
1

A System-Level Specification Framework for I/O Ar chitectures*

Mark D. Hill, Anne E. Condon, Manoj Plakal, Daniel J. Sorin
Computer Sciences Department,

University of Wisconsin - Madison,
1210 West Dayton Street, Madison, WI 53706, USA.

{markhill, condon, plakal, sorin}@cs.wisc.edu

Abstract

A computersystemis uselessunlessit caninteractwith theoutside
world throughinput/output(I/O) devices.I/O systemsarecomplex,
includingaspectssuch asmemory-mappedoperations,interrupts,
and bus bridges. Often, I/O behavior is describedfor isolated
deviceswithouta formal descriptionof howthecompleteI/O sys-
tembehaves.Thelack of an end-to-endsystemdescriptionmakes
thetasksof systemprogrammersandhardware implementorsmore
difficult to do correctly.

This paper proposesa framework for formally describing I/O
architectures called WisconsinI/O (WIO). WIO extendswork on
memoryconsistencymodels(that formally specifythebehaviorof
normal memory) to handle considerations such as memory-
mappedoperations,device operations,interrupts,and operations
with sideeffects.Specifically, WIO askseach processoror device
thatcanissuek operationtypesto specifyorderingrequirementsin
a k ✕ k table. A systemobeys WIO if there alwaysexistsa total
orderof all operationsthat respectsprocessoranddeviceordering
requirementsandhasthevalueof each “r ead” equalto thevalue
of the most recent “write” to that address.

This paper thenpresentsexamplesof WIO specificationsfor sys-
temswith variousmemoryconsistencymodelsincluding sequen-
tial consistency(SC),SPARCTSO,an approximationof Intel IA-
32, and CompaqAlpha. Finally, we presenta directory-based
implementationof an SCsystemanda proof which showsthat the
implementation conforms to its WIO specification.

1 Intr oduction
Modern computer hardware is complex. Processorsexecute
instructions out of program order, non-blocking cachesissue
coherencetransactionsconcurrently, and system interconnects
have movedwell beyondsimplebusesthatcompletedtransactions
oneat a time in a total order. Fortunately, mostof this complexity
is hiddenfrom software with an interfacecalled the computer’s
“architecture.” A computerarchitectureincludesat leastfour com-
ponents:

• The instruction set architecture gives the user-level and sys-
tem-level instructionssupportedandhow they aresequenced
(usually serially at each processor).

• A memory consistencymodel (e.g., sequentialconsistency,
SPARC Total StoreOrder, or CompaqAlpha) givesthebehav-
ior of memory.

• The virtual memoryarchitecture specifiesthe structureand
operation of page tables and translation buffers.

• The Input/Output (I/O) architecture specifieshow programs
interact with devices and memory.

Thispaperexaminesissuesin theoften-neglectedI/O architecture.
The I/O architectureof modernsystemsis complex, asillustrated
by Smotherman’svenerableI/O taxonomy[15]. It includesat least
the following threeaspects.First, software,usuallyoperatingsys-
tem device drivers, must be able to direct device activity and
obtaindevice dataandstatus.Most systemstodayimplementthis
with memory-mappedoperations. A memory-mappedoperationis
a normalmemory-referenceinstruction(e.g.,loador store)whose
addressis translatedby thevirtual memorysystemto anuncache-
ablephysicaladdressthatis recognizedby a device insteadof reg-
ular memory. A device respondsto a loadby replyingwith a data
wordandpossiblyperforminganinternalside-effect (e.g.,popping
the read data from a queue).A device respondsto a store by
absorbingthe written data and possibly performing an internal
side-effect (e.g., sendingan external message).Precisedevice
behavior is device specific.Second,most systemssupportinter-
ruptswherebya device sendsa messageto a processor. A proces-
sor receiving an interrupt may ignore it or jump to an interrupt
handler to processit. Interrupts may transfer no information
(beyond the fact that an interrupthasoccurred),includea “type”
field, or possiblyincludeoneor moredatafields.Third, mostsys-
temssupportdirect memoryaccess(DMA). With DMA, a device
cantransferdatainto or out of a region of memory(e.g.,4Kbytes)
without processor intervention.

An examplethatusesall threetypesof mechanismsis a disk read.
A processorbeginsa disk readby usingmemory-mappedstoresto
inform a disk controllerof thesourceaddresson disk, thedestina-
tion addressin memory, and the length. The processorthen
switchesto other work, becausea disk accesstakes millions of
instructionopportunities.Thedisk controllerobtainsthedatafrom
diskandusesDMA to copy it to memory. WhentheDMA is com-
plete,the disk controller interruptsthe processorto inform it that
the data is available.

A problemwith currentI/O architecturesis that the behaviors of
disks,network interfaces,framebuffers,I/O buses(e.g.,PCI),sys-
tem interconnects(e.g., PentiumProbus and SGI Origin 2000
interconnect),andbusbridges(thatconnectI/O busesandsystem
interconnects)areusuallyspecifiedin isolation.This tendency to
specify things in isolation makes it difficult to take a “systems”
view to answer system-level questions, such as:

• Whatmusta programmerto do (if anything) if heor shewants
to ensurethat two memory-mappedstoresto the samedevice
arrive in the same order?

* This technicalreport addsAppendix A, “Proof that an Imple-
mentationSatisfiesWIO,” to the paperthat appearsin the Pro-
ceedingsof the 11th Annual Symposiumon Parallel Algorithms
and Architectures (SPAA), June 1999.

2

• How doesa disk implementorensurethata DMA is complete
so that an interruptsignallingthat the datais in memorydoes
not arrive at a processor before the data is in memory?

• How much is the systeminterconnector bus bridgedesigner
allowed to reorder transactionsto improve performanceor
reduce cost?

This paperproposesa formal framework, called Wisconsin I/O
(WIO), that facilitatesthe specificationof the systemsaspectsof
an I/O architecture.WIO builds on work on memoryconsistency
modelsthat formally specifiesthe behavior of loadsandstoresto
normalmemory. Lamport’ssequentialconsistency (SC),for exam-
ple, requiresthat “the resultof any executionis thesameasif the
operationsof all the processorswereexecutedin somesequential
order, and the operationsof eachindividual processorappearin
this sequencein the order specifiedby its program[10].” WIO,
however, mustdealwith several issuesnot includedin mostmem-
ory consistency models:(a) a processorcanperformmoreopera-
tions (e.g., memory-mappedstoresand incoming interrupts),(b)
devices perform operations(e.g., disks doing DMA and sending
interrupts),(c) operationscan have side effects (e.g.,a memory-
mappedloadpoppingdataor aninterruptinvoking a handler),and
(d) it maynot bea goodideato requirethattheorderamongoper-
ationsissuedby thesameprocessor/device (e.g.,memory-mapped
stores to different devices) always be preserved by the system.

To handlethis generality, WIO askseachprocessoror device to
provide a tableof orderingrequirements.If a processor/device can
issuek typesof operations,the requiredtableis k ✕ k, wherethe
i,j-th entryspecifiestheorderingthesystemshouldpreserve from
anoperationof type i to anoperationof type j issuedlaterby that
processoror device in programorder(i.e., in theorderspecifiedby
the processoror device’s program).A disk, for example,might
never need order to be preserved among the multiple memory
operationsneededto implementa DMA. A systemwith p proces-
sorsandd devicesobeys WIO if thereexistsa total orderof all of
the operationsissuedin the systemthat respectsthe subsetof the
programorder of eachprocessorand device, as specifiedin the
p+d tablesgivenasparameters,suchthat thevalueof each“read”
is equal to the value of the most recent “write” to that address.1

Thispaperis organizedasfollows. In Section2, wediscussrelated
work. Section3 presentsthemodelof thesystemwe arestudying.
Section4 explains the orderingsthat are usedto specify the I/O
architecturefor a systemwhose memory model is SC, and it
defines Wisconsin I/O consistency based on these orderings.
Section5 extendstheframework to incorporateothermemorycon-
sistency models.Section6 describesasystemwith I/O thatis com-
plex enoughto illustrate real issues,but simple enoughto be
presentedin a conferencepaper. In Section7, we show that the
system described in Section6 obeys Wisconsin I/O. Finally,
Section8 summarizes our results.

We seethis paperashaving two contributions.First, we presenta
formal framework for describingsystemaspectsof I/O architec-
tures.Second,weillustratethatframework in acompleteexample.

2 Related Work
The publicly available work that we found related to formally
specifyingthe systembehavior of I/O architecturesis sparse.As
discussedin the introduction,work on memoryconsistency mod-
els is related[1]. Prior to our currentunderstandingof memory
consistency models,memory behavior was sometimesspecified
individually by hardware elements(e.g., processor, cache,inter-
connect, and memory module). Memory consistency models
replacedthis disjoint view with a specificationof how the system
behaveson accessesto mainmemory. We seekto extenda similar
approach to include accesses across I/O bridges and to devices.

Many populararchitectures,suchasIntel Architecture-32(IA-32)
andSunSPARC, appearnot to formally specifytheir I/O behavior
(at least not in the public literature). An exception is Compaq
Alpha,whereChapter8 of its specification[14] discussesordering
of accessesacrossI/O bridges,DMA, interrupts,etc.Specifically,
a processoraccessesa device by postinginformation to a “mail-
box” at an I/O bridge.Thebridgethenperformstheaccesson the
I/O bus. The processorcan then poll the bridge to seewhen the
operationcompletesor to obtainany returnvalue.DMA is mod-
eled with “control” accessesthat are completely ordered and
“data” accessesthat are not ordered.Consistentwith Alpha’s
relaxedmemoryconsistency model,memorybarriersareneededin
mostcaseswheresoftwaredesiresordering(e.g.,afterreceiving an
interrupt for a DMA completionand before readingthe newly-
written memory buffer). We seekto define a more generalI/O
framework thanthespecificoneAlphachoseandto moreformally
specifyhow I/O fits into the partial andtotal ordersof a system’s
memory consistency model.

3 System Model
We considera systemconsistingof multiple processornodes,
device nodes, and memory nodes that share an interconnect.
Figure1 shows two possibleorganizationsof sucha multiproces-
sor system,wheresharedmemoryis implementedusing eithera
broadcastbusor a point-to-pointnetwork with directories[5]. The
addressablememory spaceis divided into ordinary cacheable
memoryspaceanduncacheableI/O space.We now describeeach
part of the system.

ProcessorNodes:A processornodeconsistsof a processor, cache,
network interface,andinterruptregister. Eachprocessor“issues”a
streamof operations,andtheseoperationsarelistedanddescribed
in Table1. Note that LD and LDio are not necessarilydifferent
opcodes;in many machines,they aredisambiguatedby theaddress
they access.We classify operationsbasedon whetherthey read
data(ReadOP)or write data(WriteOP).If thecachecannotsatisfy
an operation,it initiates a transaction(thesewill be describedin
Section6) to eitherobtaintherequesteddatain thenecessarystate
or interactwith anI/O device.Thecacheis alsoallowedto proac-
tively issuetransactions,suchasprefetches.In addition,the pro-
cessor(logically) checksits interrupt register, which we consider
to bepartof theI/O space,beforeexecutingeachinstructionin its
program,andit may branchto an interrupthandlerdependingon
the value of the interrupt register.

Device Nodes:We modela device nodeasa device processorand
adevicememory. Eachdeviceprocessorcanissueoperationsto its
devicememory. In addition,it canalsoissueoperationswhich lead
to transactionsacrossthe I/O bridge (via the I/O bus). These

1. Thesametablecanbere-usedfor homogeneousprocessorsand
devices. We precisely define “read” and “write” in later sections.

3

requestsallow adevice to readandwrite blocksof ordinarycache-
ablememory(via DMA) andto write to a processornode’s inter-
rupt register. The list of device operations is shown in Table2.

A requestfrom a processornodeto a device memorycan“cause”
thedevice to “do somethinguseful.” For example,a write to a disk
controller statusregister can trigger a disk readto begin. This is
modeledby thedeviceprocessorexecutingsomesortof aprogram
(thatspecifiesthedevicebehavior) which,for example,makesit sit
in a loop, checkfor external requeststo its device memory, and
then do certain things (e.g., manipulatephysical devices) before
possiblydoing an operationto its device memoryor to ordinary
memory. The device programwill usually be hard-codedin the
device controllercircuits,while therequestsfrom processornodes
will bepartof a device driver that is partof theoperatingsystem.
Notethat,in general,theexecutionof asubroutineby thedevice in
responseto anexternalrequestto devicememoryneedsto bemade
atomicwith respectto otherexternal requeststo device memory.
This avoids data races in accessing device memory locations.

Memory nodes:Memory nodescontainsomeportion of the ordi-
narysharedmemoryspace.In asystemthatusesadirectoryproto-
col, they alsocontainthe portion of the directoryassociatedwith
thatmemory. Memorynodesrespondto requestsmadeby proces-
sornodesanddevice nodes.Their behavior is definedby thespe-
cific coherence protocol used by the system.

Interconnect:Theinterconnectconsistsof thenetwork betweenthe
processorandmemorynodesandtheI/O bridges.Thiscouldeither
be a broadcastbus or a generalpoint-to-pointinterconnectionnet-
work. TheI/O bridgesareresponsiblefor handlingtraffic between
theprocessorandmemorynodes,andthedevice nodes.Notethat,
while weallow asystemto containmultiplebridges,wedoassume
thatasingledevice is accessiblevia exactlyonebridge.Thiscould
perhapsbe extended to systemswhere devices are accessible
throughmultiplebridges(for fault-tolerancereasons),by assuming
that only one device-bridge pairing is active at any point in time.

Example:We now presentanexamplethatshows how this model
canbeusedto describea commonI/O scenario.Table3 illustrates
disk reads,which, for example,might beinitiatedby theoperating
systemfor pagingvirtual memoryor for accessingfiles in a disk-
basedfile-system.In the example,the first operandof a memory
operationis the destinationandthe secondoperandis the source.
The exampleassumesa hypotheticaldisk controller with device
registers DR0, DR1, DR2, and DR3 mappedinto I/O address
space.Theseregistersare usedto control the initial disk block
numberto read,the startingmemoryaddressof the buffer which
will containthe datato be read,the lengthof the buffer, and the
command(Read)to beexecuted.In the table,physical time flows
downwards.Thefinal STio to DR3 (thecommandregister)imme-
diately “triggers” thedevice to readall of thedevice registersand
to setup the disk to do the read.Data is transferredusingDMA
betweenthediskandcoherentmemoryvia physicaldisk readsand
STblks.It is usefulto noteherethatmostoperatingsystemswould
make sure that theseSTblks do not generateany unnecessary
coherenceactivity by invalidatingall sharedandmodifiedcopies
(to speedup theDMA). Finally, aninterruptis generatedwhenthe
disk controller hasfinishedthe DMA. This triggersthe interrupt
handler at the processor which can then use the data.

4 An I/O Framework for Sequential Consistency
As the example in the previous sectionshows, certainorderings
betweenoperationsarerequiredin order to get device operations
to work. Theobjectiveof our framework is to conciselycapturethe
orderingsrequiredof asystem.In thissection,wepresentaversion
of our framework for orderingthememoryandI/O operationsin a
systemwherethe memorymodel is sequentialconsistency (SC).
Section5 will addresssystemswith other memory models.We
begin with the orderingat individual processorsanddevices,and

TABLE 1. Processor Operations

Operation Class Description

LD ReadOP Load- loadwordfrom ordinary
memory space

ST WriteOP Store - store word to ordinary
memory space

LDio ReadOP Load I/O - load word from I/O
space

STio WriteOP Store I/O - store word to I/O
space

FIGURE 1. Possible System Organizations

Device
Processor

Device
Memory

Device
Processor

Device
Memory

Device
Processor

Device
Memory

.

system
Bus-based

.

system
Directory-based

.

Memory

Network interface Network interface I/O Bridge

Proc

I/O Bridge

MEMORY BUS

I/O BUS

I/O BUS
Cache

Directory
 +
Memory

ProcProc

Intr regCache Cache Intr reg

Interconnection Network

Intr reg

.

TABLE 2. Device Operations

Operation Class Description

LDio ReadOP Load I/O - load word from
device memory (I/O space)

STio WriteOP Store I/O - store word to
device memory (I/O space)

INT - Interrupt - send an interrupt to
a processor node

LDblk ReadOP LoadBlock - loadcacheblock
from ordinary memory

STblk WriteOP StoreBlock - storecacheblock
to ordinary memory

4

thenwe incorporatetheseorderingsinto a framework for system-
wide ordering.

4.1 Processor and Device Ordering

In a given executionof the system,at eachprocessoror device
thereis a total orderingof the operations(from the list LD, ST,
LDio, STio, INT, LDblk, andSTblk) thatcanbeissuedby thatpro-
cessor or device. Call thisprogram order and denote it by <p.

Let partial programorder beany relaxationof programorderat a
processoror a device processor. For example,let <pp bethepartial
programorder that respectsprogramorderwith respectto opera-
tionsto thesameaddressandalsosatisfiestheconstraintsof Tables
4 and 5, where entries in these tables use the following notation:

A: OP1 <pp OP2 always

D: OP1<pp OP2if theaddressesof OP1andOP2referto thesame
device

-: no ordering constraint on OP1, OP2 (if not to the same address)

Theentriesin thetablesreflectthebehavior of a hypotheticalsys-
tem.For example,in many systems,STios to multiple devicesare
not guaranteedto be orderedin any particularway. Also, thereis
no ordering from a STio to a subsequentLD or ST, since that
would requirethe processorto wait for an acknowledgmentfrom
the device.

It is importantto realizethata programmerwho wishesto enforce
orderingbetweenoperationsthatarenot guaranteedto beordered
can createan ordering through transitivity. For example,a pro-
grammercan order a processor’s LD after a STio by insertinga
LDio to the samedevice asthe STio betweenthe two operations.
SinceSTio <pp LDio andLDio <pp LD, we have STio <pp LD (for
this particular sequence of three operations).

4.2 System Ordering: Wisconsin I/O Consistency for SC

Usingthedefinitionof partialprogramorder, we cannow definea
systemorderingwhichwecall WisconsinI/O ordering.Thedefini-

tion of WisconsinI/O (WIO) orderingtakesasa parameteran n-
tuple of partial programorders,suchas the 2-tuple specifiedby
Tables4 and5. Let <W be a total orderingof all LD, ST, LDio,
STio, INT, LDblk, STblkoperationsof anexecutionof thesystem.
Then <W satisfiesWisconsinI/O with respectto a given partial
program order if:

 1. <W respects the partial program order, and

2. thevaluereadby everyReadOPoperationis thevaluestoredby
themostrecentWriteOPoperationto thesameaddressin the<W
order.

In Sections6 and7, we will describeanimplementationfor anSC
system and outline a proof that shows it obeys this specification.

5 An I/O Framework for Other Consistency Models
To easepresentationcomplexity and concentrateon I/O aspects,
we have thusfar assumeda memoryconsistency modelof sequen-
tial consistency. More relaxed models,suchasSPARC TSO and
CompaqAlpha,canalsobeaccommodated,andwenow show how
this canbeaccomplished.We accommodatethemby changingthe
partial programorderingat theprocessor, but we leave thedevice
processororderingunchanged.Onecould easily imagineprovid-
ing a WIO specificationwherethedevice orderingdoesnot match
the orderingspecifiedin Table5, but insteadmatchesthat of the
specific device(s) being modeled.

5.1 Processor and Device Ordering

As in Section4.1, for eachmemoryconsistency model, we will
presenttablesof orderingrequirementsfor partialprogramorderat
processors.In the following discussion,we do not include syn-
chronizationoperations,suchas Read-Modify-Write(RMW). A
RMW canbe thoughtof asan atomicoperationwhich includesa
LD andthena ST. It would be orderedsuchthat orderbetweena

TABLE 3. Disk Read

Processor Disk Controller

STio Block, [DR0]

STio Address, [DR1]

STio Length, [DR2]

STio Read-Cmd, [DR3]

Read DR0, DR1, DR2,
DR3 and set up disk read

Read in data from disk,
issueSTblkfor eachcache
block of data to appropri-
ate address

INT

Interrupt handler runs

LD R1, [Address]

ST [Address+4], R1

Setup

DMA

Use
data

TABLE 4. Partial Pr ogram Order at a Processor

Operation 2

LD ST LDio STio

O
pe

ra
tio

n
1 LD A A A A

ST A A A A

LDio A A D D

STio - - D D

TABLE 5. Partial Pr ogram Order at a Device Processor

Operation 2

LDio STio INT LDblk STblk

O
pe

ra
tio

n
1

LDio A A A A A

STio A A A A A

INT - - D - -

LDblk - - A - -

STblk - - A - -

5

RMW andanotheroperation,OP2,respectstheunionof ordering
rules between OP2 and a LD and between OP2 and a ST.

5.1.1 SPARC Total Store Order (TSO)

SPARC TotalStoreOrder(TSO)[17] is avariantof processorcon-
sistency[7,8] that hasbeenimplementedon Sunmultiprocessors
for many years.TSO relaxesSC in that STscanbe orderedafter
LDs which follow themin programorder(so long asthereareno
interveningmemorybarriers(MB) and the two operationsare to
different locations).Thus,TSO sometimesallows a load to get a
valuefrom a “future” store.In real implementations,this behavior
is manifestwhena processor’s LD returnsa valuefrom its own ST
that is still on its own first-in-first-out(FIFO) write buffer andhas
not yet seenby otherprocessors.It shouldbenotedthatTSOsup-
portsmultiple flavorsof MBs, but we only concernourselveswith
the strongest(i.e., an MB that enforcesorderbetweenany opera-
tion before it and any operation after it).

In previous research[3], we developeda memory model called
WisconsinTSO that is equivalent to SPARC TSO, and it elimi-
natestheoddityof gettingavaluefrom a“future” storeby splitting
eachST into a STprivate and a STpublic. WisconsinTSO respects
programorderbetweenSTprivates andLDs, while STpublics canbe
delayeduntil thenext MB in programorder. In addition,STpublics
must also stay in programorder with respectto eachother. The
STprivateandSTpublic correspondingto thesameSTcarrythesame
value.A LD getsits valuefrom either(a) themostrecentSTprivate
by the sameprocessoras the LD for which the corresponding
STpublic hasnotyetoccurred(if any) or (b) themostrecentSTpublic
otherwise.The STprivate or STpublic from which the LD gets its
valueis consideredto betheapplicableWriteOP. Practitionerscan
think of a STprivate as a storeenteringa processor’s FIFO write
buffer, case(a) as bypassingfrom the write buffer, STpublic as a
store exiting the write buffer, and case(b) as obtaining a LD’s
value from cache or memory.

Thisdefinitionleadsto theorderingrulesshown in Table6 for par-
tial programorderat a processor, wheredifferencesfrom Table4
are shaded.Note that a programmercan enforceorder from a
STpublic to a LD by inserting an MB between them.

5.1.2 An Approximation of Intel IA-32

The Intel IA-32 memorymodel is similar to TSO, in that it is a
variantof processorconsistency. We approximatethe IA-32 sys-
tem orderingmodel by combiningthe TSO memorymodel with
our interpretationof the IA-32 I/O orderingrules [4]. IA-32 has
two uncached(UC) operations,LDuc andSTuc, thataresimilar to
our LDio and STio I/O operations,but UC operationsare more
strictly ordered.All operationsbeforea UC operation(in program
order)areorderedbeforethe UC operation,all operationsafter a
LDuc are orderedafter the LDuc, and all STs after a STuc are
orderedaftertheSTuc.In additionto theUC operations,IA-32 has
two “write combining” (WC) uncachedoperations,LDwc and
STwc. Theseoperationsare lessstrictly orderedthan LDio/STio
operations,andthey arewell-suitedto theaccessorderingrequire-
ments for a video frame buffer. There is no ordering enforced
betweenWC operationsor betweena WC operationanda cache-
able memory operation. Also, IA-32 has several “serializing
instructions” which enforceordering in much the sameway as
memory barriers, and we will simply refer to them as MBs.

We have madetwo simplificationsin this descriptionof IA-32.
First, IA-32 hasseveral flavors of cacheablememoryoperations,
includingWrite-through,Write-back,andWrite-protected,but we
will fold themall into LD/ST operations.Second,it supportsIN
andOUT I/O instructions,which arenot memory-mappedI/O, but
instead directly accessI/O ports. These I/O instructions are
orderedjustasstronglyasMBs, andwedonot includethemhere.

Table7 shows the ordering rules at a processorobeying our
approximationof IA-32. Onceagain,differencesfrom theSCtable
are shaded.Notice the extra orderingrequirementsof the LDuc/
STuc compared to those of the LDio/STio in Table4.

5.1.3 Compaq Alpha

TheCompaq(DEC)Alphamemorymodel[14] is aweaklyconsis-
tent model that relaxes the orderingrequirementsat a given pro-
cessorbetweenany accessesto differentmemorylocationsunless
ordering is explicitly statedwith the use of a Memory Barrier
(MB). The Alpha memorymodel is formally definedthroughthe
useof two ordersthat mustbe observed with respectto memory
accesses.Thefirst order, programissueorder, is a partialorderon
the memoryoperations(LDs, STs) issuedby a given processor.
Issueorderrelaxesprogramorderin thatthereis no orderbetween
accessesto different locations without intervening MBs. Issue
orderenforcesorderbetweenaccessesto thesamelocation,order
betweenany accessandanMB, andorderbetweenMBs. Thesec-
ond order, accessorder, is a total orderof operationson a single
memory location (regardless of the processors that issued them).

We previously definedan equivalentmemorymodel,calledWis-
consinAlpha [3], wherean executionof an implementationsatis-
fies the WisconsinAlpha memory model if there exists a total
ordering of all loads, stores, and MBs, such that:

• all of the issue orders are respected, and

• a load returnsthe value of the most recentstoreto the same
location in this total order.

This definition of WisconsinAlpha is reflectedin the partial pro-
gram ordering rules shown in Table8. Notice that there are no
orderingrequirementsbetweenLDs andSTs(unlessthey areto the

TABLE 6. TSO: Partial Pr ogram Order at a Processor

Operation 2

LD STpriv STpub MB LDio STio

O
pe

ra
tio

n
1

LD A A A A A A

STpriv A A Aa

a. Includes the case where both operations are caused by
the same Store (i.e., OP1 is the STprivate and OP2 is the
STpublic for a given ST).

A A A

STpub - - A A A A

MB A A A A A A

LDio A A A A D D

STio - - - A D D

6

sameaddress).To enforceorderbetweenthemrequiresinserting
anMB betweenthem,which createstheorderLD/ST <W MB <W
LD/ST.

5.1.4 Release Consistency

Releaseconsistency (RC), particularly the RCpcflavor, is oneof
the most relaxed memoryconsistency models[7]. To definecon-
sistency modelslike this, Gharachorlooet al. developeda general
framework for memoryconsistency models,wherewritesarebro-
ken into p+1 sub-operations,wherep is thenumberof processors
in the system[6]. This framework, in turn, is basedon a system
abstraction developed by Collier [2].

Along theselines, we could expand our partial program order
tablesto reflect that a storein an RC systemcould appearto be
brokenup into a STprivateandmany STpublics,with oneSTpublic at
eachprocessor. TheapplicableWriteOPfor a LD would beeither
the STprivate or the STpublic at that processor. Moreover, RC has
two new operations,AcquiresandReleases,which canbeconsid-
eredto be typesof MBs for our purposes.AcquiresandReleases
wouldbeincludedin theprocessorpartialprogramordertable,and
the orderingrequiredamongthemwould dependon the flavor of
RC.For example,theorderingbetweenacquiresandreleasesin an
RCpcsystemwould bethesameastheorderingbetweenLDs and
STs in a processorconsistentsystem(e.g.,TSO). This approach,
however, could lead to large, unwieldy tables.

5.2 WIO Consistency for General Memory Models

Extendingthe definition of WIO from Section4.2 to incorporate
memory models other than SC requires that we:

• Add any new operations,suchasLDwc andSTwc (whicharea
ReadOP and a WriteOP, respectively).

• Define what the applicableWriteOPsare for a ReadOP. For
example,in TSO,theapplicableWriteOPfor a LD is themost
recent STprivate at that processorunless the corresponding
STpublic is also before the LD, in which caseit is the most
recent STpublic.

• Change WIO property 2 to read:

2. thevaluereadby every ReadOPoperationis thevaluestoredby
themostrecentapplicableWriteOPoperationto thesameaddress
in the <W order.

6 An Implementation that Obeys WIO for SC

So far, we have provided abstractspecificationsof systemsthat
includeI/O. We now provide a concreteimplementationthataims
to conformto the WIO specificationfor SC systemspresentedin
Section4. In this section,we specify a sequentiallyconsistent
directory-basedsystemconsistingof thecomponentsdescribedin
Section3. This description builds upon the directory protocol
describedin Plakal et al. [12]. The descriptionis divided into
descriptionsof the processornodes, interconnect,I/O devices,
bridge and memory nodes.

Processornodes:Thecachereceivesastreamof LD/ST/LDio/STio
operationsfrom theprocessorand,if it cannotsatisfya request,it
issuesa transaction.1 The completelist of transactions,including
block transfertransactions(Rblk/Wblk) thatcanonly beissuedby
devices and which will be discussedlater, are shown in Table9.
Cache coherence transactions (GETX/GETS/UPG/WB) are
directedto the homeof the memoryblock in question(i.e., the
memory node which containsthe directory information for that

TABLE 8. Alpha: Partial Pr ogram Order at a Processor

Operation 2

LD ST MB LDio STio

O
pe

ra
tio

n
1

LD - - A A A

ST - - A A A

MB A A A A A

LDio A A A D D

STio - - A D D

TABLE 7. “IA-32”: P artial Pr ogram Order at a Processor

Operation 2

LD STpriv STpub MB LDuc STuc LDwc STwc

O
pe

ra
tio

n
1

LD A A A A A A - -

STpriv A A Aa

a. Includes the case where both operations are for the same ST (i.e., OP1 is the STprivate and OP2 is the STpublic for a given ST).

A A A - -

STpub - - A A A A - -

MB A A A A A A A A

LDuc A A A A A A A A

STuc - A A A A A - A

LDwc - - - A A A - -

STwc - - - A A A - -

1. As noted earlier, caches can also proactively issue transactions
without receiving an operation from their processors.

7

block). I/O transactions(Rio/Wio) are directedto a specific I/O
deviceandalsocontainanaddressof a locationwithin thememory
of thedevice (and,if Wio, thedatato write aswell). Thegranular-
ity of accessfor an I/O transactionis oneword (for simplicity of
exposition).Rios generatea reply messagefrom which the cache
extractsa registervalueandpassesit to theprocessor. Wios do not
generateany replymessagesfrom thetargetdevice; in thecasethat
a processorissuesa Wio and desiresa response,it can subse-
quentlyquerythedevice with a Rio. Note thateach LDio or STio
generatesexactlyoneRio or Wio (respectively). This is unlikenor-
mal cacheablememorytransactionswhere,for example,multiple
LDs or STsmaybe issuedto thesameblock aftera singleGETX
brought it into the cache.

Processornodesmustconformto thelist of behavior requirements
specifiedin Section2.4of Plakalet al. [12] (e.g.,a processornode
maintainsat most one outstandingrequestfor eachblock). They
mustalsoconformto the orderingrestrictionslaid out in Table4.
Thus,they donot issueaLD/ST until all LDios precedingit in pro-
gramorderhave been“performed”(i.e., thereply hasbeenwritten
into the register by the cache).

A processornode’s network interfacesendsall transactionsfrom
the cacheinto the interconnectionnetwork. In addition, the net-
work interfacewill passa Wio coming from the network to the
processor’s interrupt register. It alsopassesall repliesto transac-
tions to the cache.

Interconnect:Thenetwork ensurespoint-to-pointorderbetweena
processornodeandadevicenode,andit ensuresreliableandeven-
tual delivery of all messages.

Bridge: The I/O bridge performs the following functions: it
receivesRio/Wios from processornodesandbroadcaststhemon
theI/O Bus(this hasto bedonein orderof receipton a per-device
basis);sendsWio repliesfrom device memoryto processornodes;
sendsWios (to interruptregisters)from device processorsto pro-
cessornodes;participatesin Rblk/Wblk transactions(discussed
below) and broadcastscompletionacknowledgmentson the I/O
bus.The I/O bridgemustobey certainrules.It providessufficient
buffering suchthat it doesnot have to deny (negative acknowledg-
mentor NACK) requestssentby processorsor devices.It alsohan-
dlesthere-tryof its own NACKedrequests(to memorynodes).No
order is observed in the issue/overlap of Rblk/Wblk transactions.

Device Nodes:Eachdevice processorcanissueLDio/STios to its
device memory and INTs to processorinterrupt registers. INT
operationsare converted to Wio transactionsby the I/O bridge.
Thesearedirectedto a specificprocessor’s interrupt registerand
donotgeneratereplymessages.In addition,adevicecanalsoissue
LDblk andSTblk requests,andtheseoperationsareconvertedto
Rblk andWblk transactionsby the bridgeandaredirectedto the
home node. The data payload for both requestsis a processor
cacheline (equalto ablockof memoryatamemorynode,which is
equalto the coherenceunit for the entire system).Both requests
generateacknowledgments(ACKs) on the I/O bus (from the
bridge)and,in thecaseof theRblk, theACK containsthedataas
well. A Wblk requestcarriesthe datawith it. Also, eachLDblk/
STblk will generateexactly one Rblk/Wblk (just as with LDio/
STios and Rio/Wios).

Each device memory receives a streamof LDio/STios from its
device processor. In addition,it alsoreceivesa streamof Rio/Wios
from thebridge(via theI/O bus)which it logically treatsasLDio/
STios. Thesetwo streamsareinterleavedarbitrarily by thedevice
memory. For eachincomingRio, thedevicememorysends(via the
busandthebridge)thevalueof that locationbackto thenodethat
senttheRio. LDio/STios operateon device memorylike a proces-
sor’s LD/STs operate on its cache.

The device processormust obey the ordering rules specifiedin
Table5. For example,an INT is not issueduntil all LDblk/STblks
precedingit in “device programorder” have beenperformed(i.e.,
an ACK hasbeenreceived from the bridgefor the corresponding
Rblk/Wblk).

Memory Nodes:Memory nodesoperateasdescribedin Plakalet
al. [12] (with respectto directorystateandtransactions),with the
following modificationsfor handlingRblk/Wblk transactions.Pro-
tocol actionsdependon thestateof theblock at thehomenodefor
both transactions.

Rblk :

• Idle or Shared: thehomesendstheblock to thebridge,which
broadcasts an ACK with the data on the I/O bus.

• Exclusive: the homechangesstateto Busy-Rblk, removes the
currentowner’s ID from CACHED, andforwardsthe request
to thecurrentowner. Theownersendstheblock to thebridge,
invalidatestheblock in its cache,andsendsanupdatemessage
(with the block) to the home,which changesthe stateto Idle
andwritestheblock to memory. Thebridgereceivestheblock
and broadcasts an ACK along with the data on the I/O bus.

• Busy-Any: the home NACKs the request.

Wblk:

• Idle: thehomestorestheblock to memoryandsendsanACK
to the bridge. The bridge sendsan ACK to the device (via
broadcast on the I/O Bus).

• Shared: the homestoresthe block to memory, sendsinvalida-
tions to all sharedcopies,sendsa count of the copiesto the
bridge and changesthe stateto Busy-Wblk. The bridge waits
until it receives all ACKs for the invalidationsbeforebroad-

TABLE 9. Transactions

Transaction Description

GETX Get Exclusive access

GETS Get Shared access

UPG Upgrade (Shared to Exclusive) access

WB Write Back

Rio Read I/O - read word from I/O space

Wio Write I/O - write word to I/O space

Rblk Read Block - read cache block from ordi-
nary memory

Wblk Write Block - write cache block to ordi-
nary memory

8

castingthe transactioncompletionACK on the I/O Bus. The
bridgealsothensendsan ack to the homewhich enablesit to
change its state toIdle.

• Exclusive: the home storesthe block to memory, sendsan
invalidation to the (previous) owner, sendsan ACK to the
bridge,andchangesthestateto Busy-Wblk. Theformerowner
invalidatesits copy andsendsanackto thebridge,which then
sendsan ACK to the device and to the home (which then
changes its state toIdle).

• Busy-Any: the home NACKs the request.

Note that we now have two new “busy” homestates,Busy-Rblk
andBusy-Wblk, whichservesimilar rolesasthebusystatesusedin
the original directory protocol. Thesemodificationsmake some
formerly impossiblesituationspossible.In particular, Writeback
requestsmay find the homebusy. Onesolution is to modify this
transaction case:

• Writeback on homeBusy-Rblkor Busy-Wblk: This is thesame
as when the home isBusy-Shared.

7 Proof that the Implementation Satisfies WIO
We show correctnessof theimplementationdescribedin Section6
as follows. We will usea verification techniquebasedon Lam-
port’s logical clocks[9] that we have successfullyappliedto sys-
temswithout I/O [16, 12,3]. Thetechniquerelieson beingableto
assigntimestampsto operationsin a systemandthenproving that
theorderinginducedby thetimestampshasthepropertiesrequired
of theimplementation.In orderto applyourverificationtechnique,
we first describea timestampingschemethat logically ordersall
ReadOpsand WriteOpsthat occur in any given executionof the
protocol.Second,we show that the resultingtotal order satisfies
properties1 and2 of WIO consistency, asin Section4.2 for SC.A
detailedspecificationof our correctnessproof can be found in
Appendix A; the following is a short overview of our approach.

To specify the timestampingscheme,we augmentprocessors,
directory, anddeviceprocessors(all referredto asnodes)with log-
ical clocks.Westressthattheseclocksaresimplyconceptualtools,

not partof theactualprotocol.Usingtheseclocks,a uniquetimes-
tampis assignedto eachreadandwrite. In addition,a transaction
that causesa nodeto changeits accesspermissionto a block of
dataor word of I/O is timestampedby thatnode.Thus,a transac-
tion may be timestampedby several nodes.Roughly, when an
event(i.e. read,write, or transaction)to betimestamped“happens”
atanode,theclock is movedforwardin time andtheupdatedtime
on the clock is assignedto that event. Of course,eventsare not
atomicandso a centralaspectof the timestampingmethodis the
determination,from the protocol specification,of exactly when
(andwhere)eventsaretimestamped(andthuswhenthey arecon-
sideredto “happen”). In this way, the timestampingschemepro-
videsa single,total orderingof all key eventsin the system.The
correctnessproof thenshows thattherealsystembehavesjustasif
the eventshappenedatomically, in the order given by the times-
tamping scheme.

Tables10, 11, and12 areexamplesthat illustratehow the times-
tampingschemeworksandhelp in reasoningaboutcorrectnessof
ourprotocol.Weneedto describeonefurtheraspectof timestamps
before getting to our examples.Timestampsare split into three
non-negative integral components:global time, local time, and
processorID. As will becomeclearerfrom the example,global
timestampshelp to ordertransactionswhich happenacrossnodes,
whereaslocal timestampshelp to orderreadandwrite operations
that happeninternal to a node.ProcessorID simply actsasa tie-
breaker betweenoperationswith thesameglobalandlocal times-
tamps.

The first example,shown in Table10, shows one processor, P2,
thatcommunicateswith two devices,namelyD1 andD3. P2sim-
ply doesa write followedby a readto a word W1 of D1, followed
by a read to a word W2 of D3. Becausethe network preserves
point to point orderingof messages,D1 first receives the “Wio
W1” request,andthenthe “Rio W1” request;D1 performsthese
operationsin orderandreturnsthevalueof W1 to P2.Meanwhile,
D3 handlesthe “Rio W2” requestandreturnsthe valueof W2 to
P2.

TABLE 10. Example 1

D1 P2 D3

send Wio W1 to D1

recv Wio W1 send Rio W1 to D1

STio W1 send Rio W2 to D3

recv Rio W1 recv Rio W2

LDio W1; sendto P2 LDio W2; send to P2

receive W2

LDio W2

receive W1

LDio W1

TABLE 11. Example 2

D3 P4 P5

GETX B

send Wio W2 to D3

recv INV B

recv acks/data for B

revc Wio W2

STio W2 ST B

9

Table12showshow thesereadsandwritesaretimestamped.In our
timestampingscheme,readsand writes to device memory are
timestampedat thedevice (thusensuringthat,in theresultingtotal
ordering,thevalueof a readis thatof themostrecentwrite to the
sameword).TheWio andRio requeststo D1 areconsideredto be
transactionsandsoD1 assignsglobaltime 1 to theWio andglobal
time 2 to theRio request.As with all transactions,thelocal times-
tampfor eachof theseis 0, andthefinal componentof the times-
tampis thedevice ID, which is 1 in our example.Whenthe(local)
“STio W1” is performedby D1, thelocal time is incremented,and
thusthetimestampis 1.1.1.Similarly, thetimestampof the“LDio
W1” operationis 2.1.1,andtheeventsat D3 aretimestampedin a
mannerconsistentwith thoseat D1. Thus,the“STio W1” appears
beforethe“LDio W1” operationsatD1. This is consistentwith our
specificationin Table4 that readsandwrites to a commondevice
(in this case,D1) by a processorshould respectprogramorder.
Also notethat, regardlessof the relative order in real time of the
“LDio W1 at D1” and“LDio W2 at D3,” the“LDio W1” happens
before the “LDio W2” in timestamporder simply becauseD1’s
clock is further along than D3’s clock when they perform these
operations.The timestampsassignedto theseoperationsarealso
independentof whetherP2receivesthevalueof W2 beforeor after
P2 receivesthevaluefor W1. So,althoughthe “Rio W1” appears
before“Rio W2” in P2’s programorder, the “LDio W2” appears
beforethe“LDio W1” in timestamporder. Again, this is consistent
with Table4, which that specifiesLDios to different devices are
not constrained to respect program order.

Our secondexample, in Table11, concernsa processorP4 that
receivesexclusive permissionfor block B, causingprocessorP5to
invalidateits copy of blockB. In addition,P4sendsa“Wio W2” to
D3. Table12showshow transactionsandoperationsatD3, P4,and
P5 aretimestamped.The timestampingrulesspecifythat the glo-
bal timestampassignedby P4 to the GETX transactionmust be
later than the correspondingINValidateat P5. Imaginethat acks
sentto P4from P5includethetimestampof theINValidate.Also,
in contrastwith thefact thatreadsandwritesto devicesaretimes-
tampedat the device, readsandwrites to cacheablememory(and

thusthe“ST B” operationat P4)aretimestampedat theprocessor
performing the operation.This is becausepermissionsfor the
block resideat the processor, whereaspermissionsfor a word of
device memory always reside at the device.

Note that in Table12, at any singlenode,the logical timestamps
arealwaysincreasingin real time, while timestampsmay be “out
of order” acrossnodesin real time. Finally, note that the logical
timestampsprovide a total orderingof all readsand writes; this
total orderingobtainedin ourexamplecanbeeasilyseento satisfy
the conditions of Section4.2.

8 Conclusions

Although I/O devicesare integral partsof computersystemsand
having cleanI/O architectureswould offer benefits,the commer-
cial systemswith which we arefamiliar tendto usead hoc,com-
plex, and undocumentedinterfaces. In this paper, we have
proposeda framework calledWisconsinI/O for formally describ-
ing I/O architectures.WIO is anextensionof researchon memory
consistency modelsthat incorporatesmemory-mappedI/O, inter-
rupts,anddeviceoperationsthatcausesideeffects.WIO is defined
throughorderingrequirementsat eachprocessoranddevice,anda
systemis consideredto obey WIO if thereexistsa totalorderof all
operationsthat satisfiestheseorderingrequirementssuchthat the
valueof every readis equalto the valueof the mostrecentwrite.
We outlinedhow to useLamportclocksto prove that an example
system that we specified satisfies its WIO specification.

The framework presentedherefor specifyingand analyzingsys-
temswith I/O canbegeneralizedin severalwaysthatwerenotpre-
sentedearlier in order to simplify the discussion.For example,
unlike in Section6, we can model I/O bridgesthat do not have
enough buffering to ensure that they can sink all incoming
requests.Also, the definition of Wisconsin I/O consistency is
parameterizedby a n-tupleof partial programordersandis there-
fore easilygeneralizedto handleanarbitrarysetof local ordering
rules.In the extremecase,eachprocessorandeachdevice would
have its own table of partial program orders.

TABLE 12. Combined example with timestamps. Initially, all clocks (global.local) are set to 0.0.

D1 P2 D3 P4 P5

send Wio W1 to D1 GETX B

1.0.1 recv Wio W1 send Rio W1 to D1 send Wio W2 to D3

1.1.1 STio W1 send Rio W2 to D3 1.0.5 recv INV B

2.0.1 recv Rio W1 1.0.3 recv Rio W2 2.0.4 recv acks/data for B

2.1.1LDio W1; sendto P2 1.1.3LDio W2; sendto P2

receive W2 2.1.4 ST B

LDio W2

receive W1

LDio W1

2.0.3 recv Wio W2

2.1.3 STio W2

10

Acknowledgments

We would like to thankSaritaAdve,Bob Cypher, Andy Glew, Gil
Neiger, and the anonymous refereesfor their helpful comments
andsuggestions.The authors,however, take responsibilityfor the
views expressed in this paper.

References

[1] SaritaV. Adve and Kourosh Gharachorloo.Shared Memory
ConsistencyModels: A Tutorial. IEEE Computer, pages66–76,
December 1996.

[2] William W. Collier. ReasoningAbout Parallel Architectures.
Prentice-Hall, Inc., 1992.

[3] AnneE. Condon,Mark D. Hill, ManojPlakal,andDanielJ.Sorin.
UsingLamportClocksto ReasonAboutRelaxedMemoryModels.
In Proceedingsof the 5th International Symposiumon High
Performance Computer Architecture, January 1999.

[4] Intel Corporation. Pentium Pro Family Developer’s Manual,
Version 3: Operating System Writer’s Manual. January 1996.

[5] David Culler, JaswinderPal Singh, and Anoop Gupta.Parallel
ComputerArchitecture:A Hardware/SoftwareApproach. Morgan
Kaufmann, 1998.

[6] Kourosh Gharachorloo,SaritaV. Adve, Anoop Gupta, JohnL.
Hennessy,andMark D. Hill. SpecifyingSystemRequirementsfor
Memory ConsistencyModels. Technical Report CS-TR-1199,
University of Wisconsin– Madison,December1993. Seealso
URL ftp://ftp.cs.wisc.edu/tech-reports/reports/93/tr1199.ps.Z.

[7] Kourosh Gharachorloo,Daniel Lenoski, JamesLaudon, Phillip
Gibbons,AnoopGupta,andJohnHennessy.MemoryConsistency
andEventOrderingin ScalableShared-memoryMultiprocessors.
In Proceedingsof the 17th Annual International Symposiumon
Computer Architecture, pages 15–26, May 1990.

[8] J.Goodman. Cache Consistencyand SequentialConsistency.
TechnicalReport61, IEEE ScalableCoherentInterfaceWorking
Group, 1989.

[9] Leslie Lamport. Time, Clocks and the Orderingof Eventsin a
DistributedSystem.Communicationsof theACM, 21(7):558–565,
July 1978.

[10] Leslie Lamport. How to Make a MultiprocessorComputerthat
CorrectlyExecutesMultiprocessPrograms.IEEETransactionson
Computers, C-28(9):241–248, September 1979.

[11] JamesP. Laudon and Daniel Lenoski. The SGI Origin: A
ccNUMA Highly ScalableServer. In Proceedingsof the 24th
InternationalSymposiumon ComputerArchitecture, Denver,CO,
June 1997.

[12] ManojPlakal,DanielJ.Sorin,AnneE. Condon,andMark D. Hill.
Lamport Clocks: Verifying a Directory Cache-Coherence
Protocol.In Proceedingsof the10thAnnualACM Symposiumon
Parallel Architecturesand Algorithms, PuertoVallarta, Mexico,
June 28–July 2 1998.

[13] A. Singhal, D. Broniarczyk, F. Cerauskis, J.Price, L. Yuan,
C. Cheng, D. Doblar, S.Fosth, N. Agarwal, K. Harvey,
E. Hagersten,and B. Liencres.Gigaplane:A High Performance
Bus for Large SMPs.Hot Interconnects IV, pages 41–52, 1996.

[14] RichardL. Sites, editor. Alpha ArchitectureReferenceManual.
Digital Press, 1992.

[15] Mark Smotherman.A Sequencing-BasedTaxonomy of I/O
Systems and Review of Historical Machines. Computer
ArchitectureNews, 17(5):10–15,September1989.SeealsoURL
http://www.cs.clemson.edu/~mark/io.ps.

[16] DanielJ.Sorin,ManojPlakal,Mark D. Hill, andAnneE. Condon.
LamportClocks:ReasoningAbout Shared-MemoryCorrectness.
TechnicalReportCS-TR-1367,Universityof Wisconsin-Madison,

March 1998. See also URL ftp://ftp.cs.wisc.edu/tech-reports/
reports/98/tr1367.ps.Z.

[17] DavidL. Weaver and Tom Germond, editors. The SPARC
Architecture Manual, Version 9. PrenticeHall, 1994. SPARC
International, Inc.

Appendix A: Proof that an Implementation Satisfies WIO1

In this section, we will demonstratethat the implementation
describedin Section6 satisfiesthedefinitionof WIO. We will use
a verificationtechniquebasedon Lamport’s logical clocksthatwe
have successfullyappliedto systemswithout I/O [16, 12, 3]. The
techniquerelieson beingableto assigntimestampsto operations
in a systemand then proving that the ordering inducedby the
timestampshas the propertiesrequired of the implementation.
SectionA.1 provides backgroundon our verification technique,
SectionA.2 describesthetimestampingschemefor our implemen-
tation, and SectionA.3 provides the proof of correctnessof the
implementation.Both the timestampingschemeand proof are
intendedto be modestextensionsof thosepresentedin our previ-
ous work [12].

A.1 Background to Lamport Clocks2

Our previous work on using Lamport Clocks to verify shared-
memorymultiprocessorsystems[12,16] proved that implementa-
tions (without I/O) usinga SGI Origin 2000-like [11,5] directory
protocolanda SunGigaplane-like [13] split-transactionbusproto-
col both implement SC. Both implementationsuse three-state
invalidation-basedcoherenceprotocols.We have also extended
this researchto useLamportclocksto prove thatsystemsobey two
relaxed memoryconsistency models,SPARC TSO and Compaq
Alpha [3].

Our reasoningmethodassociateslogical timestampswith loads,
stores,andcoherenceevents.We call our methodLamportClocks,
becauseour timestampingmodestly extends the logical times-
tamps Lamport developed for distributed systems[9]. Lamport
associatedacounterwith eachhost.Thecounteris incrementedon
local eventsandits valueis usedto timestampoutgoingmessages.
On messagereceipt,a hostsetsits counterto onegreaterthanthe
maximumof its former time and the timestampof the incoming
message.Timestamptiesarebrokenwith hostID. In this manner,
Lamportcreatesa totalorderusingtheselogical timestampswhere
causality flows with increasing logical time.

Our timestampingschemeextendsLamport’s 2-tuple timestamps
to three-tuples:<global . local . node-id>, whereglobal takespre-
cedenceover local, andlocal takesprecedenceover node-id (e.g.,
3.10.11< 4.2.1).Coherencemessages,or transactions,carryglobal
timestamps.In addition,globaltimestampsorderLD andST oper-
ations relative to transactions.Local timestampsare assignedto
LD andST operationsin orderto preserve programorderin Lam-
port time amongoperationsthat have the sameglobal timestamp.

1. This appendix is present in the technical report version of this
paper but not in the version that appears in theProceedings of the
11th Annual Symposium on Parallel Algorithms and Architectures
(SPAA), June 1999.

2. This summary is similar to the summary we present in Section
2.1 of Condon et al. [3].

11

They enablean unboundednumberof LD/ST operationsbetween
transactions.Node-ID, the third componentof a Lamport times-
tamp, is usedas an arbitrary tiebreaker betweentwo operations
with the sameglobal andlocal timestamps,thusensuringthat all
LD and ST operations are totally ordered.

A.2 Timestamping Scheme for Our Implementation

Before we presentthe timestampingscheme,we would like to
definesomeconceptsandmakesomechangeswhichwill makethe
timestamping and the proof simpler to express and understand.

First,wesplit upRblk andWblk transactionsinto two steps:RBlk-
Start/EndandWBlk-Start/End,respectively. Thereasoningbehind
this is asfollows:cachecoherencetransactions(e.g.,aGETX) will
bring a block into a processorcachewhereit canbeaccesseduntil
it is removed via anothertransaction(e.g.,a WB or an incoming
invalidation generatedby anotherGETX). On the other hand,
RBlk/Wblk transactionsaccessa cacheblock but they do not give
the device permissionto do more than one operation(LDblk/
STblk). It is asif theLDblk/STblk wasimmediatelyfollowedby a
transactionthatremovedthedevice’s accessto theblock.Concep-
tually breakingRBlk and WBlk into Start and End transactions
unifies cachecoherenceand DMA transactionsinto one frame-
work andsimplifiesthe timestampingandtheproof. This wasnot
doneearlier(in Section6) to avoid confusingthereaderwith extra
detail.Thechangesto theprotocolareminimal: every RBlk/WBlk
transactionis now regarded as a RBlk/WBlk-Start transaction.
After sucha transactionsucceeds,a device nodeis now capableof
performinga LDblk/STblk operation.TheRblk-End/Wblk-Endis
consideredto conceptuallyoccurwhenthetransactionis complete.

Consistentwith ourpreviouswork [12], we introducethenotionof
a per-block A-state(address-state)at a nodeto describethe home
node’s view of thatnode’s accessto thatblock of memory. TheA-
statecanbeoneof AI (Idle), AS (Shared), or AX (Exclusive). The
A-stateof a block at a nodechangesas it participatesin transac-
tions for that node(either initiated by it or forwardedto it by the
home).TheA-stateis setto AI whenthenodereceivesaninvalida-
tion or a forwardedGet-Exclusive, or an acknowledgmentfor its
own Writeback request.The A-state is set to AS when the node
receivesadowngrade,or a responseto its own Get-Sharedrequest.
Finally, theA-stateis setto AX whenthenodereceivesa response
to its own Upgradeor Get-Exclusiverequest,alongwith all associ-
atedinvalidationacknowledgments.In addition,wenow definethe
A-stateof a device nodefor a block B of memoryto changeto AS
or AX when it performsa RBlk-Start or WBlk-Start, and that it
changeto AI onaRBlk-Endor WBlk-End.Similarly, afteraRBlk/
WBlk-Starttransaction,thehomenode’s A-statewill changeto AI
or AS accordingas the final homestatefor that block is Idle or
Shared respectively. After a RBlk/WBlk-End transaction,the
homenode’s A-statewill changeto AX if thefinal homestatefor
that block (after the corresponding RBlk/WBlk-Start) wasIdle.

Weassigntimestampsto theoperationsandtransactionsdefinedin
Tables1, 2, and 9 (with RBlk and WBlk split up as described
above). The rules listed in Tables 13, 14, and 15 indicate the
assignmentof the global and local componentsof the timestamp
for eachkind of operation/transaction.Note that transactionsdo
not needa local timestampandcould be assignedsomearbitrary

local timestamp(e.g.,zerosothata transactiongetsorderedbefore
operations with the same global timestamp).

Conceptually, eachnode (processor/memory/device) maintainsa
global and local clock which get updatedin real time for opera-
tions and transactions.To do this in a well-definedmanner, we
definea timestampingorder which is a per-nodetotal orderwhich
decidestheorderin which operationsandtimestampsgetassigned
timestamps.Operationsenterthe timestampingorderof a nodeat
thepoint in realtimewhenthey areretired(i.e., they cannotbeun-
donedueto mis-speculationhandling),andoperationsareretired
in a real time orderthat is consistentwith programorder. If more
thanoneoperationis committedat thesamepoint in realtime,they
canbe orderedarbitrarily in the timestampingorder. Transactions
enter the timestampingorder of a nodeat the point in real time
when the corresponding A-state change occurs at that node1.

The timestampingrules given below also determinethe mainte-
nanceof theper-processorclocksin thata nodeupdatesits global
and local clocks to equal the correspondingtimestampof each

TABLE 13. Processor node timestamping

Operation/
Transaction

Global
Timestamp

Local
Timestamp Node ID

LD, ST current global
clock

1 + current
local clock

processor

LDio global timestamp
of corresponding
Rio (sent)

1 device

STio global timestamp
of corresponding
Wio (sent)

1 device

P-UP 1 + max {global
clock,timestamps
assigned to P-UP
by all othernodes
thatdowngradeas
a result of P-UP}

0 processor

P-DOWN 1 + global clock 0 processor

Rio (sent) only timestamped at device

Wio (sent) only timestamped at device

Wio (recv) 1 + max {global
clock, global
timestamp of
device when Wio
was sent}

0a processor

a.Timestampis 0, but theclock is setto 1. Thisensuresthat
LDio/STios issuedby aprocessorgeta local timestampof 1,
while those issued by a device get a local timestamp of 2 or
greater.

1. There is the exceptional case ofGet-Shared transactions at the
home for aShared block. In this case, we consider the timestamp
to be assigned at the point that the home sends the block to the
requester, i.e., when the A-state “changes” from AS to AS.

12

operation/transactionit timestampsin timestampingorder. Any
increasein theglobalclock valuecausesthelocal clock to bereset
to zerobeforeit is updatedasspecifiedby therule.Therearea few
caseswhere a transactionoriginating at a node is timestamped
elsewhere(e.g.,theWio at a device correspondingto anINT). The
assignmentof this timestampcausesthe local node’s globalclock
to get incremented (if necessary). For purposes of timestamping,

we considera bridgeto bepartof eachdevice node,andall trans-
actionsin which a bridgeparticipateson behalfof a device node
will update the clocks of that device node.

Processornodes:Let P-UPbea transactionthatcausesanincrease
in coherencepermissions(upgrade)at processornodepi (GETX,
GETS, or UPG by pi), and let P-DOWN be a transactionthat
causesadecreasein coherencepermissions(downgrade)atpi (WB
by pi, GETX by pj for ablockthatpi hasSharedor Exclusive,UPG
by pj for a block thatpi hasShared,GETSby pj for a block thatpi
hasExclusive, or Rblk/Wblk by a device for a block that pi has
Sharedor Exclusive).Thentheprocessornodetimestampingrules
are as shown in Table13.

Memorynodes:Let M-UP bea transactionthatcausesanincrease
in permissionsat memorynodemi (WB by pi), andlet M-DOWN
beatransactionthatcausesadecreasein permissionsatmi (GETS,
GETX, or UPG by pi). With thesedefinitionsof M-UP and M-
DOWN, thetimestampingrulesfor memorynodesareasshown in
Table14. The memorynodetimestampstransactionsin the real-
time orderin which they areprocessed.In thecaseof transactions
thatinvolve transientBusystates,the“currentglobalclock” corre-
spondsto the global clock at the time the Busy stateis entered,
while thetimestampof thetransactionis assignedwhenthemem-
ory enters a non-transient state (Idle, Shared, Exclusive).

Device nodes:A device nodetimestampsoperationsandtransac-
tions as shown in Table15.

A.3 Proof of Correctness of Our Implementation

To prove WIO, it is sufficient to show that thereis a total orderof
operationssuchthat theorderingsin Tables4 and5 arerespected
and such that every Read-OPgets the value of the most recent
Write-OP. The timestampingschemeensuresthe total orderand,
combinedwith theprotocolspecification,ensuresthatTables4 and
5 arerespected.LDios andSTios to device memoryareorderedat
the device in the order in which they are performed,so a LDio
mustgetthevalueof themostrecentSTio. Now wewill prove that
every LD/LDblk gets the value of the most recent ST/STblk.

The proof that we provide hereis very similar in structureto the
proof thatwe providedin our previouswork [12]. In whatfollows,
we first outline how definitions from our previous work can be
extendedto the implementationpresentedin this paper. We then
summarizetheclaimsandlemmasthatareusedin themain theo-
rem.Thechangesin thestatementsof theseresults(relative to our
previous work in SPAA’98 [12]) are in underlined bold.

The consistency model is establishedusingthe conceptof coher-
enceepochs. An epochis aninterval of logical timeduringwhicha

TABLE 14. Memory node timestamping

Transaction Global Timestamp

M-UP 1 + max {current global clock, timestamps
assigned to M-UP by the nodes that down-
grade as a result of M-UP}

M-DOWN 1 + current global clock

Rblk-Start 1 + max {current global clock, global times-
tamp of device when Rblk-Start was sent,
global timestamp assigned to Rblk-Start by
Exclusivenodethatdowngradesasaresultof
Rblk-Start (if any)}

RBlk-End 1 + current global clock

Wblk-Start 1 + max{current global clock, global times-
tamp of device when Wblk-Start was sent,
global timestamp assigned to Wblk-Start by
all nodes that downgrade as a result of Wblk-
Start (if any)}

WBlk-End 1 + current global clock

TABLE 15. Device node timestamping

Operation/
Transaction

Global
Timestamp

Local
Timestamp Node ID

LDio, STio current global
clock

1 + current
local clock

device

INT global times-
tamp of corre-
sponding Wio

1 processor

LDblk global times-
tamp of corre-
sponding Rblk-
Start

1 memory

STblk global times-
tamp of corre-
sponding
Wblk-Start

1 memory

Rio (recv) 1+ max{global
clock, global
timestamp of
sender when
Rio was sent}

0a

a. See footnote under Table13.

device

Wio (recv) 1 + max {glo-
bal clock, glo-
bal timestamp
of senderwhen
Wio was sent}.

0a device

Wio (sent) only timestamped at processor

Rblk-Start only timestamped at memory

RBlk-End only timestamped at memory

Wblk-Start only timestamped at memory

WBlk-End only timestamped at memory

13

nodehasread-onlyor read-writeaccessto a block of data.In the
restof thepaper, we assumea block to bea fixed-size,contiguous,
alignedsectionof memory(usuallyequalto the cacheline size).
Also, LDs and STs operateon words, where we assumethat a
word is containedin a block and is alignedat a word boundary.
Ourschemecouldbeextendedto handleLDs andSTsonsub-units
of a word (half-wordsor bytes)which neednot be aligned.How-
ever, this makes the specificationof the memory models very
tedious without any gain in insight or clarity.

Transactionson a given block areserializedby the block’s direc-
tory. Hence,we canspeakabouta sequenceof transactionson the
sameblock wherethe orderingis implied by their serializationat
the directory. For eachnodeN, a sequenceof t transactionson
block B (wheretheorderamongtransactionsis seenat theHome)
definesa uniquesequenceA(1), A(2),..., A(t) of associatedA-states
for N, givensomeinitial A-statevalueat N. If A(i) is not equalto
A(i-1) for somei ≥ 1, wesaythattheith transactionin thesequence
“affects” N and that the transaction“implies that N’s A-statefor
blockB changefrom A(i-1) to A(i)”. For example,considerasingle
block of memoryandthreenodes:N1 (processor),N2 (device) and
N3 (memory).SupposethatbothN1 andN2 startoutwith aninitial
A-stateof AI andN3 startswith AX. Let the sequenceof transac-
tionsat N3 beN1’s Get-Exclusive, N2’s RBlk-StartandN2’s RBlk-
End. Thenthesequenceof A-statesfor N1, N2 andN3 areAI, AX,
AI, AI; AI, AI, AX, AI andAX, AI, AI, AX respectively. The Get-
Exclusiveaffects N1 and N3, while the RBlk-Start/Endaffect N2
andN3. In thespecialcasethata nodeis thedirectory, we saythat
it is also affected by all transactionsresulting from Get-Shared
requests,eventhoughnochangein theA-stateat thedirectorymay
be implied by such a transaction.

Eachtransactionimpliesan“upgrade”of A-state(i.e. changefrom
stateAI to AS, from AI to AX, or from AS to AX) at exactly one
node.For example,a RDblk-Startcausesanupgradeat thedevice,
a downgradeat memory, andpossiblya downgradeat a processor.
Also, each transactionimplies a “downgrade” of A-state (i.e.
changefrom AX to AS, from AX to AI, or from AS to AI) atzeroor
morenodes.In thespecialcasethatnodeN is thedirectory, wesay
that N’s A-state “downgrades”as a result of every Get-Shared
transaction,even though its A-statemay not be changedby the
transaction.On eachtransaction,exactly one nodeupgradesand
zero or more nodes downgrade.

Thedefinitionsof “affects”and“implies” in theprevioustwo para-
graphsdependonly on thesequenceof transactionson block B at
B’s directory. In Claim 2 below, we show thattheprotocolspecifi-
cationensuresthat,at every node,theactualsequenceof changes
to theA-statefor blockB occursin theorderimpliedby theserial-
ization of the transactionsat B’s directory, even thoughmessages
on successive transactions may be received out of order by a node.

Claim 1: For eachtransactionT, amessageis sentto everyproces-
sor affectedby T. Also, if processorN upgradesasa resultof T,
exactly thosenodesthat areaffectedby transactionT (other than
N) send a message to N.

Claim 2: The sequenceof A-statechangeson block B at a node
occurs in real time in the order implied by the serializationof
transactions on block B at its directory.

Claim 3: For a transaction T on block B,

(a) The timestampsof the downgradesassociatedwith T are less
than or equal to the timestamp of the upgrade associated with T.

(b) Thetimestampof theupgradeassociatedwith T is lessthanthe
timestampof the upgradeassociatedwith any transactionT’ on
block B occurringafterT in theserializationorderat thedirectory,
so long as one of T or T’ is a Get-Exclusive or Writeback or
WBlk-Start .

Claim 4: Every LD/ST or LDblk/STblk operationon block B at
processorpi is bound1 to the most recent(in Lamport time at pi)
transaction on block B that affects pi.

By construction,theLamportorderingof LDs andSTswithin any
processoris consistentwith programorder. Therefore,to prove
sequentialconsistency, it is sufficient to show that the value of
every load equals the value of the most recent store.

Recall that a coherenceepochis simply a Lamport time interval
[t1,t2) during which a nodehasaccessto a block. All operations
that have global timestampt where t1 ≤ t < t2 are containedin
epoch[t1,t2). A sharedor exclusive epochfor block B at nodeN
startsat time t1 if a transactionwith timestampt1 (at N) implies
thatN’s A-statefor blockB changesto AS or AX respectively. The
epochendsat time t2, wheret2 is N’s timestampof thenext trans-
action on B that implies a change in A-state at N.

Lemma1 showsthattwo processorscannothave“conflicting” per-
missionto the sameblock at the same(Lamport) time. Lemma2
statesthat processorsdo operationswithin appropriateepochs.
Finally, Lemma3 shows that the “correct” block value is passed
among processors and the directory between epochs.

Lemma 1: Exclusiveepochsfor blockB donotoverlapwith other
exclusive or shared epochs for block B in Lamport time.

Lemma 2: (a) Every LD/ST, LDblk/STblk operationon block B
at pi is containedin someepochfor block B at pi andis boundto
the transactionthat causedthat epochto start. (b) Furthermore,
everySTor STblk operationonblockB atpi is containedin some
exclusive epochfor block B at pi andis boundto the transaction
that caused that epoch to start.

Lemma 3: If block B is received by nodeN at the startof epoch
[t1,t2), theneachword w of block B equalsthemostrecentST or
STblk to word w prior to t1 or the initial valuein thedirectory, if
there is no store to word w prior to global time t1.

Theproof of theMain Theoremshows how WIO follows from the
lemmas.

Main Theorem: Thevalueof everyLD or LDblk equalsthevalue
of the most recentST or STblk or the initial value, if therehas
been no prior store.

1. In our previous work [12], we had defined the notion of LDs/
STsbeingboundto thetransactionthatbroughtthecorresponding
block into thecache.Similarly, LDblk/STblk operationsarebound
to their corresponding RBlk/WBlk-Start transactions.

