.8 (1.70) 21.2%

cc1 3.0 6.6 (2.20) 6.2 (2.06) 11.7%

spice2g6 191.8 284.2 (1.48) 252.8 (1.32) 34.0%

doduc 12.3 16.4 (1.33) 16.2 (1.31) 6.6%

mdljdp2 2.8 3.7 (1.31) 3.3 (1.18) 42.5%

wave5 27.5 34.1 (1.24) 32.2 (1.17) 29.4%

tomcatv 13.2 14.5 (1.10) 13.5 (1.03) 74.1%

ora 21.2 25.9 (1.22) 24.1 (1.13) 38.3%

alvinn 30.3 55.9 (1.84) 50.2 (1.65) 22.4%

ear 127.2 175.8 (1.38) 155.3 (1.22) 42.2%

mdljsp2 2.1 66.5 (31.09) 66.5 (31.05) 0.1%

swm256 77.8 80.8 (1.04) 76.7 (0.99) 135.6%

su2cor 51.9 58.0 (1.12) 50.5 (0.97) 122.4%

hydro2d 64.0 89.3 (1.40) 76.7 (1.20) 49.8%

nasa7 125.9 134.4 (1.07) 125.0 (0.99) 110.9%

fpppp 54.8 59.5 (1.08) 53.4 (0.97) 131.7%

Table 4:Slow profiling instrumentation on the UltraSPARC.

10

4.3 Instruction Rescheduling

In another experiment, we measured the effect of rescheduling uninstrumented SPEC92 benchmarks on
the same SPARC platforms as above. The original code was compiled at optimization level -O by the Sun
compilers for the SuperSPARC (v. 3.0.1) and then rescheduled by EEL.

Table5 contains measurements of the SPEC92 benchmarks rescheduled by EEL for the hyperSPARC and
UltraSPARC, running on hyperSPARC and UltraSPARC, respectively. Not surprisingly, rescheduling
SuperSPARC programs for a similar processor, such as the hyperSPARC, produced little performance
improvement. Rescheduling SPECINT benchmarks for the UltraSPARC also yielded little improvement.
As noted above, the hyperSPARC, SuperSPARC, and UltraSPARC have similar microarchitectures for
purely integer codes and present few opportunities for rescheduling to improve performance.

Only the SPECFP benchmarks on the UltraSPARC show consistent improvement. On this platform, every
floating point program ran faster, with an average speedup of 9% (1–33%). Most of this improvement is
due to modeling the UltraSPARC’s out-of-order execution on level-1 cache misses. Rescheduled code on
the UltraSPARC only showed significant improvement when the scheduler assumed a 7 cycle load latency
(cost of a level-2 cache hit). The small block size in the integer benchmarks precluded most rescheduling
for this long latency.

As expected, a scheduling algorithm cannot improve a good compiler’s instruction scheduling for two
machines with similar microarchitectures. Instruction rescheduling, however, can produce significant per-
formance improvements by exploiting previously unavailable features, such as out-of-order execution. In

hyperSPARC UltraSPARC

Benchmark
Uninst.
Time

Re-Sched.
Time

%
Speedup

Uninst.
Time

Re-Sched.
Time

%
Speedup

4.0
Time

espresso 8.1 8.0 1.2% 3.2 3.1 2.5% 3.4

xlisp 118.1 117.4 0.6% 48.5 49.4 -1.8% 46.1

eqntott 10.5 10.6 -0.9% 5.1 5.0 1.0% 5.0

compress 8.7 8.6 1.4% 2.1 2.1 3.3% 2.3

sc 47.9 47.8 0.3% 26.3 26.3 -0.3% 11.1

cc1 10.6 10.5 0.7% 3.0 2.9 2.7% 3.0

spice2g6 510.3 507.8 0.5% 209.8 207.0 1.3% 191.8

doduc 28.3 28.6 -1.0% 12.9 11.0 14.8% 12.3

mdljdp2 6.6 6.6 0.0% 2.4 2.3 4.6% 2.8

wave5 79.0 78.8 0.3% 29.5 27.7 6.1% 27.5

tomcatv 42.5 43.7 -2.9% 11.6 10.7 7.7% 13.2

ora 45.9 45.6 0.6% 20.6 19.9 2.9% 21.2

alvinn 132.6 125.7 5.2% 50.5 50.0 0.9% 30.3

ear 433.4 434.2 -0.2% 190.6 171.8 9.9% 127.2

mdljsp2 5.7 5.7 -1.2% 2.1 2.1 2.8% 2.1

swm256 223.8 228.8 -2.2% 87.9 83.1 5.5% 77.8

su2cor 117.5 116.6 0.8% 49.2 42.7 13.3% 51.9

hydro2d 147.5 151.4 -2.7% 58.1 51.5 11.3% 64.0

nasa7 318.0 317.2 0.2% 115.9 106.2 8.4% 125.9

fpppp 116.1 118.0 -1.6% 52.8 35.4 32.8% 54.8

Table 5: Rescheduling SuperSPARC program on the hyperSPARC and UltraSPARC. These
programs were compiled by the Sun compilers (v. 3.0.1) for a SuperSPARC. Uninst. Time is a
program’s uninstrumented execution time (seconds).Re-Sched. Time is a program’s time after
rescheduling for the respective machine.% Speedup is the improvement due to rescheduling.4.0
Time is the execution time (seconds) on the UltraSPARC for programs compiled -0 by the v. 4.0
UltraSPARC compiler (without UltraSPARC-specific optimizations).

11

the future, rescheduling will become even more attractive, as superscalar processors become more aggres-
sive and offer new features, such as out-of-order execution, lockup-free caches, and speculative execution,
that can be exploited by rescheduling legacy code.

5 Conclusion

This paper investigated the benefits of combining instruction scheduling with executable editing. Measure-
ments on the SPEC92 benchmarks show that on a dual-issue superscalar processor, a simple, local instruc-
tion scheduler can hide an average of 17–30% of the overhead introduced by program profiling
instrumentation. On a more modern, 4-way superscalar, the scheduler can hide an average of 16–65% of
the profiling overhead. As future machines offer more abundant, less restrictive instruction-level parallel-
ism, it should be possible to hide even more instrumentation overhead. Already, the benefits of scheduling
program instrumentation are clear enough that existing and future instrumentation systems should adopt
this simple technique to reduce instrumentation overhead. In addition, this approach promises to help
reduce the cost of error checking, such as array bounds or null pointer tests, to a level at which it is rou-
tinely included in production code.

The results for our second application, instruction rescheduling, are also encouraging. Local rescheduling
of optimized code offers little benefit when a new machine’s microarchitecture is similar to the machine for
which a program was originally compiled. However, when the two microarchitectures differ, rescheduling
can significantly improve the performance of legacy code. Moreover, we have not yet investigated the pos-
sibility of optimizing the code by introducing new instructions, such as conditional moves or integer multi-
plies.

Acknowledgments

Many thanks to Bob Roessler for arranging the loan of the UltraSPARC used in these experiments. Mark
Hill suggested that our scheduler model the L2 cache in the UltraSPARC. Vinod Grover and Kurt Goebel
provided helpful comments on a draft of this paper.

This work is supported in part by Wright Laboratory Avionics Directorate, Air Force Material Command,
USAF, under grant #F33615-94-1-1525 and ARPA order no. B550, an NSF NYI Award CCR-9357779,
NSF Grants CCR-9101035 and MIP-9225097, DOE Grant DE-FG02-93ER25176, and donations from
Digital Equipment Corporation and Sun Microsystems. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either expressed or implied, of the Wright Labora-
tory Avionics Directorate or the U.S. Government.

References
[1] Thomas Ball and James R. Larus, “Optimally Profiling and Tracing Programs,”ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), vol. 16, no. 4, July 1994, pages 1319–1360.

[2] Zarka Cvetanovic and Dileep Bhandarkar. Characterization of the Alpha AXP Performance Using TP and SPEC Workloads.
In Proceedings of the 21st Annual International Symposium on Computer Architecture, pages 60–70, April 1994.

[3] TrungA. Diep, Christopher Nelson, and JohnPaul Shen. Performance Evaluation of the PowerPC 620 Microarchitecture. In
Proceedings of the 22nd Annual International Symposium on Computer Architecture, pages 163–174, June 1995.

[4] Linley Gwennap. Intel’s P6 Uses Decoupled Superscalar Design.Microprocessor Report, 9(2):9–15, February 16 1995.

[5] JohnC. Gyllenhaal. A Machine Description Language for Compilation. Master’s thesis, Department of Electrical Engineering,
University of Illinois, Urbana IL, September 1994.

[6] JohnL. Hennessy and DavidA. Patterson.Computer Architecture: A Quantitative Approach. Morgan Kaufmann, 1990.

[7] DanielR. Kerns and SusanJ. Eggers. Balanced Scheduling: Instruction Scheduling When Memory Latency is Uncertain. In
Proceedings of the SIGPLAN ’93 Conference on Programming Language Design and Implementation (PLDI), pages 278–289,
June 1993.

12

[8] JamesR. Larus. Efficient Program Tracing.IEEE Computer, 26(5):52–61, May 1993.

[9] JamesR. Larus and Eric Schnarr. EEL: Machine-Independent Executable Editing. InProceedings of the SIGPLAN ’95 Con-
ference on Programming Language Design and Implementation (PLDI), pages 291–300, June 1995.

[10] Alvin R. Lebeck and DavidA. Wood. Active Memory: A New Abstraction for Memory-System Simulation. InProceedings
of the 1995 ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages 220–230, May 1995.

[11] Harish Patil and Charles Fischer. Efficient Run-time Monitoring Using Shadow Processing. In2nd International Workshop
on Automated and Algorithmic Debugging (AADEBUG ’95), St. Malo, France, May 1995.

[12] ToddA. Proebsting and ChristopherW. Fraser. Detecting Pipeline Structural Hazards Quickly. InConference Record of the
Twenty-First Annual ACM Symposium on Principles of Programming Languages, pages 280–286, Portland, Oregon, January
1994.

[13] ROSS Technology, Inc.SPARC RISC User’s Guide: hyperSPARC Edition, September 1993.

[14] Michael A. Schuette. Exploitation of Instruction-Level Parallelism for Detection of Processor Execution Errors. Ph.D. thesis,
Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh PA, January 1991.

[15] SUN Microsystems, Inc.UltraSPARC-I User’s Manual, August 1995.

[16] Texas Instruments.SuperSPARC User’s Guide, October 1993.

13

Appendix A: Functionpipeline_stalls

unsigned long
pipeline_stalls(unsigned long cycle, // cycle when mi starts executing

UnitValues &state, // current pipeline state
const mach_inst* mi) // next instruction

{
unsigned long stalls = 0;

{{INST mi CATEGORY any::
// All Spawn annotations now refer to instruction mi.

unsigned long gid = {{GROUP}}; // mi’s timing group
long ii;

// Trace[] records the resources used by
// this instruction in the current cycle.
unsigned long trace[{{UNITS COUNT}}];
for(ii=0; ii<{{UNITS COUNT}}; ++ii) trace[ii] = 0;

// Search for stalls
unsigned long mi_cycle = 0; // current cycle in mi’s pipeline
while(mi_cycle <= {{GRP gid CYCLES}}) {

// Units[] records the number of unused resources in this cycle
// after allocating resources for all previous instructions.
unsigned long* units = state[cycle];
bool advance = true;

// Test for structural hazzards.
if(advance)

for(ii=0; ii<{{GRP gid ACQUIRE mi_cycle COUNT}}; ++ii) {
unsigned long unit_val =

units[{{GRP gid ACQUIRE mi_cycle UNIT ii}}] -
trace[{{GRP gid ACQUIRE mi_cycle UNIT ii}}];

if(unit_val < {{GRP gid ACQUIRE mi_cycle NUM ii}}) {
advance = false;
break;

}
}

// Test for RAW hazzards.
if(advance)

for(ii=0; ii<{{R READ COUNT}}; ++ii)
if({{R READ ii TIME}} == mi_cycle &&

cycle < state.write_cy[0][{{R READ ii}}]) {
advance = false;
break;

}

// Similar tests for WAR and WAW hazzards.
...

// Advance the execution pipeline for
// previously scheduled instructions.
++cycle;

// Advance instruction pipeline or record the stall
if(advance) {

for(ii=0; ii<{{GRP gid ACQUIRE mi_cycle COUNT}}; ++ii)
trace[{{GRP gid ACQUIRE mi_cycle UNIT ii}}]

+= {{GRP gid ACQUIRE mi_cycle NUM ii}};
++mi_cycle;
for(ii=0; ii<{{GRP gid RELEASE mi_cycle COUNT}}; ++ii)

trace[{{GRP gid RELEASE mi_cycle UNIT ii}}]
-= {{GRP gid RELEASE mi_cycle NUM ii}};

} else
++stalls;

};;
}}

return stalls;
}

