
Multiprocessors Should Support Simple Memory Consistency Models

Mark D. Hill

Computer Sciences Department
University of Wisconsin–Madison

1210 West Dayton St.
Madison, WI 53706 USA

http://www.cs.wisc.edu/~markhill

Abstract
Many future computers will be shared-memory multiprocessors.
These hardware systems must define for software the allowable
behavior of memory. A reasonable model is sequential consis-
tency (SC), which makes a shared memory multiprocessor behave
like a multiprogrammed uniprocessor. Since SC appears to limit
some of the optimizations useful for aggressive hardware imple-
mentations, researchers and practitioners have defined several
relaxed consistency models. Some of these models just relax the
ordering from writes to reads (processor consistency, IBM 370,
Intel Pentium Pro, and Sun TSO), while others aggressively relax
the order among all normal reads and writes (weak ordering,
release consistency, DEC Alpha, IBM PowerPC, and Sun RMO).

This paper argues that multiprocessors should implement SC
or, in some cases, a model that just relaxes the ordering from
writes to reads. I argue against using aggressively relaxed models
because, with the advent of speculative execution, these models
do not give a sufficient performance boost to justify exposing their
complexity to the authors of low-level software.

1 Introduction

Many future computers will contain multiple proces-
sors, in part, because the marginal cost of adding a few
additional processors is so low that only minimal perfor-
mance gain is needed to make the additional processors
cost-effective. Intel, for example, now makes cards con-
taining four Pentium Pro processors that can easily be
incorporated into a system. Multiple-processor cards will
help multiprocessing spread from servers to the desktop.

How will these multiprocessors be programmed? The
evolution that has already begun is likely to continue. First,
multiprocessors are used for multiprogramming, where

conventional single-threaded programs are multiplexed on
the processors. Next, performance-critical parts of com-
pute-intensive applications will be parallelized by expert
programmers to use multiple threads sharing data through
shared memory. When one game vendor, for example, par-
allelizes and obtains a performance advantage, competitors
will rapidly follow suit. Finally, someday we may be able
to build compilers that can effectively parallelize most
sequential programs or provide tools and abstractions that
allow many people to program in parallel.

What hardware is needed to support threads with shared
memory? First, the hardware should provide a well-defined
interface for shared memory. Second, it should provide a
high-performanceimplementation of the interface.

Defining a shared-memory multiprocessor’s interface to
memory is easier if we first consider a uniprocessor. A uni-
processor executes instructions and memory operations in
a dynamic execution order calledprogram order. Simple
processors actually execute operations in program order
while complex processors only appear to do so. In either
case, each read must return the value of the last write to the
same address, wherelast is uniquely defined by program
order. If the uniprocessor is multiprogrammed, two cases
exist. If a program executes as a single thread without shar-
ing memory, then the programmer’s memory interface is
the same as for a uniprocessor without multiprogramming.
The situation is more complex, on the other hand, if a pro-
gram has multiple threads sharing memory (or the program
shares memory with other running programs or is the oper-
ating system). In this case, thelast write to an address
could be by itself (the same thread) or by another thread
(that was context switched onto the processor since this
thread’s last write to the address). In most cases, software
uses synchronization to make program results meaningful.

Programmers can model a multiprogrammed uniproces-
sor as a merging of the program order of each executing
thread into a single total order of processor execution. Most
programmers, for example, would expect the code frag-
ment in Table1 (bottom of page 2) to setdata_copy to
the value ofnew.

This work is supported in part by Wright Laboratory Avionics Directorate,
Air Force Material Command, USAF, under grant #F33615-94-1-1525
and ARPA order no. B550, NSF Grants MIP-9225097 and MIPS-
9625558, and donations from Sun Microsystems. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclu-
sions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Wright Laboratory Avionics Director-
ate or the U.S. Government.

Manuscript Submitted for Publication, October 6, 1997.

Mark D. Hill, “A Case for Making Multiprocessors Sequentially Consistent“ Page 2 of 7

Most computers today, however, are programmed in
high-level languages (HLLs), such as C, C++, and Java.
This practice creates two memory interface levels. At the
higher level, each HLL defines memory for its program-
mers. At the lower level, hardware defines memory for
low-level software, which I will callmiddleware. Middle-
ware includes compilers, libraries, device drivers, and
operating systems and some key parts of important applica-
tions (e.g., databases). For software written in HLLs, com-
pilers must translate HLL memory operations into low-
level ones in a manner that preserves memory semantics. In
Table1, for example, a compiler should not reorder P1’s
stores todata andflag. POSIX threads, for example, rec-
ommends that synchronization be encapsulated in library
calls, such aspthread_mutex_lock().

The interface for memory in a shared memory multipro-
cessor is called amemory consistency model. Similar to a
uniprocessor, HLL programming induces the two levels of
memory consistency models depicted in Figure1: high-
level models for each HLL and one low-level model for
hardware. This paper is primarily concerned with hardware
memory consistency models.

A multiprocessor can use the same relatively-simple
memory interface as a multiprogrammed uniprocessor.
This memory consistency model was formalized by Lam-
port assequential consistency (SC) [8]. Section2 argues
the benefits of SC.

Perhaps surprisingly, the hardware memory consistency
models of most commercial multiprocessors are not SC.
This occurs because alternative models are believed to bet-
ter facilitate high-performance implementations. Section3
examines drawbacks of implementing SC and how alterna-
tive memory consistency models—calledrelaxed mod-
els—overcome some of them. Some of these models just
relax the ordering from writes to reads (Section3.1), while
others aggressively relax the order among all normal reads
and writes (Section3.2). More details about these models
and references to primary sources can be found in an excel-
lent relaxed memory model tutorial by Adve and Gharac-
horloo [2] and their Ph.D. theses [1,4]. For this reason,
many academics, including myself, have advocated relaxed
models over SC.

The advent of speculative execution has changed my
mind. Section4 argues that multiprocessor hardware
should implement SC or, in some cases, models that just
relax the ordering from writes to reads. I now see aggres-
sively relaxed models as a less good choice. I argue that the
future performance gap between the aggressively relaxed
models and SC will be in the range of 25% or less
(Section4.1). In my opinion, such a performance gap is not
sufficient to justify burdening middleware authors with rea-
soning about aggressively relaxed memory models
(Section4.2). I also discuss alternatives, such as supporting
SC with optional relaxed extensions or using commercial
models that relax the order from writes to reads (especially
when backward compatibility is involved).

2 Sequential Consistency

Lamport defined a multiprocessor to besequentially
consistent (SC) [8] if:

the result of any execution is the same as if the
operations of all the processors were executed
in some sequential order, and the operations of
each individual processor appear in this
sequence in the order specified by its program.

Shared-Memor y Hardware Memor y Consistenc y Model (e .g., SC)

Java with Threads High Perf . For tranC with POSIX Model

Assemb ly Langua ge

...

FIGURE 1. A shared memor y multipr ocessor has one or more high-le vel langua ge (HLL) memor y con-
sistenc y models (upper lines) and one har dware memor y consistenc y model (lo wer line). Mid dleware
must preser ve HLL memor y semantics when translating pr ograms to the har dware model. In contrast,
assemb ly langua ge programs are written directl y to the har dware model.

TABLE 1. Is data_copy always set to new?

Thread or
Processor P1

Thread or
Processor P2

data = new;

flag = SET;

while (flag != SET) {}

data_copy = data;

Mark D. Hill, “A Case for Making Multiprocessors Sequentially Consistent“ Page 3 of 7

The principle benefit to selecting SC as the interface to
shared memory hardware is that it is what people expect. If
you ask moderately sophisticated software professionals
what shared memory does, they will lik ely define SC
(albeit less precisely and less concisely than Lamport).
Since good interfaces should not astonish their users, SC
should be preferred.

A literal interpretation of SC’s definition, however,
might lead one to believe that implementing it requires one
memory module and precludes per-processor caches. This
is not the case. To the contrary, both SC and the relaxed
models (described in Section3) allow many optimizations
important for high-performance implementations [6].

First, all models permit coherent caching. Caches may
be private to processors or shared among some processors.
They may be in one level or in multi-level hierarchies. A
straightforward implementation of coherence processes
operations of each processor in program order and does not
perform a write until after it invalidates all other cached
copies of the block.

Second, all models can usenon-binding prefetching.
Non-binding prefetching moves a block into a cache (in
anticipation of use) but keeps the block under the jurisdic-
tion of the coherence protocol. Non-binding prefetches
affect memory performance, but not memory semantics,
because the prefetched block can be invalidated if another
processor wishes to write to the block. (In contrast, a bind-
ing prefetch moves a datum into a register where it is unaf-
fected by subsequent writes by other processors.) Non-
binding prefetches can be initiated to overlap cache miss
latency with computation or other misses by either hard-
ware or software (through special prefetch instructions).

Third, all models can supportmultithreading, where a
processor contains several “hot” threads (or processes) that
it can run in an interleaved fashion. From a correctness
point of view, a multiprocessor withn k-way multithreaded
processors behaves like a multiprocessor withn×k conven-
tional processors. The implementation of multithreaded
hardware, however, can switch threads on long-latency
events (e.g., to hide cache misses), can switch every cycle,
or simultaneously execute multiple threads each cycle.

In summary, SC and the relaxed models allow all of the
above optimizations. SC, however, permits the above opti-
mizations and keeps the software interface simple. In par-
ticular, SC enables middleware authors to use the same
target as a multiprogrammed uniprocessor. Thus, it seems
hardware architects should choose SC.

3 Relaxed Models

Despite SC’s advantages, most commercial hardware
architectures have selected alternatives to SC called
relaxed (or weak) memory consistency models. Relaxed
models were selected to facilitate additional implementa-

tion optimizations whose use is precluded by SC without
the complexity of speculative execution. SC, for example,
makes it hard to use write buffers, because write buffers
cause operations to be presented to the cache coherence
protocol out of program order. Straightforward processors
are also precluded from overlapping multiple reads and
writes in the memory system. This restriction is crippling
in systems without caches, where all operations go to
memory. In systems with cache coherence, which are the
norm today, this restriction impacts activity whenever
operations miss or bypass the cache. (Cache bypassing
occurs on uncacheable operations to input/output space,
some block transfer operations, and writes to some coa-
lescing write buffers.)

Definition for relaxed models are subtle and complex. I
next discuss two important classes that Adve and Gharac-
horloo aptly call “relaxing write to read program order”
and “relaxing all orders” [2].

3.1 Relaxing write to read program order
The class “relaxing write to read program order”, some-

times called theprocessor consistent models, more-or-less
exposes first-come-first-serve write buffers to low-level
software. This means that a program that doeswrite x,
write flag, andread y can be sure thatx is updated before
flag, but cannot know if either is done when it readsy. This
difference from SC makes no difference to most programs,
because most programs produce shared data by writing the
data and then writing a flag or counter (e.g., Table1). Pro-
grams only observe differences from SC in convoluted
examples, like the code fragment illustrated in Table2.

Specific models in this class includeWisconsin/Stanford
processor consistency (PC), IBM 370, Intel Pentium Pro,1

andSun total store order (TSO). PC was proposed by Wis-
consin and subsequently precisely defined by Stanford. In
its full academic generality, PC is less useful than the oth-
ers, because it does not guarantee a property calledcausal-
ity. Causality requires thatall other processors see the
effect of a processor’s operation whenanyother processor
sees it. Without causality, processor consistency can fail to

1. I add the Pentium Pro memory model [7] (Section 7.2) to Adve and
Gharachorloo’s classification. Intel also states that the Pentium and
Intel486 models are “virtually identical” to that of the Pentium Pro.
Strictly speaking, a microprocessor must cooperate with a system to sup-
port a memory model. Thus, one can build systems with Pentium Pros that
do not support the Pentium Pro memory model.

TABLE 2. PC, IBM 370, P entium Pr o and TSO allo w
both x_copy and y_copy to g et old v alues,
thereb y violating SC.

Processor P1 Processor P2

x = new; y = new;

y_copy = y; x_copy = x;

Mark D. Hill, “A Case for Making Multiprocessors Sequentially Consistent“ Page 4 of 7

look like SC in important cases involving three or more
processors. One such case is illustrated in Table3.

The commercial models in this class (IBM 370, Pen-
tium Pro, and TSO), on the other hand, guarantee causality
and will always ensure thatdata_copy gets the valuenew
in Table3. Nevertheless, these models differ in other subtle
ways, such as whether a processor reading its own write
ensures that other processors also see it.

These hardware memory consistency models make it
easier for hardware implementors to use many hardware
optimizations found in uniprocessors. In particular, proces-
sor writes can be buffered in a first-come-first-serve write
buffer in front of the cache and coherence protocol. Values
of these buffered writes can often be bypassed to subse-
quent reads (by that processor to the same address) even
before coherence permission has been obtained. This opti-
mization is especially important for architectures with few
general-purpose registers, such as the Intel Architecture-
32.

Furthermore, in my opinion, having the hardware mem-
ory consistency model be IBM 370, Pentium Pro, TSO or
processor consistency with causality has negligible impact
on middleware authors. If these authors assume SC, they
will rarely be astonished. These models look exactly like
SC for the common idioms of data sharing (e.g, Table1
and Table3, but not Table2).

3.2 Relaxing all orders
The class “relaxing all orders” seeks to allow all the

hardware implementation options of uniprocessors. Mem-
bers of this class may completely reorder reads and writes
and includeUSC weak ordering (WO), Stanford release
consistency (RC), DEC Alpha,IBM PowerPC, and Sun
relaxed memory order (RMO). The models differ in subtle
ways and in how programmers restore enough sanity to
make examples like Table1 behave as expected. WO and
RC ask programmers to distinguish certain reads and
writes as synchronization, so the hardware can handle
these more carefully. The commercial models add special
operations—variously calledfences, barriers, membars,

and syncs—to tell the system when order is required.
Table4 illustrates how the example in Table1 could be
augmented for Sun relaxed memory order. The membar

#StoreStore ensuresdata is written beforeflag, while
membar #LoadLoad ensuresflag is read beforedata
(but could be omitted, in this case, due to the conditional).

Implementations of the models in this class can exploit
many optimizations, because they need only implement
order between operations when software asks for it and can
be aggressively out-of-order the rest of the time. Processors
can complete reads and writes to cache, for example, even
while previous reads and writes (in program order) have
not obtained coherence permission. With speculative exe-
cution, processors canretire reads and writes (i.e., preclude
rollback) while previous reads and writes await coherence
permission.

Furthermore, a hardware model from the “relaxing all
orders” class does not appear to be too great a challenge
for compiler writers. For sequential HLLs with threads,
programmers often use synchronization libraries or declare
critical variablesvolatile. In these cases, the compiler or
library writer can add appropriate fences. For sequential
languages with parallelizing compilers, the compiler
inserts the synchronization so it can know where the fences
need to be.

In summary, relaxed models offer more hardware
implementation options than SC and appear to use infor-
mation that programmers or HLLs know anyway. Thus, it
appears hardware should use relaxed models instead of SC.

4 Multiprocessors Should Implement SC

Section4.1 discusses how future processors trends—
especially more transistors and more speculation—affect
the performance gap between relaxed and SC implementa-
tions. Section4.2 explores the complexity of reasoning
with relaxed models. Section4.3 gives my opinion that the
performance gain from relaxed models will not be suffi-
cient to justify the intellectual complexity they add to the
software/hardware interface.

TABLE 3. “Causality” is needed to ensure data_copy
is set to new

Processor P1 Processor P2 Processor P3

data = new;

flag1 = SET;

while

(flag1 != SET){}

flag2 = SET;

while

(flag2 != SET){}

data_copy = data;

TABLE 4. Memor y Barrier s (membars) to ensure
data_copy is al ways set to new under Sun RMO .

Processor P1 Processor P2

data = new;

membar #StoreStore

flag = SET;

while (flag != SET) {}

membar #LoadLoad

data_copy = data;

Mark D. Hill, “A Case for Making Multiprocessors Sequentially Consistent“ Page 5 of 7

4.1 The performance gap is not that large
The principal argument for relaxed models is that using

them can yield higher performance than with SC. So what
is theperformance gap between relaxed models and SC?
The answer is “it depends” on many processor implemen-
tation parameters.

Two observations by Gharachorloo et al. [5] have
reduced the performance gap relative to initial expecta-
tions. First, SC hardware does not need to serialize cache
misses, but can overlap them as relaxed implementations
do. SC implementations, however, should perform the
actual loads and stores in program order. Thus, SC imple-
mentations can handle four cache misses on the sequence
“ read A, write B, read C, write D” in time modestly longer
than handling one miss and three hits. Using a non-block-
ing cache, a SC implementation could pipeline “get shared
block A, get exclusive block B, get shared block C, get
exclusive block D” and then rapidly perform “read A, write
B, read C, write D” as a series of cache hits.

Second, the advent of speculative execution allows both
relaxed and SC implementations to be more aggressive.
With speculative execution, a processor performs instruc-
tions eagerly. Sometimes instructions must be undone
when speculation on previous instructions proves incorrect
(e.g., mispredicted branches). A processorcommits (or
retires) an instruction when it is sure that an instruction
will not need to be undone. Doing so usually frees up
implementation resources.

Speculative execution allows both relaxed and SC
implementations to speculatively perform loads and stores
out of order. In some cases, however, relaxed implementa-
tions can commit instructions sooner than SC implementa-
tions. Consider, for example, a program that wishes toread
A (which misses) andread B (which hits). Both relaxed and
SC processors can perform theread B before even begin-
ning the read A. Furthermore, relaxed processors can
sometimes commitread B without waiting for read A to
commit (as long as previous events, such as branch predic-
tions, have committed). SC processors, however, cannot
commit read B until read A commits (or least obtains
coherence permission for the block containing A).1 These
sorts of techniques are already used in the HP PA-8000,
Intel Pentium Pro and MIPS R10000. While the specu-
lative techniques are complex, their implication is simple:

Relaxed and SC implementations can do all the
same speculations, but sometimes relaxed
implementations can commit instructions
sooner.

1. Read B cannot be committed, because it may need to be
unrolled if the block containing B must be invalidated due to an
exclusive request by another processor before this processor
obtains coherence permission to block A.

Thus, the performance gap between relaxed and SC
implementations should narrow. The gap will be non-zero,
however, if SC implementations (1) undo instructions more
often or (2) more frequently exhaust implementation
resources for uncommitted instructions. So quantitatively,
what is the current performance gap?

Ranganathan et al. [9] simulate a workload of five Stan-
ford SPLASH benchmarks on a MIPS R10000-like proces-
sor using 4-way instruction issue, dynamic scheduling with
a 64-instruction window (instructions concurrently active),
speculative execution, caches that support outstanding
misses to up to eight distinct blocks, and many other
assumptions that can be found in the paper. They find that a
relaxed model—release consistency—improves perfor-
mance over an optimized implementation of SC by an aver-
age of 25%2. The performance gap on other workloads will
be different and may be smaller. Relaxed models were
designed for the instruction-level parallelism of scientific
workloads, which tends to be larger than found for other
workloads, such as operating systems and databases.

How will the performance gap change over the next ten
years? One argument is that it will grow, because the
latency to memory—measured in instruction issue oppor-
tunities—is likely to grow. On the contrary, I see two rea-
sons that make it likely to shrink.

First, future microprocessor designers will be able to
apply more transistors to enhance the effectiveness of
known techniques for improving memory system perfor-
mance. These techniques range from mundane measures
like larger caches and more concurrent cache misses to
sophisticated speculation and prefetching. Increasing the
instruction window size, for example, will improve the per-
formance of both SC and relaxed implementations by mak-
ing instruction-window-full stalls less likely. The increased
window size will also reduce the performance gap if the
absolute difference in stalls gets smaller. This is likely due
to the diminishing marginal utility of each additional
instruction window buffer.

Second, architects will invent new microarchitectural
techniques that, with speculation, can be applied to both
SC and relaxed models. How can I be so confident? First,
some of these techniques are already gestating, as can be
found in a recent special issue ofIEEE Computer [3] and
in the annual proceedings of conferences like theACM/
IEEE International Symposium on Computer Architecture
and ACM International Symposium on Microarchitecture.
Second, architects in the past have always invented ways to
innovatively “waste” a larger transistor budget. In 1996, Yu
of Intel [10], re-examined Intel’s 1989 predictions for

2. I calculate the value 25% from the data in Rangananthan et al. Figure
8a as follows: S= sum of execution times with SCopt = 71.1 + 55.2 + 66.6
+ 61.0 + 56.7; R = sum of execution times with RC = 60.1 + 47.6 + 47.5 +
63.4 + 33.6; (S/R - 1)× 100% = 23.2%.

Mark D. Hill, “A Case for Making Multiprocessors Sequentially Consistent“ Page 6 of 7

1996. He found that the predictions were accurate on tech-
nology (e.g., number of transistors per chip), but underesti-
mated processor performance by a factor of 4 due to not
anticipating the rapidity of microarchitecture innovation. I
expect the innovation to continue (so I would not close the
patent office.)

If the performance gap is less than 25%, what will hap-
pen with relaxed models? Will middleware authors still
find it worthwhile to program with relaxed models? The
answer depends on how much burden it adds to middle-
ware authors to make them reason with relaxed models.

4.2 Reasoning with relaxed models is hard
Before considering relaxed models, we need to consider

the context. Authoring parallel middleware is hard. Many
programming projects already stretch the intellectual limits
of programmers to manage complexity while adding fea-
tures, making behavior more robust, and staying on sched-
ule. Dealing with relaxed models must necessarily either
add a real cost (e.g., personnel or schedule delay) or oppor-
tunity cost (something else not done).

The costs of using relaxed models depends, in large
part, on the complexity of reasoning with them. I find rea-
soning with relaxed models in the class “relaxing all
orders” to be difficult, even though I have co-authored a
half-dozen papers on the subject. In particular, I still have
to think carefully before I can correctly make any precise
statement about one of the existing models. Certainly mid-
dleware authors can understand the models, but do they
want to spend their time dealing with definitions of various
partial orders and about non-atomic operations? (A non-
atomic operation allows its effects to be seen by some pro-
cessors before others, in a manner detectable by running
programs). Middleware authors must understand the mod-
els to a fairly good level of detail to be able to include suf-
ficient fences without adding too many unnecessary ones.
Too many unnecessary fences will reduce the performance
gap seen in practice. In addition, authors of portable mid-
dleware (e.g., compilers) will need to master different
relaxed models for different hardware targets.

Others, however, will disagree with me and argue that
reasoning with models in the class “relaxing all orders” is
not that bad. Unfortunately, there is no final technical arbi-
ter of whether something is “too complex”. Thus, readers
will have to decide for themselves.

What about hardware memory consistency models in
the class “relaxing write to read program order”? In my
opinion, middleware authors targeting these models have
an easier task than those targeting the class “relaxing all
orders”. Assuming causality—as found in the commercial
models of this class (IBM 370, Pentium Pro, and Sun
TSO)—middleware authors can reason with SC and not
have to consider placing fences, as long as they avoid using
convoluted code (e.g., Table2). Therefore, in my opinion,

these models add a negligible intellectual burden to mid-
dleware authors. On the other hand, others argue that
“close to SC” is “not SC”. This is theoretically correct. The
reader will have to judge who is right in practice.

4.3 The bottom line
I recommend that future systems implement SC as their

hardware memory consistency model. I do not believe that
performance boost from implementing models in the class
“ relaxing all orders” is enough to justify the additional
intellectual burden the relaxed models place on the middle-
ware authors of complex commercial systems.

There are, however, several other viable alternatives.
First, one can provide a first-class SC implementation and
add optional relaxed support [4]. One could, for example,
provide additional instructions that are more relaxed (e.g.,
Sun’s block copy instructions) or multiple memory consis-
tency model modes. Care must be exercised when adding
options, however, because doing so incurs both implemen-
tation and verification costs. Multiple modes, in particular,
can add significant verification costs if they enable a large
new cross-product of hardware interactions.

Second, one can implement a model in the class “relax-
ing write to read program order” (that guarantees causal-
ity). These models allow hardware to play a few tricks
more easily than with SC without affecting most middle-
ware authors. (Woe, however, to those who are affected.).
This option makes most sense for new systems that must be
backwardly compatible with old systems that use these
models. Third, one can implement a “relaxing write to read
program order” model and add optional relaxed support.

5 Summary

Many future computers will contain multiple processors
sharing memory. These hardware systems must define a
memory consistency model to precisely define the allow-
able behavior of memory. A reasonable model is that a
shared memory multiprocessor behaves like a multipro-
grammed uniprocessor. This model was formalized by
Lamport as sequential consistency (SC). Since SC appears
to limit some implementation optimizations, researchers
and practitioners have defined several relaxed models.
Some of these models only relax the order of writes to
reads (processor consistency, IBM 370, Pentium Pro, and
TSO), while others aggressively relax order among normal
reads and writes (WO, RC, Alpha, PowerPC, and RMO).

Nevertheless, I have argued that, with the advent of
speculative execution, multiprocessor hardware should
implement SC or, in some cases, models that just relax the
ordering from writes to reads. I make a case that aggres-
sively relaxed models are a less effective choice, because
the future performance gap between the aggressively
relaxed models and SC will not be sufficient to justify

Mark D. Hill, “A Case for Making Multiprocessors Sequentially Consistent“ Page 7 of 7

exposing the complexity of the aggressively relaxed mod-
els to the authors of low-level software.

While I argue that SC is preferred, several other viable
alternatives also exist. First, one can support SC with
optional relaxed extensions. Doing so can speed some
operations, but pays implementation and verification costs
regardless of whether the relaxed support is used in prac-
tice. Second, one can support a model like IBM 370, Pen-
tium Pro, and TSO that allow hardware to play a few tricks
more easily than with SC and appears like SC to almost all
middleware. This option make most sense for new systems
that must be backwardly compatible with old systems that
use these models. Third, one can support one of these mod-
els with optional relaxed extensions.

Let me close by comparing instruction sets and hard-
ware memory consistency models, two interfaces on the
hardware/software boundary. Almost all current instruction
sets present programmers and compilers with a sequential
model (for each processor). Current implementations, how-
ever, now use complex pipelines, out-of-order execution
and speculative execution to actually perform instructions
out of program order, while at the same time using consid-
erable logic to preserve the appearance of program order to
software.

For the memory consistency model interface, we have a
similar choice. With SC, we can hide the out-of-order com-
plexity from software at some cost in implementation com-
plexity. With relaxed models, complexity is made visible to
the software interface. As with instruction sets, I think we
should use SC to keep complexity off the interface and in
the implementation where it belongs.

6 Acknowledgments

The ideas in this paper crystallized through interactions
with many people at Wisconsin and during my 1995-1996
sabbatical at Sun Microsystems, which was graciously sup-
ported byGreg Papadopoulos. I thank the following peo-
ple—who may or may not agree with me—for their
constructive comments on this paper:Sarita Adve, Doug
Burger, Babak Falsafi, Kourosh Gharachorloo, Andy Glew,
Rebecca Hoffman, Alain Kägi, Shubu Mukherjee, Guri
Sohi, Jim Smith, andDan Sorin.

References

[1] SaritaV. Adve. Designing Memory Consistency Models for
Shared-Memory Multiprocessors. PhD thesis, Computer Scienc-
es Department, University of Wisconsin–Madison, November
1993.

[2] SaritaV. Adve and Kourosh Gharachorloo. Shared Memory Con-
sistency Models: A Tutorial.IEEE Computer, 29(12):66–76, De-
cember 1996.

[3] DouglasC. Burger and James R.Goodman (Editors). Special Is-
sue on Billion-Transistor Architectures.IEEE Computer, 30(12),
December 1997.

[4] Kourosh Gharachorloo.Memory Consistency Models for Shared-
Memory Multiprocessors. PhD thesis, Computer System Labora-
tory, Stanford University, December 1995.

[5] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two
Techniques to Enhance the Performance of Memory Consistency
Models. InProceedings of the 1991 International Conference on
Parallel Processing (Vol. I Architecture), pages I–355–364, Au-
gust 1991.

[6] Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd
Mowry, and Wolf-Dietrich Weber. Comparative Evaluation of
Latency Reducing and Tolerating Techniques. InProceedings of
the 18th Annual International Symposium on Computer Architec-
ture, pages 254–263, June 1991.

[7] Intel Corporation.Pentium Pro Family Developer’s Manual, Vol-
ume 3: Operating System Writer’s Manual, January 1996.

[8] Leslie Lamport. How to Make a Multiprocessor Computer that
Correctly Executes Multiprocess Programs.IEEE Transactions
on Computers, C-28(9):690–691, September 1979.

[9] Parthasarathy Ranganathan, VijayS. Pai, Hazim Abdel-Shafi,
and SaritaV. Adve. The Interaction of Software Prefetching with
ILP Processors in Shared-Memory Systems. InProceedings of
the 24th Annual International Symposium on Computer Architec-
ture, pages 144–156, June 1997.

[10] Albert Yu. The Future of Microprocessors.IEEE Micro,
16(6):46–53, 1996.

