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1 Intr oduction

This document describesTempest, an architectural user/system interface for distributed-memory parallel
systems.  By providing user-level access to both messaging and memory-management functions, Tempest
not only supports message passing and shared memory, the two dominant parallel programming models,
but allows users to construct hybrid models as well.  The role of Tempest in parallel programming is simi-
lar to that of an instruction set architecture in uniprocessor programming:

• Tempest provides a relatively low-level interface between user-level software and the system.  The pri-
mary users of Tempest are developers of programming tools, i.e., compilers, libraries, and run-time
systems.  Applications are typically developed using the high-level languages and constructs sup-
ported by these tools, resorting to direct use of Tempest only for hard-core performance tuning.

• Tempest is designed to support a range of implementations. Applications and tools using Tempest are
portable across multiple platforms, from networks of workstations or personal computers to high-per-
formance parallel processors.  These platforms use a variety of software and hardware techniques to
support Tempest at several different cost/performance points.

• Tempest represents a contract between system designers and software developers.  This contract
allows the system designers to focus on efficient implementation of the set of operations in the inter-
face, while the software developers build on these operations to create powerful and flexible program-
ming tools and applications.

The most unusual feature of Tempest isfine-grain memory access control.  An access tag is associated with
every block of memory at a granularity typical of a hardware cache block (e.g., 32-128 bytes). Loads and
stores that conflict with the access tag invoke a user-specified handler that can perform arbitrary operations
to resolve the conflict.  The ability to dynamically manage data access at a fine grain allows data migration
and replication without relying on compile-time analysis or a restricted programming model to guarantee
correctness.  This migration and replication can be performed without renaming using Tempest’s virtual
memory management operations.  To effect data transfer between nodes, Tempest provides two types of
message-passing.Fine-grain messaging provides the short, low-latency messages required to implement
cache coherence protocols and support fine-grain parallelism.Bulk data transfer operations are optimized
to provide high bandwidth for large messages.Timers andthread management complete the list of Tem-
pest features.

Tempest was originally proposed (at a very high level) in Reinhardt, et al. [4], which gives further motiva-
tion for the interface, a description of how it can be used to implement “vanilla” cache-coherent shared
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memory, and an example of an application-specific optimization.  Readers interested in these topics are
referred to that paper.

This document is a formal specification of the Tempest interface.  The specification is divided into two
parts:  Section 2 describes the general execution model of a Tempest application and Section 3 documents
the specific interface functions for the C programming language.  In addition to the interface specification,
comments labeled “Rationale” and “Implementation note” are provided to give insight into the motiva-
tion for certain features and to suggest implementation approaches, respectively.

2 Execution model

The Tempest architecture assumes a host that consists of many processing nodes, where each node con-
tains one or more processors connected to a single memory module (that is, sharing a single physical
address space).  Communication between nodes occurs only through message-passing and the (as yet
undefined) global operations (e.g., barriers).  A Tempest application has a distinct virtual address space on
each processing node.  The SPMD (“single program, multiple data”) model is used, i.e., the same program
text is loaded at the same location in every address space, though each processor executes that text inde-
pendently.  Each address space may also contain other per-node private segments for data and stacks.  In
addition, a contiguous segment at the same location in each address space is designated theuser-managed
virtual segment.  Within this segment, the user maps virtual pages to physical memory, handles accesses to
unmapped pages, and controls the accessibility of mapped memory at a fine granularity.  Providing user-
level control over the same virtual address region on every node is the basis of constructing a transparent
single-address-space execution environment with user-defined semantics.

Tempest provides fine-grain memory access control by associating ablock access tag with every aligned
2k-byte region of memory (amemory block).  The value ofk is implementation-dependent, but is typically
five, six, or seven; that is, memory blocks are typically 32, 64, or 128 bytes.  The Tempest interface is
designed so that code written assuming some block sizeb will be portable across all implementations
whose block size is smaller than or equal tob. The actual block size supported by an implementation is
referred to as the implementation’s minimum block size, and blocks of the minimum block size are called
minimal blocks.

Each block access tag has one of four values:Invalid, Busy, ReadOnly, andWritable.  A block whose tag is
Invalid or Busy is referred to asinvalid, while blocks taggedReadOnly or Writable are calledvalid.  (Invalid
andBusy have the same access semantics, but can be used by software to encode protocol information;
e.g., whether or not a request is pending.)  Loads and stores are checked against the value of the referenced
block’s access tag; conflicting accesses cause ablock access fault (see Table 1).  The fault suspends the
accessing thread and invokes a user-level handler to process the fault.  The handler typically performs
some protocol actions to make the access permissible.  Once access is allowed, the block’s tag is changed
and the faulting thread is resumed.

Access
Tag

Invalid Busy ReadOnly Writable

load fault fault return data return data

store fault fault fault write data

Table 1: The result of load and store operations according to the referenced block’s access tag.
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Each address space (and thus each node) can support multiple threads of execution.  These threads may
execute concurrently on multiprocessor nodes.  One of the threads is distinguished as theprotocol thread.
All other threads are referred to ascomputation threads.  The management of computation threads (cre-
ation, scheduling, etc.) is outside the domain of Tempest.  The protocol thread is scheduled by Tempest and
exists solely to execute user-definedhandler functions to processprotocol events: network message arriv-
als, timer expirations, and the page faults and block access faults of computation threads.  Handler func-
tions are executed sequentially, i.e., if a protocol event occurs while the protocol thread is executing a
handler function, the event will be queued until the current handler function completes.  If multiple events
are queued, block access faults and page faults are given first priority, followed by timer expirations, and
then message arrivals.

Rationale: By dedicating a single thread for protocol processing and running handler functions to com-
pletion, the need for locking on protocol data structures is reduced or eliminated.  If concurrency is
desired in processing protocol events, the protocol thread’s handler function can hand off tasks to com-
putation threads.

Rationale: Event prioritization is based on the following observations:

• Message arrivals are beyond the control of the local node, so any event with lower priority may be
subject to starvation.  This is avoided by giving message arrivals lowest priority.

• Servicing of faulting accesses should be given high priority to maximize application throughput.
The number of concurrent page and block access faults is limited by the number of concurrently-
executing computation threads, so starvation of other event types is not a problem.

Only the loads and stores of computation threads are guaranteed to be checked against the access tags.
Normally, the protocol thread only references tagged memory indirectly via Tempest functions; the behav-
ior of a direct protocol thread access that conflicts with the block’s tag is undefined.

The type of protocol event determines the user-level handler function that is executed by the protocol
thread.  The handler for a message arrival is chosen by the sender and encoded in the message header (as in
Active Messages [6]).  The handler for a timer expiration is specified when the timer is initialized.  Han-
dlers for page faults and block access faults are registered locally by the application.  All page faults are
serviced by a single handler.  The handler invoked for a block access fault is determined by the combina-
tion of the access type (load vs. store), the tag value, and the memory page on which the referenced block
is located. Specifically, the user associates a small integer (thepage mode) with every page, and registers a
set of five handlers (one for each of the “fault” cases in Table 1) for each page mode.

Rationale: The ability to associate different sets of handlers with different memory blocks facilitates
the use of multiple protocols within a single application.  Associating handlers with pages rather than
individual blocks trades a small loss of flexibility for a large decrease in storage overhead.  (Actions can
still be specialized at block granularity in software.)  Use of the page mode value rather than allowing a
separate set of handlers for each page further reduces storage overheads.

3  The Tempest interface for C

This section defines a standard C user interface for Tempest to provide source-level application compati-
bility across all Tempest implementations.  Implementations will typically provide a user library that
bridges the gap between Tempest and the native operating system.  A Tempest implementation may
involve more than a library with which the application is linked.  For example, the application source may
be preprocessed to convert Tempest function calls to some intermediate form, or the compiled application
may be postprocessed to insert code that provides fine-grain access control [5].  The key characteristic is
that an automated process is provided that converts interface-compliant source into a functioning program.
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The following subsections specify the operations provided by the interface, grouped by function: virtual
memory management, fine-grain memory access control, fine-grain messaging, bulk data transfer, timers,
and thread management.

3.1  Virtual memory management

As described in Section 2, Tempest gives user-level control over a region of the virtual address space on
each node.  This region, known as theuser-managed virtual segment, is located at the same address in
every address space and is at least 1 Gbyte in size.  Physical memory allocation and address translation are
performed on the basis of pages. Pages mapped in the user-managed virtual segment are referred to as
user-managed pages.  Only user-managed pages support block access tags. Each user-managed page must
be assigned apage mode number, which determines the set of block access fault handlers that are invoked
for block access faults on that page.

3.1.1  Page size

#define TPPI_PAGE_SHIFT implementation-specific

#define TPPI_PAGE_SIZE (1 << TPPI_PAGE_SHIFT)

The page size in bytes is exported in the constantTPPI_PAGE_SIZE. TPPI_PAGE_SHIFT is the width
in bits of a page offset (i.e. log2(TPPI_PAGE_SIZE)).

lmplementation note:The Tempest page size should be as small as possible to avoid memory fragmen-
tation.  Typically it is the same as the platform’s MMU page size; e.g., the SPARC MMU page size is
4K so all existing implementations (which are all SPARC-based) have a 4K page size.

3.1.2  Page modes

typedef implementation-specific TPPI_PageMode;

#define TPPI_NUM_PAGE_MODES implementation-specific

#define TPPI_MAX_PAGE_MODE (TPPI_NUM_PAGE_MODES - 1)

Page mode numbers are small consecutive integers starting at 0.TPPI_PageMode is an unsigned inte-
ger type of implementation-defined size used to hold page mode numbers. The constant
TPPI_NUM_PAGE_MODES indicates the number of page modes supported by the implementation,
andTPPI_MAX_PAGE_MODE indicates the largest page mode number.

3.1.3 Page allocation and deallocation

int TPPI_alloc_and_map(void *pg, TPPI_PageMode mode, TPPI_BlkAccTag acc, TPPI_NodeId home,
void *usr_ptr);

Allocates a page of physical memory and maps it in the user-managed virtual segment at the page-
aligned addresspg.  By definition, the allocated page is a user-managed page.  The page mode (for
block access fault handler selection) is set according tomode.  The block access tags for all blocks on
the page are initialized toacc (see Section 3.2.1).  Thehome andusr_ptr fields are not interpreted by
the system, but are intended to hold the node identifier (see Section 3.3.1) of the page’s directory node
and a pointer to a per-page protocol data structure, respectively. Thehome andusr_ptr values can be
retrieved via function calls (using the virtual address as a key) and are automatically provided to block
access fault handlers for the page.

The return value is 1 if successful, 0 if unsuccessful.  The call will fail if there is insufficient physical
memory, pg is not aligned to the page size, a mapping already exists for the virtual addresspg, orpg is
not within the user-managed virtual segment.
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lmplementation note:Page-level protection may be used in the place of a true fine-grain access control
mechanism if, whenever the user invokes a tag-modifying block operation, the specified block length is
always equal to or greater than the page size.  Because pages are always initialized with the same tag on
every block, this optimization can be performed optimistically; that is, the fine-grain access control
mechanism need not be used for a given page until the first time the user invokes a tag-modifying block
operation with a block length smaller than the page size.

int TPPI_unmap_and_free(void *pg);

Removes the mapping for user-managed page pointed to by the aligned addresspg.

int TPPI_remap(void *old_pg, void *new_pg);

Removes the mapping for user-managed pageold_pg and remaps the physical page to the address
new_pg, which must also be in the user-managed virtual segment.  The block access tags, page mode,
home node ID, and user pointer are unchanged.  Bothold_pg andnew_pg must be page-aligned.

Rationale: While TPPI_unmap_and_free followed byTPPI_alloc_and_map has a similar effect,
TPPI_remap differs in two significant ways.  First, the same physical page is kept, so the data is not
lost.  Second,TPPI_remap keeps the page continuously under the ownership of the application; the
TPPI_unmap_and_free/TPPI_alloc_and_map sequence is non-atomic so it is possible that another
application could perform an allocation in the middle causing theTPPI_alloc_and_map to fail due to
insufficient memory.

3.1.4 Page fault handlers

typedef void (*TPPI_PageFaultHandlerPtr)(void *va, int pc, int is_write);

void TPPI_register_page_fault_handler(TPPI_PageFaultHandlerPtr fn);

Registersfn as the user’s page fault handler.  When a computation thread accesses an unmapped virtual
address in the user-managed virtual segment, the Tempest implementation will notify the user by caus-
ing the protocol thread to invoke this function.  The handler will be invoked as

void (*fn)(void *va, int pc, int is_write)

whereva is the unmapped address that was accessed andpc is the program counter of the load or store
that caused the fault. Theis_write parameter is non-zero if the access was a store, or zero if it was a
load.  The faulting thread is suspended untilTPPI_resume_va is called (see Section 3.6), either by the
page fault handler, a future message handler, or a different thread.

Before resuming the faulting access, the page fault handler may directly request needed data from a
remote node or it may simply initialize all blocks on the page toTPPI_Blk_Invalid.  In the latter case,
when the access is retried after the thread is resumed it will generate a block access fault.  This
approach may be favored because it keeps protocol-specific code out of the page fault handler.

Rationale: The page fault handler will typically useTPPI_alloc_and_map to add a page at the
desired address.  It may need to send a request to a remote node to determine the appropriate page
mode; in this case, theTPPI_alloc_and_map and the resumption of the faulting thread will be per-
formed by the response message handler.

3.1.5  Retrieving per-page information

typedef struct {
implementation-specific

} TPPI_PageInfo;

int TPPI_get_page_info(void *va, TPPI_PageInfo *info_ptr);

Provides information about the virtual page containing the arbitrarily-aligned addressva in the user-
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managed virtual segment.  The return value is 0 if the page is not mapped, 1 if it is mapped, and -1 if
there is an error (becauseva is not in the user-managed virtual segment orinfo_ptr is not suitably
aligned).  Ifinfo_ptr is non-null and the return value is 1, themode, usr_ptr, andhome values provided
when the page was mapped are written to the fields of the same name in the structure pointed to by
info_ptr.  The exact definition ofTPPI_PageInfo is implementation-dependent, but it must contain at
least these three fields:TPPI_PageMode mode, void *usr_ptr, andTPPI_NodeId home.

void *TPPI_get_page_user_ptr(void *va);

Returns theusr_ptr pointer supplied toTPPI_alloc_and_map when the page containing the arbitrarily-
aligned addressva was mapped.  The return value is undefined if the page is not in the user-managed
virtual segment or is not mapped.

TPPI_PageMode TPPI_get_page_mode(void *va);

Returns themode value supplied toTPPI_alloc_and_map when the page containing the arbitrarily-
aligned addressva was mapped. The return value is undefined if the page is not in the user-managed
virtual segment or is not mapped.

TPPI_NodeId TPPI_get_page_home(void *va);

Returns thehome value supplied toTPPI_alloc_and_map when the page containing the arbitrarily-
aligned addressva was mapped. The return value is undefined if the page is not in the user-managed
virtual segment or is not mapped.

3.2  Block access control

The semantics of block access tags are discussed in Section 2. Tag values are initialized during page allo-
cation (see Section 3.1.3). Note that tags can also be modified as a side-effect of sending or receiving
blocks using theBa item type (see Section 3.3).

3.2.1  Access tag values

typedef enum {
TPPI_Blk_Busy, TPPI_Blk_Invalid, TPPI_Blk_ReadOnly, TPPI_Blk_Writable

} TPPI_BlkAccTag;

#define TPPI_NUM_BLK_ACC_TAGS 4

#define TPPI_MAX_BLK_ACC_TAG (TPPI_NUM_BLK_ACC_TAGS - 1)

The TPPI_BlkAccTag type enumerates the possible access tag values for a block. The enumeration
constants will be named as specified and valued from 0 to 3 inclusive, but their ordering is implemen-
tation-dependent. The constantsTPPI_NUM_BLK_ACC_TAGS andTPPI_MAX_BLK_ACC_TAG indi-
cate the number of supported access tags and the largest access tag value, respectively.

3.2.2  Tag block size

#define TPPI_TAG_BLK_SHIFT implementation-specific

#define TPPI_TAG_BLK_SIZE (1 << TPPI_TAG_BLK_SHIFT)

The implementation’s minimum tag block size in bytes (see Section 2) is exported in the constant
TPPI_TAG_BLK_SIZE. TPPI_TAG_BLK_SHIFT is the width in bits of an offset within a block (i.e.,
log2(TPPI_TAG_BLK_SIZE)).
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3.2.3  Specifying memory blocks

A memory block is specified with two parameters: an address and a length in bytes.  These appear as a pair
of arguments:void *blk_va, int blk_len. Whenever an address/length pair is used to specify a block as the
target of a Tempest operation, the length must be a power of two and must be greater than or equal to the
implementation’s minimum block size. The address does not have to be aligned; it may point anywhere
within the block.

Rationale: For systems with hardware support, it is trivial to ignore unused address bits, so forcing the
user to align addresses introduces unnecessary overhead.  For software-based systems, the potential
exists for address alignment to be inlined at the call site, with common sub-expression elimination
allowing a single alignment operation to serve for multiple Tempest function calls.  Assuming these
optimizations, there is little performance advantage in forcing the user to perform alignment.

If the specified length is greater than the minimum block size, the block is called asuperblock.  Operations
on superblocks are subject to the following constraints:

• The operation should be viewed as a non-atomic series of operations on the constituent minimal
blocks. The atomicity guarantees of Section 3.2.6 only apply to the minimal-block operations.

• If a tag change operation (of typeTPPI_BlkTagChange) is applied to a superblock, it must be a valid
tag change for each of the constituent minimal blocks.  Note that this does not mean that all of the min-
imal blocks must have the same original tag (though this is likely to be the case).  For example,
TPPI_Blk_Invalidate could be applied to a superblock in which some minimal blocks are tagged
TPPI_Blk_ReadOnly and othersTPPI_Blk_Writable.

Otherwise, it should be transparent to the user whether an operation is applied to a single minimal block or
a superblock.

3.2.4  Reading access tags

TPPI_BlkAccTag TPPI_get_blk_acc(void *va);

Returns the block access tag associated with the block containingva.  The result is undefined if the
address is not in the user-managed virtual segment or is not mapped.

3.2.5  Changing access tags

typedef enum {
TPPI_Blk_Validate_RW, TPPI_Blk_Upgrade_RW, TPPI_Blk_Validate_RO,
TPPI_Blk_Downgrade_RO, TPPI_Blk_Invalidate, Blk_Mark_Busy,
TPPI_Blk_No_Tag_Change, TPPI_Blk_Invalid_To_Busy,
TPPI_Blk_Busy_To_Invalid

} TPPI_BlkTagChange;

Block access tag modifications are made using theTPPI_BlkTagChange constants.  These not only
specify the desired tag value but also imply the current value of the tag, as specified in Table 2.  If the
user applies a tag change operation to a block whose tag is not one of those implied by the operation
(i.e., the operation does not appear in the row corresponding to that tag in Table 2), the resulting state
of the block is indeterminate.  Note thatTPPI_Blk_Invalidate, TPPI_Blk_Mark_Busy, and
TPPI_Blk_Validate_RW (and of courseTPPI_Blk_No_Tag_Change) can be applied to any block,
regardless of its initial state, though in some cases the same tag change may be performed more effi-
ciently using a different operation.

Rationale: Reducing access to a block typically requires that the block be flushed from any hardware
caches, while increasing or not changing block access does not.  These cache flushes can be very expen-
sive and need to be avoided when possible.  A simple “set tag” function is not sufficient to identify
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when flushes are necessary, and requiring the implementation to look up the current tag before it is
changed (to determine is a flush is required) may also be expensive.  The current tag state is usually
implied by the user protocol state, so the user code typically has enough information to supply the tag
change operation with no extra overhead.

void TPPI_change_blk_acc(void *blk_va, int blk_len, TPPI_BlkTagChange chg);

Changes the access tag of the block specified by (blk_va, blk_len).

void TPPI_change_blk_acc_and_copy(void *blk_va, int blk_len, TPPI_BlkTagChange chg, void *from);

Copies data from memory starting atfrom to the block specified by (blk_va, blk_len) and changes the
tag of the block according tochg.

3.2.6 Atomicity of data access and tag changes

Threads may be executed concurrently on implementations with multiprocessor nodes, so while one thread
is in the middle of a tag change, other threads may issue loads and stores. Tempest operations that combine
data transfer and access tag changes (includingTPPI_change_blk_acc_and_copy , send_*Ba*, and
recv_Ba) provide the following useful semantics:

• If data is read from a block and the block’s access is downgraded fromWritable, the block data that is
read is guaranteed to reflect all writes that complete before the tag change.

• If data is written to a block and the block’s access is upgraded, any load or store that does not fault but
would have faulted given the previous access tag is guaranteed to be performed after the block’s con-
tents are updated with the new data.

Curr ent
Tag

New Tag

Invalid Busy ReadOnly Writable

Invalid
No_Tag_Change,

Invalidate
Invalid_To_Busy,

Mark_Busy
Validate_RO Validate_RW

Busy
Busy_To_Invalid,

Invalidate
No_Tag_Change,

Mark_Busy
Validate_RO Validate_RW

ReadOnly Invalidate Mark_Busy No_Tag_Change
Upgrade_RW,
Validate_RW

Writable Invalidate Mark_Busy Downgrade_RO
No_Tag_Change,

Validate_RW

Table 2: Block tag change enumeration values (typeTPPI_BlkTagChange). All values are prefixed by
TPPI_Blk_, e.g.,TPPI_Blk_No_Tag_Change. Where two values are listed in a single entry, the first is
preferred.
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3.2.7  Block access fault handlers

typedef void (*TPPI_BlkAccFaultHandlerPtr)(void *va, void *user_ptr, TPPI_NodeId home);

void TPPI_register_blk_acc_fault_handler(TPPI_PageMode mode, TPPI_BlkAccTag tag, int acc,
TPPI_BlkAccFaultHandlerPtr fn);

Registers functionfn as the block access fault handler for accesses of typeacc (which should be one of
the defined constantsTPPI_ReadAccess or TPPI_WriteAccess) to blocks tagged withtag on pages of
modemode.  The handler will be invoked as

void (*fn)(void *va, void *usr_ptr, TPPI_NodeId home)

whereva is an address within the block on which the faulting access was performed andusr_ptr and
home are the values supplied toTPPI_alloc_and_map when the page containingva was mapped.  The
actual address that was accessed by the faulting thread andva will be in the same minimal block, but
are not necessarily related otherwise.

Rationale: Implementations using hardware external to a commodity processor will only observe the
cache miss that results from a faulting access, not the faulting access itself.  In this case, the relationship
between the observed address and the accessed address will be determined by the processor implemen-
tation.

Only five of the eighttag/acc combinations are meaningful (see Table 1); specifying handlers for the
other three (TPPI_Blk_ReadOnly/TPPI_ReadAccess, TPPI_Blk_Writable/TPPI_ReadAccess, and
TPPI_Blk_Writable/TPPI_WriteAccess) may have undesirable implementation-dependent effects and
should be avoided. (Ideally, the implementation will detect attempts to specify handlers for the other
cases and warn the user.)

3.3  Fine-grain messaging

Fine-grain messaging provides low-overhead message sending and reception, optimized for short message
lengths.

Rationale: Both cache coherence protocols and fine-grain parallel applications employ short asynchro-
nous messages whose contents are immediately consumed on receipt (e.g., cache miss or remote read
requests and responses).  Much of the message data originates in the sender’s registers and is consumed
in the receiver’s registers.  The memory-to-memory transfers provided by most message-passing mod-
els (and by Tempest’s bulk data transfer operations) are inappropriate for these applications since both
the management of memory buffers and the need to copy data into and out of these buffers add signifi-
cant overhead.

Tempest’s fine-grain messaging facility is based on Active Messages [6].  In the Active Message model,
the first word of every message is the starting program counter of the handler to be executed at the receiver.
Messages are queued and the handlers are executed serially by the protocol thread.

3.3.1  Node identifiers

typedef implementation-specific TPPI_NodeId;

unsigned TPPI_num_nodes;

TPPI_NodeId TPPI_self_address;

TPPI_NodeId is an unsigned integer type of implementation-defined size used to hold node identifiers.
Node identifiers are in the range 0 ton-1 for n-node systems.  Two integer variables,TPPI_num_nodes
andTPPI_self_address, provide the number of available nodes and the local node’s identifier, respec-
tively.
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3.3.2  Sending

typedef void (*TPPI_MessageHandlerPtr)(TPPI_NodeId src, int size);

void TPPI_send_typelist(TPPI_NodeId dest, TPPI_MessageHandlerPtr pc, arglist);

This set of functions sends a message to the specified node, where the message will be handled by exe-
cuting code starting at the specified program counter.  The body of the message is constructed using
the specified (possibly empty) item list.  In the current C binding, the item list specification is split: the
types of the items in are encoded in a string that is part of the function name, while the parameters
describing the items are part of the argument list.  A given item may require more than one parameter.

Rationale: Abstractly, TPPI_send is a polymorphic function that takes an arbitrary number of argu-
ments selected from a set of types (word, memory block, and memory region).  Unfortunately, C does
not support this polymorphism.  The C++ binding (when complete) will have a singleTPPI_send
function that is overloaded to support all possible message formats.

The following item types are available (with the type string given in parentheses):

• Word (W).  A single machine word is sent.  The corresponding parameter is the word value, of
type int.

• Block with access change (Ba).  The contents of a memory block are sent, and the memory
block’s access tag is modified.  The corresponding parameters are the block specifier (void
*blk_va, int blk_len) (see Section 3.2.3) and the tag change (typeTPPI_BlkTagChange) (see Sec-
tion 3.2.5).

• Region (R). The contents of a region of memory are sent. The region must start on a word
boundary and contain an integral number of words.  The corresponding parameters are the
region start address (typevoid *) and the region length in bytes (typeint).  The region length
must be a multiple of the word size.

• Forward (F).  Data from the current received message is sent.  This option is only valid when the
send is called in the context of a message handler.  The corresponding parameter is the number
of bytes to forward (typeint), which must be a multiple of the word size.

For example, the following call sends a word of data (word) along with a memory block of sizeblk_len
at addressblk_va, atomically changing the block’s tag from ReadOnly to Invalid:

TPPI_send_WBa(dest, handler_pc, word, blk_va, blk_len, TPPI_Blk_Invalidate);

As a syntactically special case, the ‘_’ in the function name is elided when a message with no body is
sent, e.g.,TPPI_send(dest, pc).

The message body is constructed by concatenating data items, in the specified order, into an untyped
stream of words.

3.3.3 Receiving

On the receiver, the system logically queues the message until the protocol thread is idle.  The sender-spec-
ified function is invoked with two parameters: the source node (typeTPPI_NodeId) and the size of the
message body in bytes (typeint). The message body is provided as a logical queue of words.  Data is read
from this queue and consumed using the following calls, which correspond to the types available for send-
ing:

int TPPI_recv_W();

The next word is returned.
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void TPPI_recv_Ba(void *blk_va, int blk_len, TPPI_BlkTagChange chg);

The nextblk_len bytes are read from the queue and written to the memory block specified by (blk_va,
blk_len) (see Section 3.2.3), whose access tag is changed (see Section 3.2.5).

void TPPI_recv_R(void *va, int len);

The nextlen bytes of data are read from the queue and written to the specified region of memory.  The
region must start on a word boundary and contain an integral number of words.

In addition, message data can be consumed using a “forwarded block” item in a send operation.  Note that
even though the send and receive operations use the same types, the message body is transferred as a type-
less word stream, so the types used to send and receive a particular message do not need to match.  How-
ever, the receive handler must consume the entire message body.  If a receive handler leaves data in the
message queue when it terminates, some implementations may interpret this data as part of a separate mes-
sage.  The resulting behavior is undefined.

3.3.4  Message size limit

#define TPPI_MAX_AM_BYTES implementation-specific

A Tempest implementation will typically have an upper bound on the size of message that can be sup-
ported in terms of the number of bytes in the message body.  This upper bound is exported in the con-
stantTPPI_MAX_AM_BYTES and is guaranteed to be at least(TPPI_TAG_BLK_SIZE + 16).

Rationale: This minimum size allows for a block and 16 bytes of control information (e.g., four 32-bit
words, or two 32-bit words and a 64-bit address).

lmplementation note: Tempest provides an Active Message interface without enforcing an Active
Message implementation.  In an actual Active Message implementation, the entire message is put into a
single packet.  On a system that cannot support a(TPPI_TAG_BLK_SIZE + 16)-byte payload in a single
packet, packetization and reassembly must be supported, but messages that are “small enough” may still
be handled in a true Active Message fashion.

3.4  Bulk data transfer

Bulk data transfer provides high-bandwidth, connection-oriented, memory-to-memory data movement
between nodes.

Rationale: A memory-to-memory transfer model is desirable because it simplifies system flow control
and buffering issues by inherently providing buffer space on both the sender and receiver, and it can be
efficiently supported with typical DMA hardware. A connection-oriented model allows connection set-
up overhead to be amortized over multiple transfers when a repetitive communica
tion pattern exists.

lmplementation note: All memory-to-memory transfers could be implemented on top of a suitable
Active Messages layer.

3.4.1 Channel allocation

typedef void (*TPPI_ChannelHandlerPtr)(NodeId, int channel);

int TPPI_set_channel_src(TPPI_NodeId dest, TPPI_ChannelHandlerPtr fn);

int TPPI_set_channel_dst(TPPI_NodeId src, int channel, void *buffer, int bytes,
TPPI_ChannelHandlerPtr fn);

Channel allocation requires allocation of an endpoint on both the source (sending) and destination
(receiving) nodes. The source node must first callTPPI_set_channel_src() to obtain a channel ID
number.1 The arguments are the destination node and a pointer to a function which will be invoked at
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the completion of each send. The sender must communicate the returned channel ID to the destination
node (typically via an active message). The destination node then callsTPPI_set_channel_dst() to ini-
tialize the receiving end, passing in the source node ID, the channel ID from the source, the address
and length of a receive buffer, and a pointer to a function that will be invoked at the completion of each
receive.

Blizzard Note: The buffer must be a multiple of four bytes in length and four-byte-aligned.

Both the send and receive callbacks are invoked with the ID of the corresponding node and the channel
ID. In either case, a null function pointer may be provided in which case no callback will be per-
formed. On the source node, invocation of the callback means only that the send buffer can be reused;
it does not imply that the data has been received at the destination.

TPPI_set_channel_dst() and sends an active message back to the source to notify it that the endpoint
has been established. The source node) to poll for the establishment of the destination endpoint. It will
return non-zero only after the arrival of the notification message.

3.4.2 Sending data

void TPPI_channel_send(TPPI_NodeId dest, int channel, void *buffer, int bytes);

The source node callsTPPI_channel_send() to initiate a data transfer ofbytes bytes starting at the
pointerbuffer. The transfer may be asynchronous; the send callback, if any, will be invoked when the
buffer memory may be reused. The number of bytes specified in the send must exactly match the num-
ber specified by the destination node in its call toTPPI_set_channel_dst().

Blizzard Note: The buffer must be a multiple of four bytes in length and four-byte-aligned.

int TPPI_is_channel_ready(TPPI_NodeId src, int channel);

The destination node may callTPPI_is_channel_ready() to poll for the arrival of data (in lieu of speci-
fying a receive callback function). This function will return non-zero when the destination has
received the number of bytes specified in its call toTPPI_set_channel_dst(). It will continue to return
non-zero until the endpoint is reset viaTPPI_reset_channel().

void TPPI_reset_channel(TPPI_NodeId src, int channel);

The destination node must callTPPI_reset_channel() to reset the receive endpoint of the channel after
each data transmission before the source can perform another send. The destination and source nodes
must synchronize to guarantee that the destination has calledTPPI_reset_channel() before the source
callsTPPI_channel_send().

TPPI_reset_channel() and sends an active message back to the source to notify it that the endpoint has
been reset. The source node) to poll for this event. It will return non-zero only after the arrival of the
notification message.

3.4.3 Channel deallocation

void TPPI_destroy_channel_src(TPPI_NodeId dest, int channel);

void TPPI_destroy_channel_dst(TPPI_NodeId dest, int channel);

As with allocation, both the source and destination nodes must explicilty deallocate their endpoints.
Results are unpredictable if either endpoint is deallocated before all of the data that sent on the channel
has been received at the destination.

1. The channel ID may be relative to a source/destination pair, i.e., distinct channel IDs are only required when there a multiple active
channels between a given source and destination.
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3.4.4  User pointers

Each endpoint (source and destination) contains storage for an arbitrary pointer so that the user may
associate application-specific structures with the channel. These functions provide access to that stor-
age.

3.4.5 Transfer size limit

#define TPPI_MAX_CHANNEL_BYTES implementation-specific

The constantTPPI_MAX_CHANNEL_BYTES indicates the maximum number of bytes that can be
transferred through a channel between calls toTPPI_reset_channel().

3.5  Timers

Efficient timers are useful for implementing protocol time-outs and providing flexible forward-progress
guarantees.

typedef void (*TPPI_TimerHandlerPtr)(void *user_ptr);

void TPPI_schedule_timer(int ticks, TPPI_TimerHandlerPtr fn, void *user_ptr);

Schedules a timer event forticks units of time in the future. The units forticks are implementation-
dependent.  After the timer event occurs, the handler functionfn will be invoked by the protocol thread
with the single argumentuser_ptr.

3.6 Thr ead management
void TPPI_resume_va(void *blk_va, int blk_len);

Resumes the set of threads suspended due block access faults on a particular block.  The thread must
be blocked due to a page fault or block access fault.  For page faults, the faulting instruction is reis-
sued.  For block access faults, the faulting instruction may be reissued or the access may be completed
without reissuing (e.g., if the faulting access was a buffered store).  The block access tag may or may
not be checked again; that is, if the faulting access still conflicts with the tag value, whether the access
completes or another block access fault occurs is implementation-dependent.  Thus a user protocol
must eventually change the access tag to make the access legal in order to achieve forward progress.
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