Manuscript Submitted for Publication, October 6, 1997.

Multiprocessor s Should Support Simple Memory Consistency M odels

Mark D. Hill

Computer Sciences Department
University of Wisconsin—Madison
1210 West Dayton St.
Madison, WI 53706 USA
http://ww. cs.w sc. edu/ ~mar khi | |

Abstract corventional single-threaded programs are mulkigteon
Many futue computes will be shaed-memory multimcessos. the processors. Mg performance-critical parts of com-
These haiware systems must define for softvéine allowable pute-intensie applications will be parallelized bypert
behavior of memoryA reasonable model is sequential consis- programmers to use multiple threads sharing data through
tency (SC), whitmales a shaed memory multipcessor behave shared memoryWhen one gme endor for example, par-
like a multippgrammed unipscessarSince SC appesto limit allelizes and obtains a performanceattage, competitors
some of the optimizations useful fggeessive hatware imple- i rapidly follow suit. Finally someday we may be able
mentations, @éseachers and pactitioners have defined geral to kuild compilers that can fefctively parallelize most

relaxed consistency models. Some of these model®lmstthe . . -
; . . sequential programs or pfide tools and abstractions that
ordering fom writes to eads (pocessor consistenciBM 370, .
allow mary people to program in parallel.

Intel Rentium Po, and Sun TSO), while otlsezggressively elax

the oder among all normalgads and writes (weak dering What hardvare is needed to support threads with shared

release consistencPEC Alpha, IBM BwerPC, and Sun RMO). memory? First, the hardwe should prdde a well-defined
This paper agues that multiprcessog should implement SC interfacefor shared memonySecond, it should pvide a

or, in some cases, a model that justakes the atering flom high-performancémplementatiorof the interce.
writes to eads. | ague a@jainst using ggressively elaxed models

becausewith the advent of speculativgegeution, these models Defining a shared-memory multiprocessariterfaice to

do not give a stitient performance boost to justifymsing their ~ memory is easier if we first consider a uniprocessami-

compleity to the authas of low-level softwae. processor xecutes instructions and memory operations in
a dynamic recution order calleghrogram oder. Simple

1 Introduction processors actuallyxecute operations in program order

while comple processors only appear to do so. In either
case, each read must return thkie of the last write to the
same address, whelast is uniquely defined by program
order If the uniprocessor is multiprogrammed otwases
exist. If a program xecutes as a single thread without shar-

Many future computers will contain multiple proces-
sors, in part, because the giaal cost of adding a e
additional processors is sonlahat only minimal perfor-
mance gin is needed to makthe additional processors

cqs';-efective. Intgl, for @ample, nav makes cards con- ing memory then the programmermemory integce is
taining four Pentium Pfo processors that can easily be o same as for a uniprocessor without multiprogramming.
mcorporgted into a system. Multiple-processor cards Will 11,4 situation is more compigon the other hand, if a pro-
help multiprocessing spread from sens/to the desktop. gram has multiple threads sharing memory (or the program
How will these multiprocessors be programmed? The ghares memory with other running programs or is the oper-
evolution that has already gen is likely to continue. First, ating system). In this case, thast write to an address
multiprocessors are used for multiprogramming, wherecqyiq be by itself (the same thread) or by another thread
(that was contgt switched onto the processor since this
This work is supported in part by Wright Laboratoryiénics Directorate, ~ thread$ last write to the address). In most cases, softw

Air Force Material Command, USARinder grant #F33615-94-1-1525 yses synchronization to makrogram results meaningful.
and ARR order no. B550, NSF Grants MIP-9225097 and MIPS-

9625558, and donations from Sun Microsystems. The U.geiGment is Programmers can model a multiprogrammed uniproces-

authorized to reproduce and distrie reprints for Geernmental purposes : ;
notwithstanding ay copyright notation thereon. The wiss and conclu- Sor as a meing of the program order of eaCheeu“ng

sions contained herein are those of the authors and should not be intefhread into a single total order of processaceition. Most
preted as necessarily representing tffieiaf policies or endorsements, programmers, forxample, wuld epect the code frag-

either expressed or implied, of the Wright Laboratoryiénics Director- ;
ate or the U.S. Gernment. ment in TAblel (bottom of page 2) to seat a_copy to
the walue ofnew

C with POSIX Model Java with Threads

High Perf. Fortran

Assemb ly Langua ge

Shared-Memor y Hardware Memor y Consistenc y Model (e .g., SC)

FIGURE 1. A shared memor y multipr ocessor has one or
sistenc y models (upper lines) and one har

must preser ve HLL memor y semantics when translating pr
y to the har dware model.

assemb ly langua ge programs are written directl

Most computers todayhowever, are programmed in
high-level languages (HLLs), such as C, C++, andaJa
This practice creates btnmemory interdice leels. At the
higher level, each HLL defines memory for its program-
mers. At the lwer level, hardvare defines memory for
low-level software, which | will callmiddlevare. Middle-
ware includes compilers, libraries, vilee drivers, and
operating systems and soney fparts of important applica-
tions (e.g., databasesrsoftware written in HLLS, com-
pilers must translate HLL memory operations inta-lo
level ones in a manner that presssymemory semantics. In
Tablel, for exkample, a compiler should not reorder $21’
stores talat a andf | ag. POSIX threads, for@mple, rec-
ommends that synchronization be encapsulated in library
calls, such apt hr ead_nut ex_1I ock() .

The interace for memory in a shared memory multipro-
cessor is called memory consistency mod@&8imilar to a
uniprocessqrHLL programming induces the batevels of
memory consisteryc models depicted in Figute high-
level models for each HLL and onewdevel model for
hardware. This paper is primarily concerned with hamdsv
memory consistelycmodels.

A multiprocessor can use the same reddyi-simple
memory interhce as a multiprogrammed uniprocessor
This memory consisteganodel was formalized by Lam-
port assequential consistenc{C) [8]. Sectior?2 agues
the benefits of SC.

TABLE 1. Is dat a_copy always setto new?

Thread or
Processor P1

Thread or
Processor P2

dat a new,

SET,;

flag =
while (flag != SET) {}

data_copy = data;

more high-le vel langua ge (HLL) memor y con-

dware memor y consistenc y model (lo wer line). Mid dleware

ograms to the har dware model. In contrast,

Perhaps surprisinglyhe hardwre memory consisteyic
models of most commercial multiprocessors are not SC.
This occurs because altermvatimodels are belred to bet-
ter facilitate high-performance implementations. Sec8on
examines dravbacks of implementing SC andva@lterna-
tive memory consistegcmodels—calledrelaxed mod-
els—overcome some of them. Some of these models just
relax the ordering from writes to reads (SecBah), while
others aggresaely relax the order among all normal reads
and writes (SectioB.2). More details about these models
and references to primary sources can be found irRaat-e
lent relaxed memory model tutorial by Advand Gharac-
horloo [2] and their Ph.D. theses [1,4JorRhis reason,
mary academics, including myself,y@adwcated relaxd
models oer SC.

The adent of speculate execution has changed my
mind. Sectio® agues that multiprocessor harare
should implement SC pin some cases, models that just
relax the ordering from writes to reads. l\neee aggres-
sively relaxed models as a less good choiceglarthat the
future performanceap between the aggressly relaed
models and SC will be in the range of 25% or less
(Sectiond.1). In my opinion, such a performan@pgds not
sufficient to justify lurdening middlesare authors with rea-
soning about aggressly relaxed memory models
(Sectiond.2). | also discuss altermadis, such as supporting
SC with optional relaed etensions or using commercial
models that relax the order from writes to reads (especially
when backwrd compatibility is imolved).

2 Sequential Consistency

Lamport defined a multiprocessor to bequentially
consisten(SC) [8] if:

the result of any xecution is the same as if the
opermations of all the pycessos wee eecuted
in some sequential der, and the opeations of
eadh individual pocessor appear in this
sequence in the der specified by its pgram.

The principle benefit to selecting SC as the iamafto tion optimizations whose use is precluded by SC without
shared memory hardwe is that it is what peoplepect. If the complaity of speculatie execution. SC, forxample,
you ask moderately sophisticated saftev professionals malkes it hard to use writeufers, because writeuffers
what shared memory does, yhavill likely define SC cause operations to be presented to the cache coherence
(albeit less precisely and less concisely than Lamport).protocol out of program orde®traightforvard processors
Since good intedces should not astonish their users, SCare also precluded fromverlapping multiple reads and
should be preferred. writes in the memory system. This restriction is crippling
A literal interpretation of SG@' definition, hwvever, in systems without caches, where all operations go to
might lead one to bele that implementing it requires one memory In systems with cache coherence, which are the
memory module and precludes {peocessor caches. This norm today this restriction impacts aeity whenever
is not the case.olthe contraryboth SC and the reled operations miss or bypass the cache. (Cache bypassing
models (described in Secti@) allov mary optimizations occurs on uncacheable operations to input/output space,
important for high-performance implementations [6]. some block transfer operations, and writes to some coa-
First, all models permit coherent caching. Caches maylescing write bffers.)
be private to processors or shared among some processors. Definition for relayed models are subtle and comple
They may be in one iel or in multi-level hierarchies. A next discuss tw important classes that Aehand Gharac-
straightforvard implementation of coherence processeshorloo aptly call felaxing write to ead pogram oder”
operations of each processor in program order and does natnd ‘relaxing all oders’ [2].
perform a write until after it walidates all other cached))
copies of the block. 3.1 Relaxingwriteto read program order
Second, all models can usen-binding pefeting. The class felaxing write to ead ppgram oder’, some-
Non-binding prefetching mes a block into a cache (in times called thgrocessor consistemhodels, more-eless
anticipation of use)ut keeps the block under the jurisdic- €xposes first-come-first-sexvwrite luffers to lav-level
tion of the coherence protocol. Non-binding prefetches Software. This means that a program that doeite x,
affect memory performance,ubnot memory semantics, write flag, andread ycan be sure thatis updated before
because the prefetched block can helidated if another ~ flag, but cannot knw if either is done when it reagsThis
processor wishes to write to the block. (In contrast, a bind-difference from SC mas no diference to most programs,
ing prefetch mues a datum into agester where it is unaf- Pecause most programs produce shared data by writing the
fected by subsequent writes by other processors.) Nondata and then writing a flag or counter (e.@bl&1). Pro-
binding prefetches can be initiated teedap cache miss 9rams only obsee differences from SC in cenluted
latengy with computation or other misses by either hard- €xamples, lile the code fragment illustrated intle2.
ware or softwre (through special prefetch instructions).
Third, all models can supponbultithreading where a
processor containsweral “hot” threads (or processes) that
it can run in an interle@d fashion. From a correctness

TABLE 2. PC, IBM 370, P entium Pr o and TSO allo w
both x_copy and y_copy to get old v alues,
thereby violating SC.

point of view, a multiprocessor with k-way multithreaded Processor P1 Processor P2
processors behas like a multiprocessor withxk corven- X = new y = new
tional processors. The implementation of multithreaded y_copy = y; x_copy = x;
hardware, havever, can switch threads on long-latgnc
events (e.g., to hide cache misses), can switelyeycle, Specific models in this class includésconsin/Stanfat
or simultaneouslyxecute multiple threads eacjcte. processor consistency (PC), IBM 370, Intehum Po,!
In SUmmarySC and the rel&d models all all of the andSun total stox oder (TSO) PC vas proposed by 1AL
above optimizations. SC, heever, permits the ab@ opti- consin and subsequently precisely defined by Stanford. In

mizations and éeps the softare interace simple. In par- s full academic generalitPC is less useful than the oth-
thUlar, SC enables middiare authors to use the same ers, because it does not guarantee a property calleshl-
target as a multiprogrammed uniprocessdius, it seems ity Causality requires thall other pocessos see the
hardware architects should choose SC. effect of a processa’operation wheany other pocessor
sees it. ithout causalityprocessor consistencan fil to
3 Relaxed Models
1. | add the Pentium Pro memory model [7] (Section 7.2) tae/fshd
Despite S& adwantages, most commercial haahe Gharachorlos classification. Intel also states that the Pentium and
. . Intel486 models are “virtually identical” to that of the Pentium Pro.
architectures hee selected alternaés to SC called Strictly speaking, a microprocessor must cooperate with a system to sup-

relaxed (or weak memory consistency modeRelaed port a memory model. Thus, one caiiléhsystems with Pentium Pros that
models were selected tadilitate additional implementa- do not support the Pentium Pro memory model.

look like SC in important casesvilving three or more
processors. One such case is illustratedalnel3.

and syncs—to tell the system when order is required.
Table4 illustrates hw the example in Rblel could be

augmented for Sun relad memory orderThe nenbar
TABLE 3. “Causality” is needed to ensure

is setto new

dat a_copy
TABLE 4. Memor y Barrier s (menbar s) to ensure
dat a_copy is always set to newunder Sun RMO .

Processor P1 Processor P2 Processor P3
data = new Processor P1 Processor P2
flagl = SET; data = new,
whi l e menbar #St oreSt ore
(flagl !'= SET){} flag = SET;
flagz = SET; while (flag != SET) {}

whi | e
(flag2 !'= SET){}
data_copy = data;

nenbar #lLoadlLoad
data_copy = data;

) o #St or eSt or e ensureslat a is written beford | ag, while
The commercial models in this class (IBM 370, Pen- nenhar #LoadLoad ensures | ag is read beforelat a

tium Pro, and TSO), on the other hand, guarantee causalityhyt could be omitted, in this case, due to the conditional).
and will alvays ensure thatat a_copy gets the aluenew

in Table3. Nevertheless, these modelsfdifin other subtle
ways, such as whether a processor readingwits write
ensures that other processors also see it.

These hardare memory consistepanodels mak it
easier for hardare implementors to use mahardvware
optimizations found in uniprocessors. In particupaoces-
sor writes can beuffered in a first-come-first-seswvrite
buffer in front of the cache and coherence protocaluss
of these hffered writes can often be bypassed to subse-
quent reads (by that processor to the same addnems) e permission.
before coherence permission has been obtained. This opti- Furthermore, a hardave model from theré&laxing all
mization is especially important for architectures withr fe orders’ class does not appear to be too great a challenge
general-purpose gésters, such as the Intel Architecture- for compiler writers. Br sequential HLLs with threads,
32. programmers often use synchronization libraries or declare

Furthermore, in my opinion, kimg the hardwre mem- critical variablesvol at i | e. In these cases, the compiler or
ory consisteng model be IBM 370, Pentium Pro, TSO or library writer can add appropriate fencesr Sequential
processor consistepavith causality has mgigible impact languages with parallelizing compilers, the compiler
on middlevare authors. If these authors assume S@, the inserts the synchronization so it can wnwhere the fences
will rarely be astonished. These models loakatly like need to be.

SC for the common idioms of data sharing (eahldl
and &ble3, ut not Table2).

Implementations of the models in this class cepiat
mary optimizations, because theneed only implement
order between operations when saftevasks for it and can
be aggressely out-of-order the rest of the time. Processors
can complete reads and writes to cache, fammple, gen
while presious reads and writes (in program orderyeha
not obtained coherence permissiontiAspeculatie exe-
cution, processors caatire reads and writes (i.e., preclude
rollback) while prgious reads and writesvait coherence

In summary relaxed models dér more hardare
implementation options than SC and appear to use infor-
mation that programmers or HLLs kmarnyway. Thus, it

3.2 Relaxing all orders appears hardare should use relad models instead of SC.

The class felaxing all oders’ seeks to alle all the
hardware implementation options of uniprocessors. Mem-
bers of this class may completely reorder reads and writeéd M ultiprocessor s Should Implement SC
and includeUSC weak atering (WD), Stanfod release

consistency (RC), DEC Alph#BM PowerPC, and Sun
relaxed memory der (RMO) The models diér in subtle
ways and in he programmers restore enough sanity to
make examples lile Tablel beh&e as gpected. VO and

Sectiond4.1 discusses o future processors trends—
especially more transistors and more speculatiofectaf
the performanceap between relad and SC implementa-
tions. Sectio.2 eplores the compléty of reasoning

RC ask programmers to distinguish certain reads andwith relaxed models. Sectiof.3 gives my opinion that the

writes as synchronization, so the haadev can handle
these more carefullyrhe commercial models add special
operations—ariously calledfences barriers, membes,

performance gin from relaed models will not be sfif
cient to justify the intellectual complity they add to the
software/hardware interéce.

4.1 The performance gap isnot that large Thus, the performanceag between rel@d and SC
The principal agument for relagd models is that using L:naf,lg,@f:}tgtg ?rz ﬁg?nué?]tgzvovgg?ﬁ gir? d\inngt?urc];?ig-nzse:rc:é)re
them can yield higher performance than with SC. So what ' b

is the performance gappetween relaead models and SC? often or (2) more frequently xbaust implementation
The answer is “it depends” on maprocessor implemen; resources for uncommitted instructions. So quantébgi

tation parameters, what is the current performancapy

Two obserations by Gharachorloo et al. [5] vea Rangnathan et al. [9] simulate aovkload of fi\g Stan-
reduced the performancea relatve to initial expecta- ford SPLASH b_e nchmgrks_on aMIPS R_lOOO@}Ip(c.)ces—.
tions. First, SC hardare does not need to serialize cache S°' USIN9 4'%’ ms.tructpn ISSue, dynamic schedullng with
misses, bt can @erlap them as relad implementations a 64-|nst.ruct|on Wl_ndm (instructions concurrently acé), .
do. SC implementations, Wever, should perform the specula’ue execuﬂop, caqhgs that support outstanding
actual loads and stores in program ordéwus, SC imple- MISSES t_o uphto eight (:|st|nc'F blr?CkS’ ancil maﬂher
mentations can handle four cache misses on the sequenc%slsumpt'Ons t Iat c?n be found !nt e.pableg ind t ?t a
“read A, write B,@ad C, write D in time modestly longer "¢ axed model—release consistgreimproves perfor-

than handling one miss and three hits. Using a non-block-Mance ueo:%an optimized implementation of SC by aera
ing cache, a SC implementation could pipeliget‘shaed age of 25%. The performanceap on other wrkloads will

blok A, gt eclusive blok B, gt shaed blok C, gt be diferent and may be smalleRelaxed models were

;) ; ; designed for the instructiondel parallelism of scientific
exclusive blok D" and then rapidly performréad A, write)
B. read C. write Das a seriespof Zapt):he hits. workloads, which tends to be dgar than found for other

Second, the adint of speculaiie eecution allevs both workloads, such as operating systems and databases.

relaved and SC implementations to be more aggressi How will the performance gp changeer the nat ten

With speculatie execution, a processor performs instruc- Years? One gument is that it will gre, because the

tions eagerly Sometimes instructions must be undone |at€ny to memory—measured in instruction issue oppor-

when speculation on prius instructions pnes incorrect tunities—is likely to grav. On the contraryl see tvo rea-

(e.g., mispredicted branches). A processommits (or sons that makit likely to shrink.

retire§ an instruction when it is sure that an instruction First, future microprocessor designers will be able to

will not need to be undone. Doing so usually frees up apply more transistors to enhance théeakeness of

implementation resources. known techniques for imprkang memory system perfor-
Speculatie execution allovs both relagd and SC mance. These techniques range from mundane measures

implementations to specutetily perform loads and stores like lager caches and more concurrent cache misses to
out of order In some cases, ever, relaed implementa- ~ Sophisticated speculation and prefetching. Increasing the
tions can commit instructions sooner than SC implementa-instruction windev size, for @ample, will improve the per-
tions. Considerfor excample, a program that wishesread formance of both SC and relkimplementations by mak-

A (which misses) ancead B(which hits). Both relasd and ing instruction-winda-full stalls less likely. The increased
SC processors can perform ttead Bbefore gen bejin- window size will also reduce the performancapgf the

ning the read A Furthermore, relad processors can absolute dference in stalls gets smalldthis is likely due

sometimes commitead Bwithout waiting for read Ato to the diminishing mainal utility of each additional
commit (as long as pvdus events, such as branch predic- instruction windev buffer.

tions, hae committed). SC processors,weer, cannot Second, architects will went nev microarchitectural

commit read B until read A commits (or least obtains techniques that, with speculation, can be applied to both
coherence permission for the block containing' Ahese SC and relazd models. He can | be so confident? First,

sorts of techniques are already used in the ABIOO], some of these techniques are already gestating, as can be
Intel Pentium Pro and MIPS R10000. While the specu- found in a recent special issuelBEE Compute3] and
lative techniques are comgleheir implication is simple: in the annual proceedings of conferenceg like ACM/

IEEE International Symposium on Computechiectue
and ACM International Symposium on Maarchitectue.
Second, architects in the pastbalvays irvented vays to
innovatively “waste” a lager transistor idget. In 1996, ¥
of Intel [10], re-amined Intel 1989 predictions for
L. Reaq B cannot be C(_Jmmltted, becau§§ it may need to bez. | calculate thealue 25% from the data in Raamganthan et al. Figure
unrolled if the block containing B must bevafidated due to an g a5 foligvs: S= sum ofxecution times with SCopt = 71.1 + 55.2 + 66.6
exclusive request by another processor before this processor+ 61.0 + 56.7; R = sum okecution times with RC = 60.1 + 47.6 + 47.5 +
obtains coherence permission to block A. 63.4 + 33.6; (S/R - 1 100% = 23.2%.

Relaxed and SC implementations can do all the
same speculations, ub sometimes efaxed
implementations can commit instructions
sooner

1996. He found that the predictions were accurate on techthese models add agimible intellectual arden to mid-

nology (e.g., number of transistors per chipl), inderesti- dleware authors. On the other hand, othemguarthat
mated processor performance byaatdér of 4 due to not “close to SC” is “not SC”. This is theoretically correct. The
anticipating the rapidity of microarchitecture imation. | reader will hae to judge who is right in practice.
expect the inngation to continue (so | @uld not close the]
patent ofice.) 4.3 Thebottom line

If the performanceap is less than 25%, what will hap- | recommend that future systems implement SC as their
pen with relard models? W middleware authors still hardware memory consistepenodel. | do not beliee that

find it worthwhile to program with relad models? The performance boost from implementing models in the class
answer depends on Wwomuch turden it adds to middle- “relaxing all oders’ is enough to justify the additional

ware authors to makthem reason with relagd models. intellectual lurden the releed models place on the middle-
_ _ _ ware authors of comptecommercial systems.
4.2 Reasoning with relaxed modelsishard There are, hwever, several other viable alternags.

Before considering relaxi models, we need to consider First, one can prade a first-class SC implementation and
the contat. Authoring parallel middiware is hard. Man add optional relaed support [4]. One could, foxample,
programming projects already stretch the intellectual limits provide additional instructions that are more reldxe.g.,
of programmers to manage comptg while adding fea- Suns block cop instructions) or multiple memory consis-
tures, making beléor more rolust, and staying on sched- teng/ model modes. Care must beegcised when adding
ule. Dealing with relaed models must necessarily either options, havever, because doing so incurs both implemen-
add a real cost (e.g., personnel or schedule delay) or oppokation and erification costs. Multiple modes, in particylar

tunity cost (something else not done). can add significanterification costs if the enable a laye
The costs of using reled models depends, in ¢& new cross-product of hardwe interactions.

part, on the Compiéty of reasoning with them. | find rea- Second, one can imp]ement a model in the cledax-

Soning with relagd models in the ClaSSI’e1aXing all |ng write to ead pogram oder’ (that guarantees causal-

orders’ to be dificult, even though | hee co-authored a jty). These models aWo hardvare to play a fe tricks
half-dozen papers on the subject. In particulatill have more easily than with SC withoutfaefting most middle-

to think carefully before I can correctly nealary precise ware authors. (e, havever, to those who are fetcted.).
statement about one of theisting models. Certainly mid- Thjs option maks most sense forwesystems that must be
dleware authors can understand the models,do the backwardly compatible with old systems that use these
want to Spend their time dealing with definitions afigus models. Th”*d, one can imp|ementr&|‘axing write to ead

partial orders and about non-atomic operations? (A non-program oder’ model and add optional reled support.
atomic operation allgs its efects to be seen by some pro-

cessors befor.e others, in a manner detectable by running Summary

programs). Middleare authors must understand the mod-

els to a &irly good level of detail to be able to include suf- Many future computers will contain multiple processors
ficient fences without adding too mannnecessary ones. sharing memoryThese hardere systems must define a
Too maly unnecessary fences will reduce the performancememory consisterycmodel to precisely define the allo
gap seen in practice. In addition, authors of portable mid-able behaior of memory A reasonable model is that a
dleware (e.g., compilers) will need to masterfatiént shared memory multiprocessor beés like a multipro-

relaxed models for dierent hardwre tagets. grammed uniprocessoiThis model vas formalized by
Others, hwever, will disagree with me and gue that Lamport as sequential consistg{&C). Since SC appears
reasoning with models in the clagelaxing all oders’ is to limit some implementation optimizations, researchers

not that bad. Unfortunatelthere is no final technical arbi- and practitioners & defined seeral relaed models.
ter of whether something is “too compleThus, readers Some of these models only relax the order of writes to
will have to decide for themseds. reads (processor consistgntBM 370, Pentium Pro, and
What about hardare memory consistepanodels in TSO), while others aggressily relax order among normal
the class felaxing write to ead pogram oder’? In my reads and writes (@, RC, Alpha, PaerPC, and RMO).
opinion, middlevare authors tgeting these models V& Nevertheless, | hae agued that, with the adwt of
an easier task than thoseggting the classrélaxing all speculatre eecution, multiprocessor hardwne should
orders’. Assuming causality—as found in the commercial implement SC qrin some cases, models that just relax the
models of this class (IBM 370, Pentium Pro, and Sunordering from writes to reads. | mala case that aggres-
TSO)—middlevare authors can reason with SC and not sively relaxed models are a lessfesftive choice, because
have to consider placing fences, as long ag #eid using the future performance ag between the aggressly
convoluted code (e.g.,able2). Therefore, in my opinion, relaxed models and SC will not be §afent to justify

exposing the compldty of the aggressely relaxed mod- [4]
els to the authors of e level software.

While | ague that SC is preferred,vegal other viable 5
alternatves also ®ist. First, one can support SC with
optional relard etensions. Doing so can speed some
operations, bt pays implementation anenfication costs
regardless of whether the rekdk support is used in prac- (6]
tice. Second, one can support a moda li8M 370, Pen-
tium Pro, and TSO that allohardware to play a fe tricks
more easily than with SC and appears BC to almost all
middleware. This option makmost sense for nesystems (7]
that must be backavdly compatible with old systems that
use these models. Third, one can support one of these modgl
els with optional relaed extensions.

Let me close by comparing instruction sets and hard-[g
ware memory consistepanodels, tw interfaces on the
hardware/softvare boundaryAlmost all current instruction
sets present programmers and compilers with a sequential
model (for each processor). Current implementations; ho [10]
ever, nov use comple pipelines, out-of-orderxecution
and speculate execution to actually perform instructions
out of program ordemhile at the same time using consid-
erable logic to preseevthe appearance of program order to
software.

For the memory consistepenodel interéce, we hee a
similar choice. With SC, we can hide the out-of-order com-
plexity from software at some cost in implementation com-
plexity. With relaxed models, compidty is made visible to
the softvare interlce. As with instruction sets, | think we
should use SC todep complgity off the interfice and in
the implementation where it belongs.

6 Acknowledgments

The ideas in this paper crystallized through interactions
with mary people at Wsconsin and during my 1995-1996
sabbatical at Sun Microsystems, whichsgraciously sup-
ported byGreg Papadopoulosl thank the follving peo-
ple—who may or may not agree with me—for their
constructve comments on this papesarita Adve Doug
Burger, Babak Rlsafi, Kourosh Ghaachorloo, Andy Gle,
Rebecca Hdifnan, Alain Kagi, Shub Mukherjee Guri
Sohi, Jim SmithandDan Sorin

References

[1] SaritaV. Adve. Designing Memory Consistency Models for
Shared-Memory MultiprocessorBhD thesis, Computer Scienc-
es Department, University of Wisconsin—Madison, November
1993.

[2] SaritaV. Adve and Kourosh Gharachorloo. Shared Memory Con-
sistency Models: A TutorialEEE Computer29(12):66—76, De-
cember 1996.

[3] DouglasC. Burger and James Boodman (Editors). Special Is-
sue on Billion-Transistor Architecturd&EE Computer30(12),
December 1997.

Kourosh Gharachorloddemory Consistency Models for Shared-
Memory Multiprocessors?hD thesis, Computer System Labora-
tory, Stanford University, December 1995.

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two
Techniques to Enhance the Performance of Memory Consistency
Models. InProceedings of the 1991 International Conference on
Parallel Processing (Vol. | Architecturepages 1-355-364, Au-
gust 1991.

Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd
Mowry, and Wolf-Dietrich Weber. Comparative Evaluation of
Latency Reducing and Tolerating TechniquesPioceedings of

the 18th Annual International Symposium on Computer Architec-
ture, pages 254-263, June 1991.

Intel CorporationPentium Pro Family Developer’'s Manual, Vol-
ume 3: Operating System Writer's Manudanuary 1996.

Leslie Lamport. How to Make a Multiprocessor Computer that
Correctly Executes Multiprocess ProgrartiSsEE Transactions

on ComputersC-28(9):690-691, September 1979.

Parthasarathy Ranganathan, VifayPai, Hazim Abdel-Shafi,
and Sarita&/. Adve. The Interaction of Software Prefetching with
ILP Processors in Shared-Memory SystemsPiaceedings of
the 24th Annual International Symposium on Computer Architec-
ture, pages 144-156, June 1997.

Albert Yu. The Future of MicroprocessorsEEE Micro,
16(6):46-53, 1996.

