A System-Level Specification Frameverk for I/O Ar chitectures*

Mark D. Hill, Anne E. Condon, Manoj Plakal, Daniel J. Sorin
Computer Sciences Department,
University of Wisconsin - Madison,
1210 West Dayton Street, Madison, WI 53706, USA.

{markhill, condon,

Abstract

A computersystemnis uselesainlesst caninteractwith theoutside
world throughinput/output(l/O) devices.l/O systemsre comple,
including aspectssud as memory-mappedpemtions,interrupts,
and bus bridges. Often, /0 behavioris describedfor isolated
deviceswithouta formal descriptionof howthe completel/O sys-
tembehavesThelack of an end-to-endsystendescriptionmales
thetasksof systenprogrammes and hardware implementos more
difficult to do corectly.

This paper proposesa framavork for formally describing I/O

architectures called Wisconsinl/O (WI0). WIO extendswork on

memoryconsistencynodels(that formally specifythe behaviorof

normal memory) to handle consideations such as memory-
mappedopentions, device opertions, interrupts,and opemtions
with side effects.Specifically WIO asksead processoror device
thatcanissuek opemtiontypesto specifyorderingrequirrmentsn

a k O k table A systemobeys WIO if there alwaysexists a total

order of all opemtionsthatrespectprocessomanddevice ordering
requirrmentsand hasthe value of eadh “r ead” equalto the value
of the mostecent “write” to that addess.

This paperthen presentsexamplesof WIO specificationgor sys-
temswith various memoryconsistencynodelsincluding sequen-
tial consistency{SC),SFARC TSO,an approximationof Intel IA-
32, and CompagAlpha. Finally, we presenta directory-based
implementatiorof an SCsystemand a proof which showsthat the
implementation conforms to its WIO specification.

1 Introduction

Modern computer hardware is comple. Processorsexecute
instructions out of program order non-blocking cachesissue
coherencetransactionsconcurrently and system interconnects
have moved well beyond simplebusesthatcompletedransactions
oneatatimein atotal order Fortunately mostof this compleity

is hiddenfrom software with an interface called the computers

“architecturé. A computerarchitecturéncludesat leastfour com-

ponents:

* Theinstruction set architectule gives the userlevel and sys-
tem-level instructionssupportedand how they are sequenced
(usually serially at each processor).

®* A memory consistencymodel (e.g., sequentialconsisteny,
SFARC Total StoreOrdet or CompagAlpha) givesthe behar-
ior of memory

* This technicalreportaddsAppendix A, “Proof that an Imple-
mentationSatisfiesWIO,” to the paperthat appearsn the Pro-
ceedingsof the 11th Annual Symposiunon Parallel Algorithms
and Architectuies (SRA), June 1999.

pl akal ,

sorin}@s.w sc. edu

® The virtual memoryarchitectue specifiesthe structureand
operation of page tables and translatiaffdrs.

® The Input/Output(l/O) architecture specifieshow programs
interact with deices and memory

This paperexaminesissuesn theoften-nglected/O architecture.
The I/O architectureof modernsystemss comple, asillustrated
by Smothermars venerabld/O taxonomy{15]. It includesat least
the following threeaspectsFirst, software, usually operatingsys-
tem device drivers, must be able to direct device activity and
obtaindevice dataandstatus.Most systemgodayimplementthis
with memory-mappedpeitions A memory-mappedperationis
a normalmemory-referencenstruction(e.g.,load or store)whose
addresss translatedy the virtual memorysystemto anuncache-
ablephysicaladdresghatis recognizedy a device insteadof reg-
ular memory A device respondgo aload by replyingwith a data
word andpossiblyperforminganinternalside-efect(e.g.,popping
the read data from a queue).A device respondsto a store by
absorbingthe written data and possibly performing an internal
side-efect (e.g., sendingan external message)Precisedevice
behaior is device specific. Second,most systemssupportinter-
ruptswherebya device sendsa messagéo a processarA proces-
sor receving an interrupt may ignore it or jump to an interrupt
handler to processit. Interrupts may transfer no information
(beyond the fact that an interrupthasoccurred),include a “type”
field, or possiblyincludeoneor moredatafields. Third, mostsys-
temssupportdirect memoryacces§DMA). With DMA, a device
cantransferdatainto or out of aregion of memory(e.g.,4Kbytes)
without processor inteention.

An examplethatusesall threetypesof mechanismss a disk read.
A processobeginsadisk readby usingmemory-mappedtoresto

inform a disk controllerof the sourceaddres®on disk, the destina-
tion addressin memory and the length. The processorthen
switchesto other work, becausea disk accesstakes millions of

instructionopportunitiesThe disk controllerobtainsthe datafrom

disk andusesDMA to copy it to memory Whenthe DMA is com-
plete,the disk controllerinterruptsthe processoto inform it that
the data is\ailable.

A problemwith currentl/O architecturess that the behaiors of
disks,network interfaces framebuffers, /O buses(e.g.,PCl), sys-
tem interconnects(e.g., PentiumProbus and SGI Origin 2000
interconnect)andbus bridges(thatconnectl/O busesandsystem
interconnectshre usually specifiedin isolation. This tendeng to
specify thingsin isolation makesit difficult to take a “systems”
view to answer systemylel questions, such as:

* Whatmustaprogrammeto do (if arything) if he or shewants
to ensurethattwo memory-mappedtoresto the samedevice
arrive in the same order?

® How doesa disk implementorensurethata DMA is complete
sothataninterruptsignallingthat the datais in memorydoes
not arrve at a processor before the data is in memory?

® How muchis the systeminterconnector bus bridge designer
allowed to reordertransactionsto improve performanceor
reduce cost?

This paperproposesa formal framework, called Wisconsin|/O
(WIO), that facilitatesthe specificationof the systemsaspectsof
an l/O architectureWIO builds on work on memoryconsisteng
modelsthat formally specifiesthe behaior of loadsand storesto
normalmemory Lamports sequentiatonsisteng (SC),for exam-
ple, requiresthat“the resultof arny executionis the sameasif the
operationsof all the processorsvere executedin somesequential
order and the operationsof eachindividual processo@ppearin
this sequencen the order specifiedby its program[10].” WIO,
however, mustdealwith severalissuesotincludedin mostmem-
ory consisteng models:(a) a processorcan performmore opera-
tions (e.g., memory-mappedtoresand incoming interrupts), (b)
devices perform operations(e.g., disks doing DMA and sending
interrupts),(c) operationscan have side effects (e.g.,a memory-
mappedoad poppingdataor aninterruptinvoking a handler),and
(d) it maynotbeagoodideato requirethatthe orderamongoper-
ationsissuedby the sameprocessor/déce (e.g.,memory-mapped
stores to dierent deices) alvays be preseed by the system.

To handlethis generality WIO askseachprocessomwr device to
provide atableof orderingrequirementslf a processor/déce can
issuek typesof operationsthe requiredtableis k O k, wherethe
i,j-th entry specifiesthe orderingthe systemshouldpresere from
anoperationof typei to anoperationof typej issuedaterby that
processopr device in programorder(i.e., in theorderspecifiedoy
the processoror device’s program).A disk, for example, might
never needorder to be presered amongthe multiple memory
operationmeededo implementa DMA. A systemwith p proces-
sorsandd devicesobeys WIO if thereexists a total orderof all of
the operationsssuedin the systemthat respectghe subsewf the
programorder of eachprocessorand device, as specifiedin the
p+d tablesgiven asparameterssuchthatthe value of each‘read”
is equal to thealue of the most recent “write” to that addréss.

This paperis organizedasfollows. In Section2, we discusgelated
work. Section3 presentghe modelof the systemwe arestudying.
Sectiond explains the orderingsthat are usedto specify the I1/O

architecturefor a systemwhose memory model is SC, and it

defines Wisconsin I/O consisteng basedon these orderings.
Section5 extendstheframework to incorporateothermemorycon-
sisteny models.Section6 describes systemwith I/O thatis com-
plex enoughto illustrate real issues,but simple enoughto be
presentedn a conferencepaper In Section7, we shav that the
system describedin Section6 obeys Wisconsin I/O. Finally,

Section8 summarizes our results.

We seethis paperashaving two contritutions. First, we presenta
formal framework for describingsystemaspectsof /O architec-
tures.Secondyveillustratethatframevork in acompleteexample.

1. Thesametablecanbere-usedor homogeneouprocessorand
devices. W\ precisely define “read” and “write” in later sections.

2 Related Work

The publicly available work that we found relatedto formally
specifyingthe systembehaior of I/O architecturess sparse As
discussedn the introduction,work on memoryconsisteng mod-
elsis related[1]. Prior to our currentunderstandingf memory
consisteng models, memory behaior was sometimesspecified
individually by hardware elements(e.qg., processarcache,inter-
connect, and memory module). Memory consisteng models
replacedhis disjoint view with a specificationof how the system
behaeson accesse® mainmemory We seekto extenda similar
approach to include accesses across I/O bridges anditesle

Many populararchitecturessuchasIntel Architecture-32(1A-32)

andSunSFARC, appeamnotto formally specifytheir I/O behavior

(at leastnot in the public literature). An exceptionis Compaq
Alpha, whereChapter8 of its specificatior[14] discussesrdering
of accesseacrosd/O bridges,DMA, interrupts,etc. Specifically
a processolaccesses device by postinginformationto a “mail-

box” atan1/O bridge.The bridgethenperformsthe accessn the
I/0O bus. The processorcanthen poll the bridge to seewhenthe
operationcompletesor to obtainary returnvalue. DMA is mod-
eled with “control” accesseghat are completely ordered and
“data” accessedhat are not ordered. Consistentwith Alpha’s
relaxedmemoryconsisteng model,memorybarriersareneededn

mostcasewheresoftwaredesiresordering(e.g.,afterreceving an
interrupt for a DMA completionand before readingthe newly-

written memory buffer). We seekto define a more generall/O

framevork thanthe specificoneAlpha choseandto moreformally
specifyhow /O fits into the partial andtotal ordersof a systems
memory consisterycmodel.

3 System Model

We considera systemconsistingof multiple processornodes,
device nodes, and memory nodes that share an interconnect.
Figurel shows two possibleorganizationsof sucha multiproces-
sor system,where sharedmemoryis implementedusing either a

broadcasbus or a point-to-pointnetwork with directorieq5]. The

addressablanemory spaceis divided into ordinary cacheable
memoryspaceanduncacheablé/O spaceWe now describeeach

part of the system.

ProcessoNodes:A processonodeconsistof a processarcache,
network interface,andinterruptregister Eachprocessofissues”a
streamof operationsandtheseoperationsarelisted anddescribed
in Tablel. Note that LD andLDio are not necessarilydifferent
opcodesin mary machinesthey aredisambiguatedby theaddress
they accessWe classify operationsbasedon whetherthey read
data(ReadOPr write data(WriteOP).If the cachecannotsatisfy
an operation,it initiates a transaction(thesewill be describedn
Section6) to eitherobtainthe requestediatain the necessargtate
or interactwith anl/O device. The cacheis alsoallowedto proac
tively issuetransactionssuchas prefetcheslIn addition, the pro-
cessor(logically) checksits interruptregister which we consider
to be partof the /O spacebeforeexecutingeachinstructionin its
program,andit may branchto aninterrupthandlerdependingon
the alue of the interrupt ggster

Device Nodes:We modela device nodeasa device processoand
adevice memory Eachdevice processocanissueoperationgo its

device memory In addition,it canalsoissueoperationsvhich lead
to transactionsacrossthe 1/0 bridge (via the 1/0O bus). These

MEMORY BUS | \
Bus-based

1/0 Bridge|
system Memory
1/0 BUS
Device Device | Device Device
Processoj Memory Processo Memory

Directory
+

Device Device
,,,,,, Processor | Memory
=
1/0 BUS

(Network interface) (Network interfacg 1/0 Bridge
Directory-based |
system
Interconnection Network

FIGURE 1. Possible System QOganizations

...... Memory
Intr reg

TABLE 1. Processor Operations

Operation Class Description

LD ReadOP | Load- loadwordfrom ordinary
memory space

ST WriteOP | Store - store wrd to ordinary
memory space

LDio ReadOP | Load I/O - load werd from 1/O
space

STio WriteOP | Store 1/O - store wrd to I/O
space

requestallow a device to readandwrite blocksof ordinarycache-
ablememory(via DMA) andto write to a processonodes inter-
rupt register The list of deice operations is sk in Table2.

A requesfrom a processonodeto a device memorycan“cause”
thedevice to “do somethinguseful’ For example,awrite to adisk
controller statusregister cantrigger a disk readto begin. This is

modeledby the device processoexecutingsomesortof aprogram
(thatspecifieghedevice behaior) which, for example malkesit sit

in a loop, checkfor external requestdo its device memory and
then do certainthings (e.g., manipulatephysical devices) before
possiblydoing an operationto its device memoryor to ordinary
memory The device programwill usually be hard-codedn the
device controllercircuits, while the requestgrom processonodes
will be partof a device driver thatis part of the operatingsystem.
Notethat,in generalthe executionof asubroutineoy thedevice in

response¢o anexternalrequesto device memoryneeddo bemade
atomicwith respectio otherexternal requestso device memory
This avoids data races in accessingide memory locations.

Memory nodes:Memory nodescontainsomeportion of the ordi-

narysharednemoryspaceln a systenthatusesadirectoryproto-
col, they also containthe portion of the directory associatedvith

thatmemory Memory nodesrespondo requestsnadeby proces-
sornodesanddevice nodes.Their behaior is definedby the spe-
cific coherence protocol used by the system.

TABLE 2. Device Operations

Operation Class Description

LDio ReadOP Load /O - load werd from
device memory (I/O space)

STio WriteOP Store I/O - store wrd to
device memory (I/O space)

INT - Interrupt - send an interrupt to
a processor node

LDblk ReadOP LoadBlock - load cacheblock
from ordinary memory

SThlk WriteOP StoreBlock - storecacheblock
to ordinary memory

InterconnectTheinterconnectonsistof the network betweerthe
processoandmemorynodesandthel/O bridges.This couldeither
be a broadcasbus or a generalpoint-to-pointinterconnectionnet-
work. Thel/O bridgesareresponsibldor handlingtraffic between
the processoandmemorynodes andthe device nodes Notethat,
while we allow a systemnto containmultiple bridgeswe doassume
thatasingledevice is accessibleia exactly onebridge. This could
perhapsbe extendedto systemswhere devices are accessible
throughmultiple bridges(for fault-toleranceeasons)by assuming
that only one déce-bridge pairing is acté at ay point in time.

Example:We now presenian examplethat shavs how this model
canbe usedto describea commonl/O scenarioTable3 illustrates
disk readswhich, for example,might beinitiated by the operating
systemfor pagingvirtual memoryor for accessindiles in a disk-
basedfile-system.In the example,the first operandof a memory
operationis the destinationandthe secondoperandis the source.
The example assumes hypotheticaldisk controller with device
registers DRO, DR1, DR2, and DR3 mappedinto I/O address
space.Theseregistersare usedto control the initial disk block
numberto read,the startingmemoryaddresf the buffer which
will containthe datato be read,the length of the buffer, andthe
command(Read)to be executed.In the table, physical time flows
downwards.Thefinal STio to DR3 (the commandregister)imme-
diately “triggers” the device to readall of the device registersand
to setup the disk to do the read.Datais transferredusing DMA
betweerthedisk andcoherentmemoryvia physicaldisk readsand
SThlks.It is usefulto noteherethatmostoperatingsystemswvould
male sure that these STblks do not generateary unnecessary
coherenceactiity by invalidatingall sharedand modified copies
(to speedupthe DMA). Finally, aninterruptis generateavhenthe
disk controller hasfinishedthe DMA. This triggersthe interrupt
handler at the processor which can then use the data.

4 An I/O Framework for Sequential Consistency

As the examplein the previous sectionshaws, certainorderings
betweenoperationsarerequiredin orderto get device operations
to work. Theobjective of ourframenork is to conciselycapturethe

orderingsrequiredof asystemIn this sectionwe presengaversion
of our framework for orderingthe memoryand|/O operationsn a

systemwherethe memorymodelis sequentialconsisteng (SC).

Section5 will addresssystemswith other memory models. We

begin with the orderingat individual processorand devices,and

TABLE 3. Disk Read

Processor Disk Controller
STio Block, [DRO]

Setup STio Address, [DR1]
STio Length, [DR2]

STio Read-Cmd, [DR3]

Read DRO, DR1, DR2,
DMA DR3 and set up disk read

Read in data from disk,
issueSThblkfor eachcache
block of data to appropri-
ate address

INT
Interrupt handler runs

Use LD R1, [Address]

data ST [Address+4], R1

thenwe incorporatetheseorderingsinto a framework for system-
wide ordering.

4.1 Processor and Deice Ordering

In a given execution of the system,at eachprocessoror device
thereis a total orderingof the operations(from the list LD, ST,
LDio, STio, INT, LDblk, andSThlk) thatcanbeissuedby thatpro-
cessor or ddce. Call thisprogram oder and denote it by s

Let partial program order be ary relaxationof programorderat a
processopr adevice processorFor example,let <,, bethepartial
programorder that respectgprogramorder with respecto opera-
tionsto thesameaddressindalsosatisfieghe constraintof Tables
4 and 5, where entries in these tables use thewfiolpnotation:

A: OP1 <,, OP2 alvays

D: OP1<ppOP2if theaddressesf OP1andOP2referto thesame
device

TABLE 4. Partial Program Order at a Processor

Operation 2
LD ST LDio STio
- LD A A A A
S |stT A A A A
i LDio A A D D
O STio - - D D

TABLE 5. Partial Program Order at a Device Processor

Operation 2
LDio STio INT LDblk SThlk

LDio A A A A A
76—' sTo | A A A A A
I INT - - D - -
S | LDblk A
s

SThlk - - A - -

tion of Wisconsinl/O (WIO) orderingtakesasa parametean n-

tuple of partial programorders,suchas the 2-tuple specifiedby
Tables4 and5. Let <y be a total orderingof all LD, ST, LDio,

STio, INT, LDblk, STblk operationof anexecutionof the system.
Then <y satisfiesWisconsinl/O with respectto a given partial
program order if:

1. 5y respects the partial program ordamd

2.thevaluereadby every ReadOPoperationis thevaluestoredby
the mostrecentWriteOP operationto the sameaddressn the <y,
order

In Sections6 and7, we will describeanimplementatiorfor anSC
system and outline a proof that sl®it obg's this specification.

5 An I/O Framework for Other Consistency Models

-: no ordering constraint on OP1, OP2 (if not to the same address) TO easepresentatiorcompleity and concentrateon I/O aspects,

Theentriesin the tablesreflectthe behaior of a hypotheticalsys-
tem. For example,in mary systemsSTios to multiple devicesare
not guaranteedo be orderedin ary particularway. Also, thereis
no ordering from a STio to a subsequentD or ST, sincethat
would requirethe processoto wait for an acknaviedgmentfrom
the deice.

It is importantto realizethata programmemho wishesto enforce
orderingbetweernoperationghat are not guaranteedo be ordered
can createan ordering through transitivity. For example, a pro-
grammercan order a processos LD after a STio by insertinga

LDio to the samedevice asthe STio betweenthe two operations.

SinceSTio <pp LDio andLDio <pp LD, we have STio <pp LD (for
this particular sequence of three operations).

4.2 System Ordering: Wsconsin I/O Consistencydr SC

Usingthe definition of partial programorder we cannow definea
systemorderingwhichwe call Wisconsinl/O ordering.The defini-

we have thusfar assumed memoryconsisteng modelof sequen-
tial consisteng. More relaxed models,suchas SFARC TSO and
CompadAlpha, canalsobeaccommodatedindwe now shav how
this canbe accomplishedWe accommodatéhemby changingthe
partial programorderingat the processarbut we leave the device
processoorderingunchangedOne could easily imagine provid-
ing a WIO specificationwherethe device orderingdoesnot match
the orderingspecifiedin Table5, but insteadmatchesthat of the
specific deice(s) being modeled.

5.1 Processor and Deice Ordering

As in Sectiond.1, for eachmemory consisteng model, we will
presentablesof orderingrequirementsor partialprogramorderat
processorsin the following discussionwe do not include syn-
chronizationoperations such as Read-Modify-Write (RMW). A
RMW canbe thoughtof asan atomicoperationwhich includesa
LD andthena ST. It would be orderedsuchthat orderbetweena

RMW andanotheroperation,OP2,respectghe union of ordering
rules between OP2 and a LD and between OP2 and a ST

5.1.1 SRARC Total Store Order (TSO)

SFARC Total StoreOrder(TSO)[17] is avariantof processorcon-
sistency{7,8] that hasbeenimplementedon Sun multiprocessors
for mary years.TSO relaxes SCin that STscanbe orderedafter
LDs which follow themin programorder(solong asthereareno
intervening memorybarriers(MB) andthe two operationsare to
differentlocations).Thus, TSO sometimesallows a load to geta
valuefrom a “future” store.In realimplementationsthis behaior
is manifestwhenaprocessog LD returnsavaluefrom its own ST
thatis still on its own first-in-first-out(FIFO) write buffer andhas
notyet seenby otherprocessorst shouldbe notedthat TSO sup-
portsmultiple flavors of MBs, but we only concernourseheswith
the stronges{i.e., an MB that enforcesorderbetweenary opera-
tion before it and gnoperation after it).

In previous research3], we developeda memory model called
WisconsinTSO that is equivalentto SFARC TSO, andit elimi-
natesheoddity of gettingavaluefrom a“future” storeby splitting
eachST into a STyyjyate and a STpypjic WisconsinTSO respects
programorderbetweenSTyates andLDs, while STy s canbe
delayeduntil the next MB in programorder In addition, STp;cS
must also stay in programorder with respectto eachother The
STyrivate@NASTypiic cOrrespondingo the sameST carrythesame
value.A LD getsits valuefrom either(a) the mostrecentSTyyate
by the sameprocessoras the LD for which the corresponding
SToublic hasnotyetoccurredif ary) or (b) themostrecentSTy,pjic
otherwise.The STyivate OF STpubiic from which the LD getsits
valueis consideredo betheapplicableWriteOP Practitionercan
think of a STyyate as a storeenteringa processos FIFO write
buffer, case(a) as bypassingfrom the write buffer, STy pic asa
store exiting the write buffer, and case(b) as obtaininga LD’s
value from cache or memory.

TABLE 6. TSO: Partial Program Order at a Processor

Operation 2

LD STprv STy, MB LDio STio

LD A A A A A A

o | STow | A A A2 A A A
c

% STowo | - - A A A A

E’_ MB A A A A A A

O | LDio A A A A D D

STio - - - A D D

o

a. Includes the case where both operations are caused t
the same Store (i.e., OP1 is the SWge and OP2 is the

STpublic for a gien ST).

This definitionleadsto theorderingrulesshawn in Table6 for par-
tial programorderat a processqrwheredifferencedrom Table4
are shaded.Note that a programmercan enforce order from a
STyubiic to @ LD by inserting an MB between them.

5.1.2 An Approximation of Intel 1A-32

The Intel IA-32 memorymodelis similar to TSO, in thatit is a
variant of processoiconsisteng. We approximatethe |1A-32 sys-
tem orderingmodel by combiningthe TSO memory model with

our interpretationof the IA-32 I/O orderingrules[4]. 1A-32 has
two uncachedqUC) operations|. Duc andSTuc, thataresimilar to
our LDio and STio I/0 operationsbut UC operationsare more
strictly ordered All operationsoeforea UC operation(in program
order)are orderedbeforethe UC operation,all operationsafter a
LDuc are orderedafter the LDuc, and all STs after a STuc are
orderedafterthe STuc. In additionto the UC operations|A-32 has
two “write combining” (WC) uncachedoperations,LDwc and
STwc. Theseoperationsare lessstrictly orderedthan LDio/STio

operationsandthey arewell-suitedto the acces®rderingrequire-
mentsfor a video frame buffer. Thereis no ordering enforced
betweenWC operationor betweena WC operationanda cache-
able memory operation. Also, IA-32 has several “serializing
instructions” which enforce orderingin much the sameway as
memory barriers, and we will simply refer to them as MBs.

We have madetwo simplificationsin this descriptionof |A-32.
First, IA-32 hasseveral flavors of cacheablenemoryoperations,
including Write-through ,Write-back,and Write-protectedput we
will fold themall into LD/ST operationsSecond,it supportsiN
andOUT /O instructionswhich arenot memory-mappedO, but
instead directly accessl/O ports. These I/O instructions are
orderedustasstronglyasMBs, andwe do notincludethemhere.

Table7 shavs the ordering rules at a processorobeying our
approximatiorof IA-32. Onceagnin, differencedrom the SCtable
are shadedNotice the extra orderingrequirementof the LDuc/
STuc compared to those of the LDioi8Th Table4.

5.1.3 Compag Alpha

TheCompag DEC) Alphamemorymodel[14] is aweaklyconsis-
tent modelthat relaxes the orderingrequirementsat a given pro-
cessombetweenary accesseto differentmemorylocationsunless
orderingis explicitly statedwith the use of a Memory Barrier
(MB). The Alpha memorymodelis formally definedthroughthe
useof two ordersthat mustbe obsered with respectto memory
accesseslhefirst order programissueorder, is a partialorderon
the memory operations(LDs, STs) issuedby a given processar
Issueorderrelaxesprogramorderin thatthereis no orderbetween
accessego different locations without intervening MBs. Issue
orderenforcesorderbetweenaccesseso the samelocation,order
betweerary accesandanMB, andorderbetweerMBs. Thesec-
ond order accesrder is a total orderof operationson a single
memory location (rgardless of the processors that issued them).

We previously definedan equivalentmemorymodel, called Wis-
consinAlpha [3], wherean executionof animplementatiorsatis-
fies the Wisconsin Alpha memory model if there exists a total
ordering of all loads, stores, and MBs, such that:

® all of the issue orders are respected, and

* aload returnsthe value of the mostrecentstoreto the same
location in this total order

This definition of WisconsinAlpha is reflectedin the partial pro-
gram ordering rules shown in Table8. Notice that there are no
orderingrequirementbetweerLDs andSTs(unlesghey areto the

TABLE 7. “|A-32": P artial Program Order at a Processor

Operation 2
LD STpriv STpub MB LDuc STuc LDwc STwc
LD A A A A A A - -
— STpriv A A A2 A A A - -
IS5 STpub : : A A A A . .
i MB A A A A A A A A
o LDuc A A A A A A A A
STuc - A A A A A - A
LDwc - - - A A A - -
STwe - - - A A A - -

a. Includes the case where both operations are for the same ST (i.e., OP1 is tlaeSAqiOP2 is the STpublic for ey ST).

TABLE 8. Alpha: Partial Program Order at a Processor

Operation 2

LD ST MB LDio STio
LD - - A A A

—
< ST - - A A A
B MB A A A A A
£ |wio| A A A D D
STio - - A D D

sameaddress)To enforceorder betweenthem requiresinserting
anMB betweerthem,which createghe orderLD/ST <\, MB <y
LD/ST.

5.1.4 Release Consistency

Releaseconsisteng (RC), particularlythe RCpcflavor, is one of
the mostrelaxed memoryconsisteng models[7]. To definecon-
sisteng modelslik e this, Gharachorloeet al. developeda general
framavork for memoryconsisteng models wherewrites arebro-
keninto p+1 sub-operationswherep is the numberof processors
in the system[6]. This framework, in turn, is basedon a system
abstraction deeloped by Collier [2].

Along theselines, we could expand our partial program order
tablesto reflectthat a storein an RC systemcould appearto be
brokenupinto a STyyate @ndmary STypicS, With one STy pjic at
eachprocessarThe applicableWriteOPfor a LD would be either
the STprivate OF the STyypiic at that processorMoreover, RC has
two new operationsAcquiresand Releaseswhich canbe consid-
eredto be typesof MBs for our purposesAcquiresand Releases
would beincludedin theprocessopartialprogramordertable,and
the orderingrequiredamongthemwould dependon the flavor of
RC. For example the orderingbetweeracquiresandreleasesn an
RCpcsystemwould be the sameasthe orderingbetweernLDs and
STsin a processorconsistensystem(e.g., TSO). This approach,
however, could lead to laye, unwieldy tables.

5.2 WIO Consistency ér General Memory Models

Extendingthe definition of WIO from Section4.2 to incorporate
memory models other than SC requires that we:

® Add ary new operationssuchasLDwc andSTwc (which area
ReadOP and a WriteQRespectiely).

* Define what the applicableWriteOPsare for a ReadOP For
example,in TSO,the applicableWriteOPfor a LD is the most
recent STpivate at that processorunlessthe corresponding
STouplic IS also beforethe LD, in which caseit is the most
recent Shypiic:

* Change WIO property 2 to read:

2.thevaluereadby every ReadORoperationis the valuestoredby
the mostrecentapplicableWriteOP operationto the sameaddress
in the <y order

6 An Implementation that Obeys WIO for SC

So far, we have provided abstractspecificationsof systemsthat
includel/O. We now provide a concreteémplementatiorthataims
to conformto the WIO specificationfor SC systemspresentedn

Sectiond. In this section,we specify a sequentiallyconsistent
directory-basedystemconsistingof the componentslescribedn

Section3. This description builds upon the directory protocol

describedin Plakal et al. [12]. The descriptionis divided into

descriptionsof the processornodes,interconnect,l/O devices,

bridge and memory nodes.

ProcessonodesThecachereceivesa streanmof LD/ST/LDio/STio
operationdrom the processoand, if it cannotsatisfya requestjt
issuesa transaction: The completelist of transactionsincluding
block transfertransactiongRblk/Wblk) thatcanonly beissuedby
devices and which will be discussedater, are shavn in Table9.
Cache coherence transactions (GETX/GETS/UPG/WB) are
directedto the home of the memoryblock in question(i.e., the
memory node which containsthe directory information for that

1. As noted earliecaches can also proastly issue transactions
without receving an operation from their processors.

block). I/O transactiongRio/Wio) are directedto a specificl/O

device andalsocontainanaddres®f alocationwithin thememory
of thedevice (and,if Wio, the datato write aswell). Thegranular-
ity of accesdor anl/O transactions oneword (for simplicity of

exposition). Rios generatea reply messagdrom which the cache
extractsaregistervalueandpassedt to the processonVios do not

generatary reply messagefom thetamgetdevice; in thecasethat
a processorissuesa Wio and desiresa responsejt can subse-
quentlyquerythe device with a Rio. Note thateac LDio or STio

generatesxactlyoneRio or Wio (respectiely). Thisis unlike nor-

mal cacheablenemorytransactionsvhere,for example, multiple

LDs or STsmay beissuedto the sameblock aftera single GETX

brought it into the cache.

TABLE 9. Transactions

Transaction Description

GETX Get Exclusie access

GETS Get Shared access

UPG Upgrade (Shared to Exclus) access

wB Write Back

Rio Read I/O - read wrd from I/O space

Wio Write 1/O - write word to 1/O space

Rblk Read Block - read cache block from ordi-
nary memory

Whlk Write Block - write cache block to ordi-
nary memory

Processonodesmustconformto thelist of behaior requirements
specifiedin Section2.4 of Plakaletal. [12] (e.g.,a processonode
maintainsat most one outstandingrequestfor eachblock). They
mustalsoconformto the orderingrestrictionslaid out in Table4.
Thus,they donotissuea LD/ST until all LDios precedingt in pro-
gramorderhave been“performed”(i.e., thereply hasbeenwritten
into the rgister by the cache).

A processomodes network interfacesendsall transactiongrom
the cacheinto the interconnectiometwork. In addition, the net-
work interfacewill passa Wio coming from the network to the
processos interruptregister It also passesll repliesto transac-
tions to the cache.

InterconnectThe network ensuregoint-to-pointorderbetweena
processonodeandadevice node,andit ensureseliableandeven-
tual delivery of all messages.

Bridge: The I/O bridge performs the following functions: it
receves Rio/Wios from processomnodesand broadcastshemon
thel/O Bus (this hasto be donein orderof receipton a perdevice
basis);sendsWio repliesfrom device memoryto processonodes;
sendsWios (to interruptregisters)from device processorso pro-
cessornodes; participatesin Rblk/Wblk transactiong(discussed
belov) and broadcastzompletionacknavledgmentson the 1/0
bus.The I/O bridgemustobey certainrules.It providessuficient
buffering suchthatit doesnot have to dery (negative acknavledg-
mentor NACK) requestsentby processorsr devices.It alsohan-
dlesthere-try of its own NACKedrequestgto memorynodes)No
order is obserd in the issuelerlap of Rblk/Wblk transactions.

Device Nodes:Eachdevice processorcanissuelLDio/STios to its
device memory and INTs to processorinterrupt registers. INT
operationsare corvertedto Wio transactionsby the I/O bridge.
Theseare directedto a specificprocessos interruptregister and
donotgenerateeply messagesn addition,adevice canalsoissue
LDblk and SThlk requestsand theseoperationsare corvertedto
Rblk and Wblk transactiongy the bridge and are directedto the
home node. The data payloadfor both requestsis a processor
cachdine (equalto ablock of memoryatamemorynode whichis
equalto the coherencaunit for the entire system).Both requests
generateacknavledgments(ACKs) on the I/O bus (from the
bridge)and,in the caseof the Rblk, the ACK containsthe dataas
well. A Wblk requestcarriesthe datawith it. Also, eachLDblk/
STblk will generateexactly one Rblk/Wblk (just as with LDio/
STios and Rio/Vibs).

Each device memory receves a streamof LDio/STios from its

device processarn addition,it alsorecevesa streamof Rio/Wios
from the bridge (via the I/O bus)which it logically treatsasLDio/

STios. Thesetwo streamsareinterleaved arbitrarily by the device
memory For eachincomingRio, thedevice memorysendgvia the
busandthe bridge)the valueof thatlocationbackto the nodethat
sentthe Rio. LDio/STios operateon device memorylike a proces-
sor's LD/STs operate on its cache.

The device processomust obey the ordering rules specifiedin
Table5. For example,anINT is notissueduntil all LDblk/STblks
precedingt in “device programorder” have beenperformed(i.e.,
an ACK hasbeenreceved from the bridge for the corresponding
Rblk/WbIK).

Memory Nodes:Memory nodesoperateas describedn Plakal et
al. [12] (with respecto directory stateandtransactions)with the
following modificationsfor handlingRblk/Wblk transactionsPro-
tocol actionsdependon the stateof the block atthe homenodefor
both transactions.

Rblk:

® |dle or Shaed the homesendsthe block to the bridge,which
broadcasts an@K with the data on the I/Quis.

* Exclusive the homechangesstateto Busy-Rblk removesthe
currentowner’s ID from CACHED, andforwardsthe request
to the currentowner. The owner sendsthe block to the bridge,
invalidatestheblockin its cache andsendsanupdatemessage
(with the block) to the home,which changedhe stateto Idle
andwritestheblock to memory The bridgerecevestheblock
and broadcasts anCK along with the data on the I/Qi&

* Busy-Anythe home MCKs the request.

Whlk:

® |dle: the homestoresthe block to memoryandsendsan ACK
to the bridge. The bridge sendsan ACK to the device (via
broadcast on the 1/0 Bus).

® Shaed the homestoresthe block to memory sendsinvalida-
tions to all sharedcopies,sendsa countof the copiesto the
bridge and changeshe stateto Busy-Whblk The bridge waits
until it recevesall ACKs for the invalidationsbefore broad-

TABLE 10. Example 1

TABLE 11. Example 2

D1 P2 D3
send Wb W1 to D1

recv Wo W1 send Rio W1 to D1
STio W1 send Rio W2 to D3
recv Rio W1l recv Rio W2
LDio W1; sendto P2 / LDio W2; send to P2
receve W2
LDio W2
receve W1
LDio W1

castingthe transactioncompletionACK on the /0O Bus. The
bridgealsothensendsan ack to the homewhich enablest to
change its state tdle.

® Exclusive the home storesthe block to memory sendsan
invalidation to the (previous) owner, sendsan ACK to the
bridge,andchangeghe stateto Busy-Wblk The former owner
invalidatesits copy andsendsanackto the bridge,whichthen
sendsan ACK to the device and to the home (which then
changes its state tdle).

® Busy-Anythe home MCKs the request.

Note that we now have two new “busy” home states,Busy-Rblk
andBusy-Whblkwhich sene similar rolesasthe busy statesusedin

the original directory protocol. Thesemodificationsmake some
formerly impossiblesituationspossible.In particular Writebad

requestanay find the homebusy One solutionis to modify this

transaction case:

* Writebak on homeBusy-Rblkor Busy-Wblk This is the same
as when the home Busy-Shaed

7 Proof that the Implementation Satisfies WIO

We shaw correctnessf theimplementatiordescribedn Section6

as follows. We will use a verification techniquebasedon Lam-

port’s logical clocks[9] thatwe have successfullyappliedto sys-
temswithout1/O [16, 12, 3]. Thetechniquerelieson beingableto

assigntimestampgo operationsn a systemandthenproving that
theorderinginducedby thetimestampsasthe propertiegequired
of theimplementationln orderto apply our verificationtechnique,
we first describea timestampingschemethat logically ordersall

ReadOpsand WriteOpsthat occurin ary given executionof the
protocol. Second,we shawv that the resultingtotal order satisfies
propertiesl and2 of WIO consisteny, asin Sectiond.2for SC.A

detailed specificationof our correctnesgproof can be found in

Appendix A; the folleving is a short eerview of our approach.

To specify the timestampingscheme,we augmentprocessors,
directory anddevice processorgall referredto asnodes)with log-
ical clocks.We stresghattheseclocksaresimply conceptuatools,

D3 P4 P5
GETX B
send Wo W2 to D
recv INV B
recv acks/data for B’
revc Wio W2
STio W2 STB

not partof the actualprotocol.Usingtheseclocks,a uniquetimes-
tampis assignedo eachreadandwrite. In addition,a transaction
that causesa nodeto changeits accesspermissionto a block of
dataor word of 1/O is timestampedy thatnode.Thus,a transac-
tion may be timestampedby several nodes.Roughly when an
event(i.e.read,write, or transaction}o betimestampedhappens”
atanode,theclockis movedforwardin time andthe updatedime
on the clock is assignedo that event. Of course,eventsare not
atomicandso a centralaspeciof the timestampingnethodis the
determination from the protocol specification,of exactly when
(andwhere)eventsaretimestampedandthuswhenthey arecon-
sideredto “happen”).In this way, the timestampingschemepro-
videsa single, total orderingof all key eventsin the system.The
correctnesproofthenshavs thatthereal systembehaesjust asif
the eventshappenedatomically in the order given by the times-
tamping scheme.

Tables10, 11, and 12 are examplesthat illustrate how the times-
tampingschemeworks andhelpin reasoningaboutcorrectnessf
our protocol.We needto describeonefurtheraspecof timestamps
before getting to our examples.Timestampsare split into three
non-ngative integral componentsglobal time, local time, and
processonD. As will becomeclearerfrom the example, global
timestampdelpto ordertransactionsvhich happeracrossnodes
whereadocal timestampselp to orderreadandwrite operations
that happeninternalto a node.ProcessoiD simply actsasa tie-
brealer betweenoperationswith the sameglobal andlocal times-
tamps.

The first example, showvn in Table10, shavs one processarP2,
thatcommunicatesvith two devices,namelyD1 andD3. P2 sim-
ply doesa write followed by a readto aword W1 of D1, followed
by a readto a word W2 of D3. Becausethe network preseres
point to point ordering of messagesD1 first receves the “Wio
W1” requestandthenthe “Rio W1” request,D1 performsthese
operationsn orderandreturnsthe valueof W1 to P2.Meanwhile,
D3 handlesthe “Rio W2” requestandreturnsthe value of W2 to
P2.

TABLE 12. Combined example with timestamps. Initially all clocks (global.local) ae set to 0.0.

D1 P2 D3

P4 P5

send Wib W1 to D1
send Rio W1 to D1
send Rio W2 to D3

1.0.1 recv Vib W1

1.1.1 STow1l

2.0.1 recv Rio W1

2.1.1LDio W1; sendto P2
receve W2
LDio W2
receve W1
LDio W1

1.0.3 recv Rio W2
1.1.3LDio W2; sendto P2

GETX B
send Wb W2 to D3

1.0.5recvINV B
2.0.4 recv acks/data for B

214STB

2.0.3 recv Vib W2

2.1.3STo W2

Table12 shavs how thesereadsandwritesaretimestampedn our
timestampingscheme,reads and writes to device memory are
timestampedt the device (thusensuringthat,in theresultingtotal
ordering,the valueof areadis thatof the mostrecentwrite to the
sameword). The Wio andRio requestgo D1 areconsideredo be
transactionsandso D1 assigngylobaltime 1 to the Wio andglobal
time 2 to the Rio requestAs with all transactionsthe local times-
tampfor eachof theseis 0, andthe final componenof thetimes-
tampis thedevice ID, whichis 1 in ourexample.Whenthe (local)
“STio W1" is performedby D1, thelocal time is incrementedand
thusthetimestampis 1.1.1.Similarly, the timestampof the “LDio
W1” operationis 2.1.1,andthe eventsat D3 aretimestampedn a
mannerconsistenwith thoseat D1. Thus,the“STio W1” appears
beforethe“LDio W1" operationsat D1. Thisis consistentvith our
specificationin Table4 thatreadsandwritesto a commondevice
(in this case,D1) by a processorshould respectprogramorder
Also notethat, regardlessof the relative orderin real time of the
“LDio W1 atD1” and“LDio W2 atD3;" the“LDio W1" happens
beforethe “LDio W2” in timestamporder simply becauseD1’s
clock is further along than D3’s clock whenthey perform these
operations.The timestampsassignedo theseoperationsare also
independentf whetherP2recevesthevalueof W2 beforeor after
P2recevesthe valuefor W1. So, althoughthe “Rio W1” appears
before“Rio W2” in P2’s programorder, the “LDio W2" appears
beforethe“LDio W1” in timestamporder Again, thisis consistent
with Table4, which that specifiesLDios to differentdevices are
not constrained to respect program order

Our secondexample,in Tablel11, concernsa processorP4 that
recevesexclusive permissiorfor block B, causingprocessoP5to
invalidateits copy of block B. In addition,P4sendsa“Wio W2” to
D3. Table12 showvs how transactionsindoperationsat D3, P4,and
P5 aretimestampedThe timestampingules specifythat the glo-
bal timestampassignedby P4 to the GETX transactionmust be
later than the correspondindNValidateat P5. Imaginethat acks
sentto P4from P5includethetimestampof the INValidate.Also,
in contrastwith thefactthatreadsandwritesto devicesaretimes-
tampedat the device, readsandwrites to cacheablenemory(and

thusthe“ST B” operationat P4) aretimestampedt the processor
performing the operation. This is becausepermissionsfor the
block resideat the processqrwhereaspermissiondor a word of
device memory aliays reside at the diee.

Note thatin Table12, at ary single node,the logical timestamps
arealwaysincreasingn real time, while timestampsnay be “out

of order” acrossnodesin real time. Finally, note that the logical

timestampsprovide a total ordering of all readsand writes; this

total orderingobtainedn our examplecanbe easilyseento satisfy
the conditions of Sectioh.2.

8 Conclusions

Although I/O devicesareintegral partsof computersystemsand
having cleanl/O architecturesvould offer benefits,the commer-
cial systemswith which we arefamiliar tendto usead hoc, com-
plex, and undocumentedinterfaces. In this paper we have
proposeda framavork called Wisconsinl/O for formally describ-
ing I/0 architecturesWIO is anextensionof researcton memory
consisteng modelsthat incorporatesmnemory-mapped/O, inter-
rupts,anddevice operationghatcausesideeffects.WIO is defined
throughorderingrequirementst eachprocessoanddevice, anda
systemis consideredo obey WIO if thereexistsatotal orderof all

operationghat satisfiestheseorderingrequirementsuchthat the
value of every readis equalto the value of the mostrecentwrite.

We outlinedhow to useLamportclocksto prove thatan example
system that we specified satisfies its WIO specification.

The frameawork presentecherefor specifyingand analyzingsys-
temswith 1/O canbegeneralizedn severalwaysthatwerenotpre-
sentedearlier in order to simplify the discussion.For example,
unlike in Section6, we can model I/O bridgesthat do not have
enough buffering to ensurethat they can sink all incoming
requests.Also, the definition of Wisconsin /O consisteng is
parameterizedy a n-tupleof partial programordersandis there-
fore easilygeneralizedo handlean arbitrary setof local ordering
rules.In the extremecase,eachprocessorndeachdevice would
have its avn table of partial program orders.

Acknowledgments

We would like to thank SaritaAdve, Bob Cypher Andy Glew, Gil
Neiger and the anorymous refereesfor their helpful comments
andsuggestionsThe authors however, take responsibilityfor the
views expressed in this paper

References
[1]

SaritaV. Adve and Kourosh Gharachorloo.Shared Memory
ConsistencyModels: A Tutorial. IEEE Computer pages66—76,

December 1996.

William W. Collier. ReasoningAbout Parallel Architectures
Prentice-Hall, Inc., 1992.

AnneE. CondonMark D. Hill, ManojPlakal,andDanielJ. Sorin.
UsingLamportClocksto ReasorAboutRelaxedViemoryModels.
In Proceedingsof the 5th International Symposiumon High
Performance Computer Architectydanuary 1999.

[2]
(3]

(4]

Intel Corporation. Pentium Pro Family Developer's Manual,
Version 3: Operating System Writer's Manuznuary 1996.

David Culler, JaswindePal Singh, and Anoop Gupta. Parallel
ComputerArchitecture:A Hardware/Softwarépproach Morgan
Kaufmann, 1998.

Kourosh Gharachorloo,SaritaV. Adve, Anoop Gupta, JohnL.
HennessyandMark D. Hill. SpecifyingSystemRequirement$or
Memory ConsistencyModels. Technical Report CS-TR-1199,
University of Wisconsin— Madison, December1993. Seealso
URL ftp://ftp.cs.wisc.edu/tech-reports/reports/93/tr1199.ps.Z.

Kourosh GharachorlooDaniel Lenoski, JamesLaudon, Phillip
Gibbons AnoopGupta,andJohnHennessyMemory Consistency
andEventOrderingin ScalableShared-memorvultiprocessors.
In Proceedingsof the 17th Annual International Symposiunon
Computer Architecturepages 15-26, May 1990.

(5]

(6]

(7]

[8] J.Goodman. Cache Consistencyand Sequential Consistency.
TechnicalReport61, IEEE ScalableCoherentinterfaceWorking

Group, 1989.

Leslie Lamport. Time, Clocks and the Ordering of Eventsin a
DistributedSystem Communicationsf the ACM, 21(7):558-565,
July 1978.

Leslie Lamport. How to Make a MultiprocessorComputerthat
CorrectlyExecuteMultiprocessPrograms|EEE Transactionon
ComputersC-28(9):241-248, September 1979.

Jamed?. Laudon and Daniel Lenoski. The SGI Origin: A
ccNUMA Highly ScalableServer.In Proceedingsof the 24th
International Symposiunon ComputerArchitecture Denver,CO,
June 1997.

ManojPlakal,DanielJ. Sorin,Anne E. CondonandMark D. Hill.
Lamport Clocks: Verifying a Directory Cache-Coherence
Protocol.In Proceedingf the 10th AnnualACM Symposiunon
Parallel Architecturesand Algorithms PuertoVallarta, Mexico,
June 28-July 2 1998.

A. Singhal, D.Broniarczyk, F.Cerauskis, J.Price, L. Yuan,
C.Cheng, D.Doblar, S.Fosth, N.Agarwal, K. Harvey,
E. Hagerstenand B. Liencres.Gigaplane:A High Performance
Bus for Large SMPdHot Interconnects l\Vpages 41-52, 1996.

RichardL. Sites, editor. Alpha Architecture ReferenceManual
Digital Press, 1992.

Mark Smotherman.A Sequencing-Basedlaxonomy of 1/O
Systems and Review of Historical Machines. Computer
ArchitectureNews 17(5):10-15 Septembef 989. Seealso URL
http://www.cs.clemson.edu/~mark/io.ps.

DanielJ. Sorin,ManojPlakal,Mark D. Hill, andAnneE. Condon.
Lamport Clocks: ReasoningAbout Shared-MemonyCorrectness.
TechnicaReportCS-TR-1367Universityof Wisconsin-Madison,

9]

[20]

[11]

[12]

(23]

[14]

[15]

[16]

10

March 1998. See also URL ftp://ftp.cs.wisc.edu/tech-reports/
reports/98/tr1367.ps.Z.

DavidL. Weaver and Tom Germond, editors. The SPARC
Architecture Manual, Version 9. PrenticeHall, 1994. SPARC
International, Inc.

(17]

Appendix A: Proof that an Implementation Satisfies wic

In this section, we will demonstratethat the implementation
describedn Section6 satisfiesthe definition of WIO. We will use
a verificationtechniquebasedon Lamports logical clocksthatwe
have successfullyappliedto systemswithout I/O [16, 12, 3]. The
techniquerelieson beingableto assigntimestampgo operations
in a systemand then proving that the ordering inducedby the
timestampshas the propertiesrequired of the implementation.
SectionA.1 provides backgroundon our verification technique,
SectionA.2 describeshetimestampingschemeéor ourimplemen-
tation, and SectionA.3 provides the proof of correctnesf the
implementation.Both the timestampingschemeand proof are
intendedto be modestextensionsof thosepresentedn our previ-
ous vork [12].

A.1 Background to Lamport Clocks?

Our previous work on using Lamport Clocks to verify shared-
memorymultiprocessosystemg12,16] proved thatimplementa-
tions (without I/O) usinga SGI Origin 2000-like [11,5] directory

protocolanda SunGigaplane-lile [13] split-transactiorbus proto-

col both implement SC. Both implementationsuse three-state
invalidation-baseccoherenceprotocols. We have also extended
this researcho useLamportclocksto prove thatsystemsbey two

relaxed memory consisteng models, SFARC TSO and Compaq
Alpha [3].

Our reasoningmethodassociatesogical timestampswith loads,
storesandcoherencevents.We call our methodLamportClocks,
becauseour timestampingmodestly extends the logical times-
tamps Lamport developedfor distributed systems[9]. Lamport
associated counterwith eachhost.The counteris incrementean
local eventsandits valueis usedto timestampoutgoingmessages.
On messageeceipt,a hostsetsits counterto onegreaterthanthe
maximumof its former time and the timestampof the incoming
messageTimestampties are brokenwith hostID. In this manney
Lamportcreatesatotal orderusingtheseogical timestampsvhere
causality flavs with increasing logical time.

Our timestampingschemeextendsLamports 2-tuple timestamps
to three-tuples«global . local . node-id>, whereglobal takespre-
cedenceover local, andlocal takesprecedencever node-id (e.g.,
3.10.11< 4.2.1).Coherencenessage®yr transactionszarryglobal
timestampsln addition,globaltimestamp®rderLD andST oper-
ationsrelative to transactionsLocal timestampsare assignedo
LD andST operationsn orderto presere programorderin Lam-
port time amongoperationghat have the sameglobal timestamp.

1. This appendix is present in the technical repengign of this

paper lot not in the ersion that appears in tReoceedings of the
11th Annual Symposium oarllel Algorithms and Achitectues

(SRAA), June 1999.

2. This summary is similar to the summary we present in Section

2.1 of Condon et al. [3].

They enablean unboundechumberof LD/ST operationsdbetween
transactionsNode-ID, the third componentof a Lamporttimes-
tamp, is usedas an arbitrary tiebrealer betweentwo operations
with the sameglobal andlocal timestampsthus ensuringthat all
LD and ST operations are totally ordered.

A.2 Timestamping Schemedr Our Implementation

Before we presentthe timestampingscheme,we would like to
definesomeconcept@andmalke somechangesvhichwill makethe
timestamping and the proof simpler tpeess and understand.

First, we split up Rblk andWhblk transactionnto two stepsRBIk-
Start/EndandWBIk-Start/End respectiely. Thereasoningehind
thisis asfollows: cachecoherencéransactionge.g.,a GETX) will
bring ablockinto a processocachewhereit canbe accessedntil
it is removed via anothertransactione.g.,a WB or anincoming
invalidation generatedby another GETX). On the other hand,
RBIk/Whblk transactionsccess cacheblock but they do not give
the device permissionto do more than one operation (LDblk/
STblK). It is asif the LDblk/STbhlk wasimmediatelyfollowed by a
transactiorthatremovedthe device’s accesgo the block. Concep-
tually breakingRBIk and WBIk into Startand End transactions
unifies cachecoherenceand DMA transactiondnto one frame-
work andsimplifiesthe timestampingandthe proof. This wasnot
doneearlier(in Section6) to avoid confusingthe readewith extra
detail. The changedo the protocolareminimal: every RBIk/WBIk
transactionis now regarded as a RBIk/WBIk-Start transaction.
After suchatransactiorsucceedsa device nodeis now capableof
performinga LDblk/STblk operation.The Rblk-End/Wblk-Endis
consideredo conceptuallyoccurwhenthetransactioris complete.

Consistentvith our previouswork [12], we introducethe notion of
a perblock A-state(address-stategt a nodeto describethe home
nodes view of thatnodes accesgo thatblock of memory The A-
statecanbeoneof A (Idle), Ag (Shaed), or Ay (Exclusivé. The
A-stateof a block at a nodechangesasit participatesn transac-
tions for that node(eitherinitiated by it or forwardedto it by the
home).The A-stateis setto A; whenthe nodereceivesaninvalida-
tion or a forwardedGet-Exclusiveor an acknavledgmentfor its
own Writebadk request.The A-stateis setto Ag whenthe node
recevesadowvngradepr aresponséo its own Get-Shaedrequest.
Finally, the A-stateis setto Ay whenthenoderecevesaresponse
to its own Upgradeor Get-Exclusiveequestalongwith all associ-
atedinvalidationacknavledgmentsin addition,we now definethe
A-stateof a device nodefor ablock B of memoryto changeto Ag
or Ay whenit performsa RBIk-Startor WBIk-Start, and that it
changeo A, onaRBIk-Endor WBIk-End. Similarly, aftera RBIk/
WBIk-Starttransactionthe homenodes A-statewill changeo A,
or Ag accordingasthe final home statefor that block is Idle or
Shaed respectiely. After a RBIk/WBIk-End transaction,the
homenodes A-statewill changeto Ay if the final homestatefor
that block (after the corresponding RBIk/WBIk-Stargsidle.

We assigrtimestampdo the operationsandtransactionslefinedin
Tables1, 2, and 9 (with RBIk and WBIk split up as described
above). The rules listed in Tables 13, 14, and 15 indicate the
assignmenbf the global andlocal componentf the timestamp
for eachkind of operation/transactioriNote that transactionslo
not needa local timestampand could be assignedsomearbitrary

11

TABLE 13. Processor node timestamping

Operation/ Global Local
Transaction | Timestamp Timestamp | Node ID
LD, ST current global 1 + current | processor
clock local clock
LDio global timestamp | 1 device
of corresponding
Rio (sent)
STio global timestamp | 1 device
of corresponding
Wio (sent)
P-UP 1+ max{global | O processor
clock,timestamps
assigned to P-UP
by all othernodes
thatdowvngradeas
a result of P-UP}
P-DONN 1 + global clock | O processor
Rio (sent) only timestamped at diee
Wio (sent) only timestamped at diee
Wio (recv) 1 + max {global | 0% processor
clock, global
timestamp of
device when Vib
was sent}

a. Timestamgs 0, but the clock s setto 1. This ensureghat
LDio/STiosissuedby aprocessogetalocaltimestampf 1,
while those issued by awee get a local timestamp of 2 or
greater

localtimestamp(e.g.,zerosothata transactiorgetsorderecdbefore
operations with the same global timestamp).

Conceptually eachnode (processor/memory/diee) maintainsa
global andlocal clock which get updatedin real time for opera-
tions and transactionsTo do this in a well-definedmanner we
definea timestampingrder which is a pernodetotal orderwhich
decidegheorderin which operationandtimestampgetassigned
timestampsOperationsenterthe timestampingorderof a nodeat
thepointin realtime whenthey areretired(i.e.,they cannotbeun-
donedueto mis-speculatiorhandling),and operationsare retired
in arealtime orderthatis consistenwith programorder If more
thanoneoperations committedatthe samepointin realtime, they
canbe orderedarbitrarily in the timestampingorder Transactions
enterthe timestampingorder of a nodeat the point in real time
when the corresponding A-state change occurs at that.node

The timestampingrules given below also determinethe mainte-
nanceof the perprocessoclocksin thata nodeupdatests global
and local clocks to equal the correspondingimestampof each

1. There is thex@eptional case dbet-Shaedtransactions at the
home for &Shaedblock. In this case, we consider the timestamp
to be assigned at the point that the home sends the block to the
requesteri.e., when the A-state “changes” frong #o Ag,

TABLE 14. Memory node timestamping

Transaction
M-UP

Global Timestamp

1 + max {current global clock, timestamps
assigned to M-UP by the nodes thaivde
grade as a result of M-UP}

M-DOWN
Rblk-Start

1 + current global clock

1 + max {current global clock, global times-
tamp of deice when Rblk-Start &s sent,
global timestamp assigned to Rblk-Start by
Exclusive nodethatdowvngradessaresultof
Rblk-Start (if ary)}

RBIk-End 1 + current global clock

Whlk-Start 1 + max{current global clock, global times-
tamp of deice when Whblk-Start as sent,
global timestamp assigned to Wblk-Start by
all nodes that dengrade as a result of Wblk-

Start (if ary)}

WBIk-End 1 + current global clock

operation/transactiofit timestampsin timestampingorder Any
increasan theglobalclock valuecauseshelocal clock to bereset
to zerobeforeit is updatedasspecifiedby therule. Thereareafew
caseswhere a transactionoriginating at a node is timestamped
elsavhere(e.g.,theWio ata device correspondingo anINT). The
assignmenbf this timestampcauseghe local nodes global clock
to get incremented (if necessarydrpurposes of timestamping,

we considera bridgeto be partof eachdevice node,andall trans-
actionsin which a bridge participateson behalfof a device node
will update the clocks of that diee node.

Processonodesl et P-UPbeatransactiorthatcausesanincrease
in coherencepermissiongupgrade)at processonodep; (GETX,
GETS, or UPG by p;), and let P-DOWN be a transactionthat
causes decreasé coherenceermissiongdowngrade)at p; (WB
by p;, GETX by p; for ablockthatp; hasSharedr Exclusive, UPG
by p; for ablock thatp; hasShared GETSby p; for ablock thatp
hasExclusie, or Rblk/Wblk by a device for a block that p; has
Sharedor Exclusive). Thenthe processonodetimestampingules
are as shon in Table13.

Memorynodeslet M-UP beatransactiorthatcausesnincrease
in permissionsaat memorynodem; (WB by p;), andlet M-DOWN
beatransactiorthatcausesidecreasén permissionsatm; (GETS,
GETX, or UPG by p;). With thesedefinitionsof M-UP and M-
DOWN, thetimestampingulesfor memorynodesareasshavn in
Table14. The memorynodetimestampsgransactionsn the real-
time orderin which they areprocessedn the caseof transactions
thatinvolve transienBusy statesthe “currentglobal clock” corre-
spondsto the global clock at the time the Busy stateis entered,
while the timestampof the transactioris assignedvhenthe mem-
ory enters a non-transient stalidl¢, Shaed Exclusive.

Device nodes:A device nodetimestampsperationsandtransac-
tions as shon in Tablel15.

12

TABLE 15. Device node timestamping

Operation/ Global Local
Transaction Timestamp Timestamp | Node ID
LDio, STio current global | 1 + current | device
clock local clock
INT global times- 1 processor
tamp of corre-
sponding Vib
LDblk global times- 1 memory
tamp of corre-
sponding Rblk-
Start
SThlk global times- 1 memory
tamp of corre-
sponding
Whlk-Start
Rio (recv) 1+max{global | 0% device
clock, global
timestamp of
sender when
Rio was sent}
Wio (recv) 1+ max{glo- | 0? device
bal clock, glo-
bal timestamp
of sendewhen
Wio was sent}.
Wio (sent) only timestamped at pcessor
Rblk-Start only timestamped at memory
RBIk-End only timestamped at memory
Whlk-Start only timestamped at memory
WBIk-End only timestamped at memory

a. See footnote undeaflel3.

A.3 Proof of Correctness of Our Implementation

To prove WIQ, it is sufiicient to shaw thatthereis a total orderof
operationssuchthatthe orderingsin Tables4 and5 arerespected
and suchthat every Read-OPgetsthe value of the most recent
Write-OP The timestampingschemeensureghe total orderand,
combinedwith the protocolspecificationensureshatTables4 and
5 arerespectedLDios andSTios to device memoryareorderedat
the device in the orderin which they are performed,so a LDio
mustgetthevalueof themostrecentSTio. Now we will prove that
every LD/LDblk gets the &lue of the most recent ST/SThlk.

The proof that we provide hereis very similar in structureto the
proofthatwe providedin our previouswork [12]. In whatfollows,
we first outline how definitions from our previous work can be
extendedto the implementationpresentedn this paper We then
summarizethe claimsandlemmasthat are usedin the main theo-
rem. The changesn the statementsf theseresults(relative to our
previous work in SFAA’98 [12]) are in underlined bold.

The consisteng modelis establishedisingthe conceptof coher-
enceepotis An epochis aninterval of logicaltime duringwhicha

nodehasread-onlyor read-writeaccesdo a block of data.In the
restof the paperwe assume blodk to be a fixed-size contiguous,
alignedsectionof memory (usually equalto the cacheline size).
Also, LDs and STs operateon words, where we assumethat a
word is containedin a block andis alignedat a word boundary
Ourschemeouldbeextendedo handleLDs andSTson sub-units
of aword (half-wordsor bytes)which neednot be aligned.How-

ever, this makes the specificationof the memory models very
tedious without angain in insight or clarity

Transaction®n a given block are serializedby the block’s direc-
tory. Hence we canspeakabouta sequencef transaction®n the
sameblock wherethe orderingis implied by their serializationat
the directory For eachnode N, a sequencedf t transactionson
block B (wherethe orderamongtransactionss seenatthe Home)
definesa uniquesequence 1y, A(z)...., Ay of associated\-states
for N, givensomeinitial A-statevalueatN. If A(i) is not equalto
A(.1) for somei = 1, we saythattheit" transactiorin the sequence
“affects” N andthat the transactiorfimplies that N's A-statefor
block B changefrom A ;1) to Agy”. For example,considerasingle
block of memoryandthreenodes:N; (processor)N, (device) and
N3 (memory).SupposeéhatbothN; andN, startoutwith aninitial
A-stateof A; andNj startswith Ay. Let the sequencef transac-
tionsat N3 be N;'s Get-ExclusiveN,’'s RBIk-StartandN,’'s RBIk-
End Thenthe sequencef A-statesfor N;, N, andNgz areA,, Ay,
AL AL AL AL A, A andAy, Ay, A, A respectiely. The Get-
Exclusiveaffects N; and N3, while the RBIk-Start/Endaffect N,
andNas. In the specialcasethata nodeis the directory we saythat
it is also affected by all transactiongesultingfrom Get-Shaed
requestseventhoughno changen the A-stateatthedirectorymay
be implied by such a transaction.

Eachtransactiorimpliesan“upgrade”of A-state(i.e. changefrom

stateA| to Ag, from A, to Ay, or from Ag to Ay) at exactly one
node.For example,a RDblk-Startcausesn upgradeat the device,

a downgradeat memory andpossiblya downgradeat a processar
Also, each transactionimplies a “downgrade” of A-state (i.e.

changdrom Ay to Ag, from Ay to A, or from Agto A|) atzeroor

morenodesin thespecialcasethatnodeN is thedirectory we say
that N's A-state “downgrades”as a result of every Get-Shaed

transaction,even thoughits A-state may not be changedby the
transaction On eachtransactionexactly one node upgradesand
zero or more nodes dmgrade.

Thedefinitionsof “affects” and“implies” in theprevioustwo para-
graphsdependonly on the sequenc®f transaction®n block B at
B’sdirectory In Claim 2 below, we show thatthe protocolspecifi-
cationensureghat, at every node, the actualsequencef changes
to the A-statefor block B occursin the orderimplied by the serial-
ization of the transactionst B’s directory eventhoughmessages
on successe transactions may be reesil out of order by a node.

Claim 1: For eachtransactiorl, amessagés sentto every proces-
sor affectedby T. Also, if processorN upgradesasaresultof T,
exactly thosenodesthat are affectedby transactionT (otherthan
N) send a message to N.

Claim 2: The sequencef A-statechangeson block B at a node
occursin real time in the order implied by the serializationof
transactions on block B at its directory

Claim 3: For a transaction T on block B,

13

(a) The timestampsf the dovngradesassociatedvith T areless
than or equal to the timestamp of the upgrade associated.with T

(b) Thetimestampof theupgradeassociateavith T is lessthanthe
timestampof the upgradeassociatedvith ary transactionT’ on
block B occurringafterT in the serializationorderat the directory
solong asoneof T or T' is a Get-Exclusve or Writeback or
WBIk-Start .

Claim 4: Every LD/ST or LDbIk/STblk operationon block B at
processom; is bound to the most recent(in Lamporttime at p;)
transaction on block B thatfatts .

By constructionthe Lamportorderingof LDs and STswithin ary
processolis consistentwith programorder Therefore,to prove
sequentialconsisteny, it is sufficient to shov that the value of
every load equals thealue of the most recent store.

Recallthat a coherenceepochis simply a Lamporttime interval
[t1,t2) during which a nodehasaccesdo a block. All operations
that have global timestampt wheret; < t < t, are containedin
epochlty,ty). A sharedor exclusive epochfor block B at nodeN
startsat time t, if a transactiorwith timestampt; (at N) implies
thatN’s A-statefor block B changedo Agor Ay respectiely. The
epochendsattime t,, wheret, is N's timestampof the next trans-
action on B that implies a change in A-state at N.

Lemmal shavs thattwo processorsannothave “conflicting” per-

missionto the sameblock at the same(Lamport)time. Lemma2

statesthat processorsdo operationswithin appropriateepochs.
Finally, Lemma3 shaws that the “correct” block valueis passed
among processors and the directory between epochs.

Lemma 1: Exclusive epochgor block B do not overlapwith other
exclusive or shared epochs for block B in Lamport time.

Lemma 2: (a) Every LD/ST, LDblk/STblk operationon block B
atp; is containedn someepochfor block B at p; andis boundto
the transactionthat causedthat epochto start. (b) Furthermore,
every ST or SThlk operationon block B atp; is containedn some
exclusive epochfor block B at p; andis boundto the transaction
that caused that epoch to start.

Lemma 3: If block B is received by nodeN at the startof epoch
[t1,1p), theneachword w of block B equalsthe mostrecentST or

STblk to word w prior to t; or theinitial valuein the directory if

there is no store toavd w prior to global time;t

The proof of the Main Theoremshavs how WIO follows from the
lemmas.

Main Theorem: Thevalueof every LD or LDblk equalshevalue
of the mostrecentST or STblk or the initial value,if therehas
been no prior store.

1. In our preious work [12], we had defined the notion of LDs/
STsbeingboundto thetransactiorthatbroughtthe corresponding
blockinto thecache Similarly, LDblk/STblk operationsarebound

to their corresponding RBIk/WBIk-Start transactions.

