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Abstract

Distributed-memory parallel computers and networks of workstations (NOWs) both rely on effi-
cient communication over increasingly high-speed networks. Software communication protocols—
from flow-control and reliable delivery to multicasting and coherent distributed shared memory—
are often the performance bottleneck. Several current and proposed parallel systems—e.g., the Intel
Paragon—address this problem by dedicating one general-purpose processor (in a multiprocessor
node) specifically for protocol processing. This operating system convention reduces communica-
tion latency and increases effective bandwidth, but also reduces the peak performance since the
dedicated processor no longer performs ‘‘useful’’ computation.

In this paper, we study a network of multiprocessor workstations and ask the question: ‘‘when does
it make sense to dedicate a processor specifically for protocol processing?” We compare three pro-
tocol processing policies:Single, the baseline case with one processor that does everything;Fixed,
which uses a dedicated protocol processor; andFloating, where all processors perform both com-
putation and protocol processing.

We use a simple analytic model of a general request/reply protocol to illustrate the trade-offs
between the policies. The model shows that: i) adding a dedicated protocol processor to a unipro-
cessor node is unlikely to be cost-effective and even less likely to outperform the Floating policy;
ii) a dedicated processor is more advantageous for light-weight protocols (e.g., active messages)
than for heavy-weight protocols (e.g., TCP/IP), iii) the Fixed policy becomes advantageous when
communication becomes the bottleneck, as when multiple compute processors and multithreading
saturate the resource. The break-even point between Fixed and Floating is a function of the number
of processors, protocol overheads, and application parallelism.

We then evaluate these policies in the context of a fine-grain user-level distributed shared memory
system. We present preliminary measurements from a dedicated network of Sun SparcStation-20s
connected by a Myrinet network. The measured performance on four nodes—each with up to four
processors—of three hybrid shared-memory parallel applications confirm the intuitive results from
the model.
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1  Introduction

Distributed-memory parallel computers have become the supercomputers of the 1990s, providing
impressive performance on many large and important applications. Networks of workstations
(NOWs) promise to exploit economies-of-scale to make large-scale parallel computing cost-effec-
tive enough for every day use [4]. Both types of systems rely heavily on efficient communication
over high-speed networks. While the underlying network hardware keeps improving rapidly, the
overhead of software communications protocols—ranging from flow-control and reliable delivery
to multicasting and coherent distributed shared memory—has increasingly become a bottleneck
[18].

To address this problem, many distributed-memory parallel machines employ a dedicated protocol
processor to off-load the primary (computation) processor(s). For example, the Meiko CS-2 [17],
IBM SP-2 [8], and proposed Stanford FLASH [15] all use embedded processors to accelerate
communications performance. By reducing the frequency of system calls, interrupts, locking, and
cache pollution, these processors reduce communication latency and increase effective bandwidth.

A variation on this approach exploits the growing availability of bus-based shared-memory multi-
processors. The Intel Paragon [13], MIT StarT-NG [5], and Wisconsin T-Zero [21] systems all
dedicate one processor of a multiprocessor node—by operating system convention—specifically
for protocol processing.

Unfortunately, while a dedicated protocol processor can improve communications performance, it
provides little benefit for compute-bound programs. These applications would rather use the dedi-
cated processor for computation. In a recent experiment, researchers at Sandia demonstrated that
using the Paragon’s protocol processor for computation (via a low-level cross-call mechanism
under SUNMOS) nearly doubled the performance of Linpack [14].

In this paper, we study a network of multiprocessor workstations being used as a parallel machine
and ask the question:“when does it make sense to dedicate one processor in each node specifically
for protocol processing?” As with previous multiprocessor thread-scheduling studies
[28,29,25], the central question is when do the overheads encountered in practice outweigh the
theoretical advantages of processor sharing. In this study, we examine three scheduling policies for
protocol processing:

• Single, the baseline case where one processor performs all communication and computation,

• Fixed, where one processor in a multiprocessor node is dedicated for protocol processing, and

• Floating, where all processors perform computation and alternate acting as protocol processor.

We present a simple model—using mean occupancies and response times—for a general request/
reply protocol that shows that:

1. Adding a dedicated protocol processor to a uniprocessor node is unlikely to cost-effectively

improve performance over Single, and is even less likely to perform better than Floating,

2. The Fixed policy benefits light-weight protocols (e.g., active messages) more than heavy-

weight protocols (e.g., TCP/IP).



3

3. The Fixed policy performs better than Floating when communication becomes the bottleneck,

which is more likely to happen with multiprocessor nodes and/or multithreading. The

breakeven point is a function of the number of processors, protocol overheads, and application

parallelism.

We then present preliminary measurements from an implementation on four nodes of a network of
Sun SparcStation-20s connected by a Myrinet network1 running the light-weight Illinois Fast Mes-
sage protocol [20]. We vary the number of processors per node from one to four as well as the
number of threads per processor. We examine the performance of three hybrid shared-memory
applications [11] running on a fine-grain distributed shared memory system [23].

Measurements confirm the breakeven point predicted by the analytic model. Fixed performs better
than Float for communication-intensive codes that saturate the protocol processor. Fixed also per-
forms better for computation-intensive codes once the node’s internal bus nears saturation; Fixed
reduces bus contention because the protocol processing state remains resident in the dedicated pro-
cessor’s cache.

The next section summarizes the system architecture assumed in the remainder of the paper.
Section3 then describes the three protocol processing alternatives in more detail. Section4 pre-
sents our simple analytic model to present the intuition behind the policy performance. Section5
describes the relevant details of our distributed shared memory implementation and Section6 pre-
sents preliminary measurement results. Finally, Section7 concludes the paper.

2  System Architecture

Figure1 illustrates the general class of parallel machines—a dedicated network of multiprocessor
workstations—that we study in this paper. Each node of this system is a commodity multiproces-
sor workstation, consisting of one to four processors and memory connected by a bus. A snooping

1.  Note to reviewers: We expect to have results on at least 8 nodes (and possibly as many as 32 nodes) for the final ver-
sion of this paper.

FIGURE 1. Network of Multiprocessor Workstations
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cache-coherence protocol keeps the cacheswithin a node consistent. A network interface device
connects the node to a low-latency, high-bandwidth network; this device may either interface via
the node’s standard I/O bus or directly to the high-speed memory or graphics bus. Section5 pro-
vides more details of our current implementation.

Each node runs a standard commodity operating system but also runs higher-level software that
manages them collectively as a single parallel machine [3,10]. Parallel applications are invoked by
starting a single process on each of the nodes (i.e., the SPMD programming model); multiprocess-
ing within a node is handled locally. In this paper, we assume that space sharing—were the nodes
are logically allocated to separate parallel tasks—is the only form of sharing. More general time
sharing is of course possible, but is beyond the scope of this paper.

A distributed shared memory system extends the coherent shared memory abstraction beyond the
processors in a single node. This study assumes a fine-grain distributed shared memory system
based on the Tempest interface [22]. This system allocates shared memory at the page granularity,
like many other DSM systems, but maintains coherence at a finer grain (e.g., a cache block).
Coherence is enforced via a fine-grain access control mechanism analogous to the ubiquitous
page-level protection mechanism. While the results of this paper are largely independent of
whether this mechanism is implemented in hardware or software, the results in Section6 come
from a software technique [23].

High-performance communication is performed via an active message abstraction [30]. Active
messages are essentially very light-weight RPCs that are optimized for the case where processing
nodes are co-scheduled; that is, where the destination node already has the correct context for the
RPC. Message arrivals either cause interrupts or the processor(s) may poll the network interface to
eliminate the interrupt overhead. We assume Tempest active message semantics, which reduces
the need for synchronization by requiring sequential execution of handlers within a node.

Tempest is a user-level interface, so the distributed shared memory protocol actions run in user-
level software. Active message arrivals, fine-grain access control violations (also called block
access faults), and page faults are all vectored to their appropriate user-level handlers.

3  Protocol Processing Policies

In general, protocol processing consists of running the user and system software needed to manage
the communication between cooperating nodes. In this study, we focus on communication in par-
allel applications using the Tempest primitives, either directly or through a user-level distributed
shared memory system. Protocol processing includes both user-level block access fault and mes-
sage handlers plus the low-level messaging protocols that ensure reliable message delivery. Tem-
pest handlers are defined to be atomic and mutually exclusive, i.e. each node may have at most one
handler running at a time. This effectively limits each node to having a single processor executing
protocol events; regardless of the policy we say that such a processor isacting as protocol proces-
sor.

In the remainder of this section, we briefly describe each of the three protocol processing policies:
Single, Fixed, and Floating
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3.1  Single Processor

Single is the baseline policy that applies only to a single processor per node. Under this policy, the
single processor performs all protocol processing as well as all computation. Implementing active
messages under this policy either requires interrupts or periodic polling in the compute thread.
Otherwise, the active message response time could be unbounded, severely degrading application
performance. Unfortunately, delivering user-level interrupts is slow in most current operating sys-
tems; Thekkath and Levy showed that a simple exception (which requires a similar path through
the kernel) takes at least 60 to 200 microseconds for a round-trip [26]. The alternative is periodic
polling, which requires instrumenting the computation thread to periodically check for messages.
This can be done either via a compiler [30] or by directly editing the executable file [16]. This
approach requires a trade-off between latency and overhead: frequent polls decrease message
latency but increase overhead.

3.2  Fixed Protocol Processor

The Fixed policy dedicates one processor of a multiprocessor node to perform only protocol pro-
cessing. By always polling the network when otherwise idle, the protocol processor eliminates the
need for message interrupts or polling by the compute processor(s). In addition to decreasing the
total overhead, the Fixed policy invokes message handlers more quickly, reducing the round-trip
latency and protocol processor occupancy. Lower occupancy allows the dedicated protocol proces-
sor to sustain a higher bandwidth of protocol requests than under the Single policy. Secondary fac-
tors also help improve performance. The protocol processor’s caches are not polluted by compute
threads, and should thus have lower miss ratios [18,19].

3.3  Floating Protocol Processor

The disadvantage of dedicating a protocol processor is that may waste cycles that could have pro-
ductively contributed to the computation. The Floating policy addresses this dilemma by using all
processors to perform computation; however, when one becomes idle (e.g., due to waiting for a
remote request or synchronization operation) it assumes the role of protocol processor. Since all
processors may be computing, either interrupts or periodic polling is still required to ensure timely
active message handling. On the other hand, once a processor assumes the role of protocol proces-
sor, handler dispatch is nearly as efficient as in Fixed. Thus when communication is infrequent,
Floating can use all processors for computation. When communication becomes more frequent, it
degenerates to Fixed.

4  A Simple Analytic Model

In this section we develop a simple analytic model to provide intuition about the trade-offs
between the three protocol processing policies. We use the model to address two questions about a
parallel computing on a network of workstations:

• When is it cost-effective to add a second processor to serve as a dedicated protocol processor?

• When is it more cost-effective to use that second processor as a second computation processor

(the Floating policy) rather than a dedicated protocol processor (the Fixed policy)?
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We base the model on a simple request/reply protocol, a general paradigm employed by many par-
allel computing paradigms. Figure2 (left) illustrates the case of only one processor per node (Sin-
gle). The (compute) processor CP1 sends a request to the destination node CP2. The destination
node interrupts the local compute thread, invokes the protocol handler, which sends the appropri-
ate reply. Finally, the reply arrives back at CP1 where a handler takes appropriate action and
resumes the computation thread.

Figure2 (right) illustrates the same remote request/reply, but for a system with dedicated protocol
processors (PP1 and PP2). The protocol processor PP1 reduces the overhead on the requesting node
by eliminating two context switches and their resulting cache pollution. The protocol processor
PP2 eliminates the interrupt overhead on the destination node as well as overlapping the protocol
processing with the computation processor.

Our model estimates the performance of these three systems as functions of the following vari-
ables:

M = number of remote requests per processor,
C = mean computation time between remote requests (i.e., the inter-request time),
Lremote= remote request/reply latencywith a dedicated protocol processor,
Oreply = overhead of protocol processing on the destination node,
Opp = overheadsaved by a dedicated protocol processor.

M andC are characteristics of the application andLremoteandOreply depend upon the application
and network protocols and implementations.Opp depends upon message delivery and context

FIGURE 2. Request/reply protocol on Single (left) and Fixed (right)
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switch overheads and is defined such that the request/reply latency in the Single system isLremote
+ Opp.

We then estimate the execution time for the three systems as:

Tfixed = M (C + Lremote)
Tsingle = M (C + Lremote + (2 Opp+ Oreply) C / ( C + Lremote))
Tfloating= Tsingle / 2

TheTsingle equation assumes that all processors act as destination node for M requests, each incur-
ring overhead ofOpp+ Oreplyunless it happens to arrive while the processor is idle waiting for its
own remote request (we approximate this probability byC/(C+Lremote)). Similarly, remote laten-
cies areOpp longer unless the remote processor is idle.Tfloating optimistically assumes the second
processor executes half the instructions and issues half the remote requests. These simple esti-
mates obviously do not model contention, load imbalance, synchronization, or cache interference
and thus underestimate actual runtimes. More subtle omissions include that Fixed reduces over-
heads on the requesting node and that the higher overheads of Single and Float lead to a greater
susceptibility to queuing delays.

Figure3 (left) plots the normalized execution times (Tsingle/ Tfixed) as the mean inter-request time
C increases. This graph illustrates the intuitive result that communication-intensive programs
(smallC) benefit more from a dedicated protocol processor than computation-intensive programs
(large C). Similarly, as the program becomes communication-bound, the compute processor
becomes idle and acts like a protocol processor, eliminating the extra overhead. Not surprisingly,
Fixed performs best when communication and computation are perfectly balanced (C = Lremote),
since both communication and computation processors are equally utilized. The advantage of
Fixed decreases as the overhead saved by the protocol processor decreases (small2 Opp+ Oreply).

Adding a dedicated protocol processor is only cost-effective if the performance gain exceeds the
cost increment [31]. Thus if a two-processor workstation node costs one third more than a unipro-

FIGURE 3. Normalized execution time (Tsingle/Tfixed)
The left figure plots normalized execution time versus the computation time between
requests; the right figure versus compute processor utilizationC /(C+Lremote).
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cessor node, the dedicated protocol processor must improve performance by 33% to be cost-effec-
tive. The standard is even higher when we consider the alternative Floating policy. Our simple first
order model suggests that the Fixed policy must perform 100% better than the Single policy to be
more cost-effective than Floating. Figure3 (left) shows that this is only true when the overheads
eliminated by the protocol processor are significantly larger than the round-trip latency.

If a program becomes too communication intensive, then parallel processing becomes impractical,
regardless of the protocol processing policy. Figure3 (right) plots the normalized execution times
against the effective compute processor utilization under the Fixed policy (C / (C + Lremote)). This
graph shows that Fixed performs better than (and hence is more cost-effective than) Floating only
when the utilization is moderate (e.g., more than 20% but less than 80%) and the overhead (2Opp
+ Oreply) is at least eight times the remote latencyLremote. The latter is likely only with very light-
weight protocols and very fast network interfaces or very slow interrupt overheads.

The model also illustrates a surprising (to us) result: the Fixed policy is more beneficial for light-
weight protocols (e.g., active messages) than for heavy-weight protocols (e.g., TCP/IP). This runs
counter to the common intuition that a dedicated protocol processor helps off-load heavy-weight
protocols from the computation processor. The result follows from the observation that Fixed does
best when the extra overhead of Single (2Opp+ Oreply) is much greater than the round-trip latency
Lremote. But sinceOreply < Lremote, this is only true when 2Opp >> Lremote; in other words, when
the overhead of interrupts and context switches is much greater than the round-trip latency. This
result suggests that dedicated protocol processors may become more attractive as interrupt laten-
cies go up (due to faster processors) and network latencies go down (due to faster links and better
network interfaces).

Multiple Compute Processors and Multithreading

The Fixed policy becomes more attractive with multiple compute processors per node. Sharing a
protocol processor among multiple compute processors amortizes its cost, decreasing the perfor-
mance improvement needed to be cost-effective. However, sharing also increases the likelihood
for contention, since the protocol processor will be more highly utilized. Furthermore, the Floating
policy also benefits from more processors, because the likelihood that at least one is idle—and
thus acting as protocol processor—increases.

During program phases that exhibit high communication, Floating approximates the Fixed policy.
However, the overhead of Floating is always somewhat higher than Fixed, since the acting proto-
col processor must at a minimum decide when to return to computation. When a processor does
resume computation, there are additional synchronization and cache pollution effects when
another processor becomes acting protocol processor. The higher overheads lead to a greater prob-
ability of queueing delays under Floating, and when saturated this policy will produce lower band-
width than the Fixed policy.

Multithreading also shifts the balance toward the Fixed policy. For example, in multithreaded dis-
tributed shared memory systems [2,12], a remote miss causes the (compute) processor to switch to
executing a new thread. If the context switch overhead (Tcs) is less than the remote miss latency,
than multithreading should increase processor utilization [1]. Under the Fixed policy, the compute
processors’ utilization can grow as high asC / (C + Tcs), if the application has sufficient parallel-
ism and the protocol processor does not saturate. The protocol processor becomes the bottleneck
when the average overhead of processing a remote miss (Orequest + Oreply) exceeds the mean com-
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putation time plus context switch overhead (C + Tcs). Protocol processor saturation is even more
likely when multithreading is combined with multiple compute processors. However, since the
Fixed policy minimizes the overheads of remote accesses, the saturation point will be higher (bet-
ter) for Fixed than for Floating. Conversely, if multithreading does not saturate the protocol pro-
cessor, then Floating is likely to be the better alternative.

In summary, our simple model illustrates that the Floating policy is likely to be much better than
the Fixed policy unless multiple processors, multithreading, or both cause the application to
become communication intensive1. Of course, our simple model omits too many details to provide
more than intuition. Synchronization overheads, contention, and more complex protocol events
each affect the trade-offs in subtle ways. In the remainder of this paper we describe the implemen-
tation and evaluation of the three policies in a distributed shared memory system on a network of
workstations.

5  Implementation on a NOW

We have implemented the three protocol processing policies in a distributed shared memory sys-
tem running on a network of multiprocessor workstations. Each processing node is an unmodified
SPARCStation 20 with 4 66MHz HyperSparc processors, each with a 16 Kbyte instruction cache
backed by a 256K direct-mapped unified cache. The SS-20s are connected via Myrinet adaptors on
the SBus (the standard I/O bus) and an 8-port Myrinet switch. The remainder of this section
describes the relevant details of the threads package, fine-grain distributed shared memory system,
messaging layer, and protocol processing implementations.

Threads

Our implementation is based on a locally-developed light-weight user-level thread package. The
thread package creates a Solaris LWP (kernel thread) per processor and non-preemptively runs the
(user) threads on them. The thread package provides intra-node (local) spin-lock, semaphore and
barrier operations. Threads sleep on a semaphorewait or at an incomplete barrier; semaphore
signal and barrier completion wake them up. A thread scheduler is invoked either when a thread
goes to sleep or explicitly wakes up another thread. The scheduler used for this paper uses a single
thread queue per node, and hence provides no processor affinity. We experimented with a schedul-
ing policy that bound threads to processors—to reduce cache pollution and eliminate synchroniza-
tion in the scheduler—but the load imbalances made it run slower for our applications. Threads
also use only a single SPARC register window to facilitate fast context switching; applications are
compiled using GCC 2.6.3 with the-mflat argument to use a flat (24 integer + 8 global) register
file and eliminatesave andrestore instructions.

Fine-grain access control

Fine-grain access control provides the foundation of the distributed shared-memory system used in
this study [23]. The Tempest interface defines a set of mechanisms to control sharing a region of
memory at subpage granularities. These mechanisms allow user-level software to manipulate logi-
cal tags on 32-byte blocks of memory. These tags have possible values ofInvalid, Readonly and

1.  Prefetching will also shift the balance towards Fixed but is not evaluated in this study.
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Writable; read accesses to a Readonly or Writable block and Write accesses to a Writable block
proceed as normal. Read or Write accesses to an Invalid block or Write accesses to a Readonly
block incur block access faults. These faults invoke a user-registered handler much like the UNIX
signal interface.

The study in this paper uses a software implementation of fine-grain access control similar to that
in Blizzard-S [23]. We use EEL [16], a tool for executing editable files, to instrument each shared
memory operations with tag lookup code that enforces the Tempest access control semantics. The
instrumentation is wrapped around set and clear operations on a cached memory location to guar-
antee the tag check and the instrumented memory operation together appear atomic. On a block
access fault, the control is transferred to a stub that saves the global registers and the condition
codes and submits a handler dispatch request to the protocol processor.

This all-software approach causes code and time dilation to the instrumented performance, and is
not intended as a high-performance implementation. However, the results of this study are largely
independent of this implementation decision.

Messaging Layer

On this system, the Tempest active message interface is implemented on top of the Illinois FM
library, which provides low-latency communication through the Myrinet switch [20]. The library
implements an active message interface and guarantees delivery of messages. The FM interface
providessend calls to inject messages and anextract call to receive any pending messages and
dispatches the corresponding handlers. The FM library provides no support for interrupts, so all
nodes must periodically poll the Myrinet interface card via the extract call.

Tempest defines two types of handlers to be dispatched: message handlers, and block access fault
handlers. The dispatch code calls the message library, which in turn invokes message handlers on
availability of messages. The code also sweeps an array of pending block access faults. When a
thread takes a block access fault, it enters the handler dispatch information into the array entry cor-
responding to its processor id. When multiple threads fault on the same block, the dispatch code
runs a single handler on the behalf of all threads. Faulting threads first block until the dispatch
code accepts and processes their request, and then perform a wait on a semaphore associated with
the block address. The thread package subsequently schedules other threads waiting to run. Up on
a reply message, a message handler calls a resume routine which performs a signal on the sema-
phore and wakes up all threads waiting for the block.

In the Fixed policy, the dedicated protocol processor executes the dispatch code in a tight-loop.
The remaining processors use the normal thread scheduler to run compute threads.

The Floating policy runs compute threads on all the processors in a node. We use EEL to instru-
ment the back edges of loops to periodically call the dispatch code. As in the case of block access
faults, the transfer of control from the thread to the dispatch code happens through a stub which
saves the global registers and condition codes. Polling the interface card involves accessing the I/
O bus and can not be performed efficiently. The saving and restoring state through the stub also
introduces overhead. We therefore, opt for calling the dispatch code every N iterations of the loop
(N is currently set to 128).

In order to prevent multiple processors from polling simultaneously, we implement a round-robin
polling ownership policy. When a thread returns from a call to the dispatch code, it transfers the
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ownership to another processor in a round-robin fashion. When a processor blocks waiting for run-
nable threads, it enters a non-instrumented tight-loop that waits for the processor to become the
poll owner and then directly calls the dispatch code. The latter has the advantage of polling fre-
quently (not periodically) and saves the overhead of going through the stub.

6  Performance on a NOW

This section presents preliminary measured performance of our distributed shared memory system
running on the three policies on our network of workstations. Section6.1 presents microbench-
mark results that measure the best-case latencies and overheads of the implementation. The
remaining sections analyze the performance of the applications in turn.

Table1 lists the applications and input parameters used in this study. All programs are Tempest-
compliant applications and communicate using a combination of active messages and transparent
shared memory. Coherence is maintained using a sequentially-consistent protocol with 64-byte
blocks. The applications use PARMACS directives [6] to create a process per node, allocate shared
memory, and synchronize between nodes. Each PARMACS process is multithreaded using our
locally-developed thread package. Threads share the same address space and therefore can share
the remote data.

6.1  Microbenchmark Results

Table2 presents the results from a simple microbenchmark experiment to determine the latency
and overhead of remote misses in our distributed shared memory system. The latency numbers
were computed by counting the time for one processor to perform 10,000 remote misses in a tight
“miss” loop with the home node spinning in a tight compute loop. Overhead numbers were com-
puted by saturating the requester (responder) and calculating the time required to process each
request (response).

Table2 shows that the remote miss latency increases from 113 us under the Fixed policy to 168 us
under the Single policy, or 49%. This increase is largely due to higher overheads to dispatch the
protocol handlers on both the requesting and responding nodes, which increase by 44% and 59%,
respectively. The Other category includes network latency, which should be the same for both
models, and miss detection. Miss detection is the time from when the access control lookup detects
the block access fault until it is dispatched by the protocol processor. Since under Single the same
processor acts as both protocol and compute processor, this overhead is obviously larger.

.

Name    Input Data Set

em3d 8160 nodes, degree 5, 5% remote, distance span 2, 10 iterations

gauss 672 x 672 matrix

tomcatv 768 x 768 matrices, 10 iterations
TABLE 1. Benchmark Input Parameters
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6.2  Tomcatv

Tomcatv is a parallel version of the well-known SPEC benchmark [24]. The program performs an
iterative stencil computation on a pair of matrices allocated in shared memory and five local matri-
ces. Work is partitioned by assigning a block of rows to each thread. On each iteration, the threads
make three passes over the rows they own: update matrix, calculate locally maximum residual
value, adjust values based on globally maximum residual. A synchronization step is required
between the second and third passes to calculate the globally maximum residual. All communica-
tion in this benchmark occurs through transparent shared memory and is dominated by near-neigh-
bor sharing of bordering rows due to the stencil nature of the computation.

Tomcatv is compute-intensive because most of the data is either allocated locally, or remains
cached in memory for the duration of the program. Because the computation is a stencil, commu-
nication occurs primarily on the border rows between two neighboring nodes. For our data sets,
Single spends up to 85% of the time computing. Using our model from Section4 and our overhead
estimates for Single from the microbenchmarks, we expect that adding a dedicated protocol pro-
cessor will not significantly improve performance. Figure4 (left) shows the performance of Sin-
gle, Fixed, and Floating for one thread per CPU; as predicted, the results show that Fixed with two
processors runs less than 10% than Single.

Since threads are assigned complete rows and only border rows are actively shared, only two
threads actually incur remote misses and participate in communication; all other threads simply
compute on data that is always cached locally. As a result, communication and computation may
be overlapped between at most two threads on each node, making tomcatv an unlikely candidate
for multithreading. Figure4 (right) corroborates this result; running two threads per processor
does not result in speedups. The program could be restructured to allow better overlap, but this is
unlikely to be beneficial since the computation to communication ratio is so high.

Conversely, adding compute processors should substantially improves performance because the
application spends a large fraction of its time in parallelizable local computation. This also allows
communication to occur in parallel, but, as with multithreading, should not be a significant factor.
Figure4, illustrates that Floating with 2 processors is a nearly a factor 2 faster than Single. How-

Fixed Single %increase

Round-trip remote miss time 113 us
(100%)

168 us
(100%)

49%

Requester Overhead 54 us
(48%)

78 us
(46%)

44%

Home Node Overhead 27 us
(24%)

43 us
(26%)

59%

Other (includes network
latency and miss detection)

32 us
(28%)

47 us
(28%)

47%

TABLE 2. Remote miss latency and overheads for Fixed and Single

Round-trip miss calculated with requester in tight miss loop and requester in tight compute loop.
Overheads calculated via microbenchmarks that saturate requester (responder) and calculate time
per request (response).
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ever, since the processor cache is not large enough to hold the entire data set, the bus eventually
becomes a bottleneck with enough compute processors. Our results show that with up to three pro-
cessors, Floating outperforms Fixed because it uses one more processor for computation. Once the
computing processors push the bus to its limit, Fixed improves performance slightly by minimiz-
ing the bus traffic required to process protocol actions (since the protocol code and state are not
flushed from the protocol processors cache by the computation).

6.3  Em3d

Em3d models propagation of electromagnetic waves through objects in three dimensions [9]. The
program iterates over a bipartite graph made up of directed edges between nodes representing
electric and magnetic fields (E and H nodes, respectively). The graph is partitioned over all threads
so that each thread gets an equal share of the computation. In the first of two phases, threads allo-
cate and initialize the nodes they own, and create edges between them and other nodes in the
graph. In the second phase, each thread iterates over its sets of E and H nodes, first computing new
E values as a weighted sum of the its neighboring H nodes, followed by an analogous step to
update the H nodes. In this implementation, the program’s build phase uses remote store opera-
tions similar to the original Split-C version of the code. The second phase uses transparent shared
memory for communicating data among the threads.

In em3d, communication occurs when an edge connects two graph nodes allocated on different
processor nodes. Since a thread spends only 1.7 microseconds per edge to compute the new value
of a graph node, even if only 5% of the edges are to remote nodes, the computation per remote
edge is only 34 microseconds. If each remote edge causes a remote miss (as in this version of the
program), even with the best-case round-trip miss time of 113 microseconds the processor will
only be 23% processor utilized. With low utilization, Single spends most of time acting as a proto-
col processor, not incurring the overhead of switching between computation and protocol process-
ing. Consequently, adding a dedicated protocol processor should not result in a significant
performance boost. Figure5 indicates that indeed the extra protocol processor in Fixed improves
the performance by only 16% over Single.
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We can improve em3d’s performance by overlapping multiple requests for remote edges. The
higher request rate allows for better utilization of protocol processing bandwidth, until the band-
width reaches a saturation point either on the requester or on the responder side. With our data set
for em3d, remote edges from one (machine) node are uniformly distributed over the other nodes.
Therefore, there are no hot spots on the protocol traffic and all protocol processors saturate at the
same peak bandwidth.

There are two ways to exploit the available protocol processing bandwidth. Multithreading
increases the request rate by switching between threads, as long as the switch time is lower than
the round-trip time of a miss. Adding processors similarly allows for higher number of simulta-
neous requests, increasing the request rate. Figure5 indicates that both multithreading and multi-
processing can utilize the available bandwidth effectively [27]. That is, the request bandwidth is
not limited by the switch time. Saturation for both Floating and Fixed occurs quite rapidly as we
increase the number of threads and/or processors; this follows from the relatively high protocol
processing overheads of our remote miss handlers. Fixed is 30% faster than Floating at the satura-
tion point. Fixed can sustain higher peak bandwidths because Floating incurs the extra overhead of
switching between computation and protocol processing.

6.4  Gauss

Gauss is a kernel that uses Gaussian elimination to solve a linear system of equations. The rows of
the coefficient matrix are evenly distributed to the threads, which execute the computation in three
phases. In the first (unmeasured) phase, threads initialize their part of the matrix with pseudo-ran-
dom numbers. In the second phase, threads solving the equations one column at a time, computing
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a maximum pivot per column. Computed maximums are locally reduced among the threads on a
node to obtain a per node local maximum. A recursive halving algorithm—implemented using
Tempest’s active messages—is used to calculate a global maximum. All threads then read the row
of the maximum pivot from shared memory and use it for the next iteration. In the third phase, the
threads iterate through the columns starting from the last, and for each column globally compute a
value, participate in a barrier synchronization and subtract the computed value from all their rows.
The last phase exhibits load imbalance and does not speedup as the number of threads increases.
However, it does not account for a large fraction of the execution time [7].

Reading the maximum pivot row is a potential bottleneck since all threads read the row before
computation begins. Thus the faster the protocol processor can deliver the data, the faster the pro-
gram runs. In addition, “broadcasting” the pivot and the reduction are the only forms of communi-
cation; since they are both synchronous operations, communication cannot be overlapped with
computation and gauss will not benefit from multithreading.

Figure6 indicates that Fixed improves performance over Single by 28%. The two-threaded config-
urations (right) do not exhibit any improvements over the single-threaded configurations (left).
Both Floating and Fixed effectively exploit the parallelism available in the computation up to 3
processors, after which the broadcast of the pivot row accounts for a large fraction of the running
time. Floating initially outperforms Fixed benefiting from the extra compute processor. With the
broadcast eventually dominating the running time, Fixed sustains a higher bandwidth of protocol
operations delivering the maximum pivot row at a faster rate.

7  Summary and Conclusions

In this paper, we examined how the protocol processing should be scheduled on a network of mul-
tiprocessor workstations used as a parallel computer. Previous systems such as the Intel Paragon
have dedicated a processor specifically for protocol processing. We compare this Fixed policy with
the alternative policy of using all processors for both computation and communication.

0

5

10

15

20

25

30

35

1 2 3 4
0

5

10

15

20

25

30

35

1 2 3 4
Number of CPUS/Node

Ti
m

e 
(in

 s
ec

on
ds

)
Single

Floating

Fixed

0

5

10

15

20

25

30

35

1 2 3 4
0

5

10

15

20

25

30

35

1 2 3 4
Number of CPUS/Node

Ti
m

e 
(in

 s
ec

on
ds

)

Single

Floating

Fixed

FIGURE 6. Gauss performance

One thread per CPU Two threads per CPU



16

We use a simple analytic model to illustrate the trade-offs between the policies. The model shows
that: i) adding a dedicated protocol processor to a uniprocessor node is unlikely to be cost-effec-
tive and even less likely to outperform the Floating policy; ii) a dedicated processor is more advan-
tageous for light-weight protocols (e.g., active messages) than for heavy-weight protocols (e.g.,
TCP/IP), iii) the Fixed policy becomes more advantageous when multiple compute processors and
multithreading increase the bandwidth per node. The breakeven point depends upon the number of
processors, overhead of invoking protocol operations, and application parallelism.

Finally, we presented preliminary measurements from a distributed shared memory system run-
ning on a dedicated network of Sun SparcStation-20s connected by a Myrinet network. The mea-
sured performance on four nodes showed that Fixed outperformed Floating only for the very
communication intensive program em3d or when there were four processors per node. The three
applications clearly illustrate the predicted breakeven point between Fixed and Floating.
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